Тепловой расчёт рекуперативного теплообменника
Теплообменник - теплообменный аппарат, устройство, в котором осуществляется теплообмен между двумя или несколькими теплоносителями либо между теплоносителем и поверхностью твёрдого тела. Объектом проектирования является рекуперативный теплообменник.
Рубрика | Строительство и архитектура |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 28.12.2008 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования и науки РФ
Московский Государственный Открытый Университет
Чебоксарский институт
Кафедра
Технология конструкционных материалов и литейного производства
Специальность 190601
КУРСОВОЙ ПРОЕКТ
По дисциплине ТЕПЛОТЕХНИКА
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Дата проверки Выполнил студент Иванов С.В.
Результат проверки Учебный шифр 705183
Курс 3
Проверил Пестриков В.Ф.
Замечания
2008
Введение
Теплообменник - теплообменный аппарат, устройство, в котором осуществляется теплообмен между двумя или несколькими теплоносителями либо между теплоносителем и поверхностью твёрдого тела.
Объектом проектирования является рекуперативный теплообменник, предназначенный для улавливания тепла Изот удаляемых из зоны горения плавильной печи дымовых газов с одновременным нагревом воздуха, нагнетаемого в печь в зону горения.
Цели и задачи курсовой работы:
Различают конструктивный и поверочный тепловой расчет теплообменного аппарата.
Цель конструктивного расчета состоит в определении величины рабочей поверхности теплообменника, которая является исходным параметром при его проектировании. При этом должно быть известно количество передаваемой теплоты или массовые расходы теплоносителей и изменение их температуры.
Поверочный расчет выполняется для теплообменника с известной величиной поверхности.
Цель теплового расчета состоит в определении температур теплоносителя на выходе из теплообменника и количества передаваемой теплоты.
В задании на курсовую работу необходимо, руководствуясь данной методикой, произвести конструктивный, тепловой и гидравлический расчеты рекуперативного теплообменника. В ходе расчета следует выбрать исходные конструктивные соотношения для компоновки теплообменника, определить рабочую поверхность теплообменника, подобрать тепловую изоляцию и основные размеры, сделать эскизную схему аппарата. Необходимо определить затраты мощности на прокачку холодного и горячего теплоносителей.
В ходе работы нужно спроектировать теплообменник-рекуператор для заданных параметров рабочего тела. Расчет выполнить на стадии технического предложения.
3адания на курсовую работу по теме
«Расчет теплообменника»
1.Выполнить конструктивный и тепловой расчет теплообменника-рекуператора, предназначенного для улавливания тепла от удаляемых из зоны горения плавильной печи дымовых газов с одновременным нагревом воздуха, нагнетаемого в печь в зону горения.
2.Как возможный вариант выбрать двухходовый или четырехходовый гладкотрубный теплообменник с поперечным обтеканием труб.
Трубы расположены в коридорном порядке (вариант А) с шагами и. Диаметр труб d = 50 мм, толщина б= 4мм. Средняя скорость потока воздуха в узком сечении пучка. Температура воздуха перед пучком , за пучком . Расход воздуха . Физические свойства дымового газа приведены в таблице №1.Их средняя скорость . Расход дымовых газов .
Дополнительные требования
1 .Пояснительная записка должна содержать:
1.1.Введение.
1.2.3адание.
1.3.Описание конструкции и обоснование выбора отдельных элементов аппарата.
1.4.Тепловой расчет аппарата.
1.5.Аэродинамический расчет аппарата.
1.6.Выводы.
1.7.Список литературы
2.Эскиз теплообменника.
Описание конструкции и обоснование выбора отдельных элементов аппарата
Применение рекуперативного теплообменника позволяет избежать конденсации влаги из воздуха в сушильной патере, при поступлении в камеру свежего холодного воздуха (в зимний период), а также уменьшает потери тепла с выбросом отработанного влажного воздуха на 5-10%.
Для исключения этого, а также для экономии тепловой энергии, применяются рекуперативные теплообменники.
Рекуперативный теплообменник - это аппарат, в котором теплообменивающиеся потоки разделены поверхностью теплообмена.
Конструктивно теплообменник представляет собой теплоизолированный корпус, в котором особым образом расположены алюминиевые пластины с ребрами и боковыми проставками.
В теплообменнике нагрев свежего холодного воздуха происходит за счет охлаждения отработанного горячего воздуха, таким образом, в камеру поступает уже предварительно нагретый воздух.
Рекуперативный теплообменник конструктивно выполнен перекрестно-точным, благодаря чему достигается хороший тепловой контакт между потоками горячего и холодного воздуха.
Корпус теплообменника имеет входные и выходные отверстия, через которые теплообменник соединяется с печью и вытяжным вентилятором.
Вытяжной вентилятор, в зависимости от исполнения, может располагаться и внутри рекуперативного теплообменника.
Особенность рекуперативного заключается в том, что их можно использовать лишь в том случае, если хотя бы в одном месте приточные и вытяжные воздуховоды размещены в непосредственной близости друг от друга.
Дымовые газы подогревают концы тепловых труб, вызывая испарение жидкости и перемещение пара в противоположную часть трубы.
Схема четырехходового рекуператора из гладких стальных труб.
1- тепловой изолятор;
2- трубы;
3- воздушная коробка;
4 и 6- трубные листы;
5- лист для разделения потока воздуха.
Выбор конструкции теплообменных аппаратов
Конструкцию теплообменника следует выбирать, исходя из следующих основных требований, предъявляемых к теплообменным аппаратам.
Важнейшим требованием является соответствие аппарата технологическому процессу обработки данного продукта; это достигается при таких условиях: поддержание необходимой температуры процесса, обеспечение возможности регулирования температурного режима; соответствие рабочих скоростей продукта минимально необходимой продолжительности пребывания продукта в аппарате; выбор материала аппарата в соответствии с химическими свойствами продукта; соответствие аппарата давлениям рабочих сред.
Вторым требованием является высокая эффективность (производительность) и экономичность работы аппарата, связанные с повышением интенсивности теплообмена и одновременно с соблюдением оптимальных гидравлических сопротивлений аппарата. Эти требования обычно выполняются при соблюдении следующих условий: достаточные скорости однофазных рабочих сред для осуществления турбулентного режима; благоприятное относительное движение рабочих сред (обычно лучше противоток); обеспечение оптимальных условий для отвода конденсата и неконденсирующихся газов (при паровом обогреве); достижение соизмеримых термических сопротивлений по обеим сторонам стенки поверхности нагрева; предотвращение возможности за-грязнения и легкая чистка поверхности нагрева, микробиологическая чистота и др.
Существенными требованиями являются также компактность, малая масса, простота конструкции, удобство монтажа и ремонта аппарата. С этой точки зрения оказывают влияние следующие факторы; конфигурация поверхности нагрева; способ размещения и крепления трубок в трубных решетках; наличие и тип перегородок, уплотнений; устройство камер, коробок, днищ; габаритные размеры аппарата и др.
Ряд факторов определяет надежность работы аппарата и удобство его эксплуатации: компенсация температурных деформаций, прочность и плотность разъемных соединений, доступ для осмотра и чистки, удобство контроля за работой аппарата, удобство соединения аппарата с трубопроводами и т. д.
Эти основные требования должны быть положены в основу конструирования и выбора теплообменных аппаратов. При этом самое большое значение имеет обеспечение заданного технологического процесса в аппарате.
Основные способы увеличения интенсивности теплообмена в подогревателях:
а) уменьшение толщины гидродинамического пограничного слоя в результате повышения скорости движения рабочих тел или другого вида воздействия; это достигается, например, разбивкой пучка трубок на ходы и установкой межтрубных перегородок;
б) улучшение условий отвода неконденсирующихся газов и конденсата при паровом обогреве;
в) создание благоприятных условий для обтекания рабочими телами поверхности нагрева, при которых вся поверхность активно участвует в теплообмене;
г) обеспечение оптимальных значений прочих определяющих факторов: температур, дополнительных термических сопротивлении и т. д.
Путем анализа частных термических сопротивлений можно выбрать наилучший способ повышения интенсивности теплообмена в зависимости от типа теплообменника и характера рабочих тел. Перегородки не всегда необходимы; при вертикальном расположении трубок и нагреве паром последний подается в межтрубное пространство; поперечные перегородки будут мешать стеканию конденсата. При теплообмене газа с газом или жидкости с жидкостью количество протекающей через межтрубное пространство жидкости может оказаться настолько большим, что скорость ее достигнет тех же значений, что и внутри трубок; следовательно, установка перегородок теряет смысл. Перегородки бесцельны также в случае сильно загрязненных жидкостей, при которых вследствие нарастания слоя загрязнений на трубках решающее влияние на коэффициент теплопередачи оказывает величина Rn.
Материальные и тепловые расчеты
Общая часть.
1. Определим расход теплоты и расход воды. Примем индекс «1» для горячего теплоносителя (бензол + толуол), индекс «2» - для холодного теплоносителя (вода).
Предварительно найдем среднюю температуру воды:
t2 = 0,5 (10 + 25) = 17,5 С;
среднюю температуру смеси бензол-толуол:
= 31 + 17,5 = 48,5 С; (3.1)
где - средняя разность температур, равная при потоке теплоносителей 31 С.
+80,5 25 С;
+25 10 С;
;
= 31 С; (3.2)
Без учета потерь тепла расход теплоты:
Вт; (3.3)
расход воды аналогично (3.3) выразив через расход:
кг/с; (3.4)
где =1927 Дж/(кг К) и =4190 Дж/(кг К) - удельные теплоемкости смеси и воды при их средних температурах =48,5 С и =17,5 С [1, рис. XI и таб. XXXIX].
Объемные расходы смеси и воды:
(3.5)
(3.6)
где и - плотность смеси берем как для чистого бензола, так как содержание толуола не велико и изменение плотности очень не значительное [1, таб. IV] и воды [1, таб. XXXIX].
Наметим варианты теплообменных аппаратов.
Для этого определим ориентировочно значение площади поверхности теплообмена, полагая Кор = 500 по [1, таб. 4.8], т. е. Приняв его таким же, как и при теплообмене от жидкости к жидкости для воды:
; (3.7)
Из величины = 23 следует, что проектируемый теплообменник может быть много ходовым. Поэтому для правильности расчета нужно сделать поправку для многоходовых теплообменников.
В аппаратах с противоточным движением теплоносителей при прочих равных условиях больше чем в случае прямотока. При сложном взаимном движении теплоносителей принимает промежуточные значения, которые учитывают, вводя поправку к средне логарифмической разности температур для противотока.
; (3.8)
где ; ;
; ;
; ; ;
;
Рассчитаем коэффициент по формуле (3.8)
;
= С; (3.9)
Для обеспечения интенсивного теплообмена попытаемся подобрать аппарат с турбулентным режимом течения теплоносителей. Смесь бензол-толуол направим в трубное пространство, так как это активная среда, воду - в межтрубное пространство.
В теплообменных трубах 25*2 мм холодильников по ГОСТ 15120-79 скорость течения смеси при Re 2 > 10000 должна быть более
(3.10)
где - вязкость смеси при 48,5 С; [1, с. 556].
Число труб, обеспечивающих такой режим, должно быть:
; (3.11)
т.е. число труб n < 44,9 на один ход.
Выберем варианты теплообменников [2, таб. 2.3]:
Теплообменник «кожухотрубный» D = 600; d = 25*2; z=6; n/z = 32,7;
SВ.П. = 0,037 ; F = 61 ; L = 4 м; SВ.П. = 0,011.
2. Теплообменник «кожухотрубный» D = 600; d = 25*2; z=4; n/z = 51,5; SВ.П. = 0,04 ; F = 65 ; L = 4 м; SВ.П. = 0,018.
Вариант 1. Теплообменник «кожухотрубный» (ГОСТ 15120-79)
Скорость течения в трубах, для обеспечения турбулентного режима, должна быт более
Составим схему процесса теплопередачи (Рис. 3.1).
а) В трубное пространство. Определим критерии Рейнольдса и Прандтля для смеси бензол-толуол.
Бензол-толуол
Вода
Рис. 3.1 (к первому варианту расчета)
; (3.12)
;
; (3.13)
;
где =0,14 Вт/(м К) - коэффициент теплопроводности смеси бензол-толуол [1, рис. X].
Рассчитаем критерий Нуссельта для турбулентного течения смеси:
; (3.14)
где примем равному 1, и соотношение =1 с дальнейшей поправкой.
Коэффициент теплоотдачи смеси бензол-толуол к стенке:
; (3.15)
б) Межтрубное пространство. Рассчитаем коэффициент теплоотдачи для воды. Скорость воды в межтрубном пространстве.
; (3.16)
Критерий Рейнольдса для воды:
; (3.17)
где =0,0011 Па с [1, таб. XXXIX], = 998 при температуре +17,5 С;
Критерий Прандтля для воды при +17,5 С:
; (3.18)
где =0,59 Вт/(м К) - коэффициент теплопроводности воды [1, рис. XXXIX].
Для выбора формулы расчета коэффициента теплоотдачи рассчитаем значение GrPr при Re < 10000.
; (3.19)
где - плотность воды при 17,5 С [1, таб. XXXIX]; ; и - плотности воды при 10 и 25 С; =0,0011 Па с [1, таб. XXXIX] - динамический коэффициент вязкости воды при 17,5 С.
;
Для вертикального расположения труб примем выражение [1, форм. 4.28]
; (3.20)
примем значение = 1 с дальнейшей поправкой где и вязкость воды при 17,5 С и температуре стенки соответственно по формуле (3.20).
;
Коэффициент теплоотдачи для воды:
; (3.21)
Рассчитаем термическое сопротивление стенки и загрязнений [1, таб. XXXI]:
; (3.22)
;
Коэффициент теплопередачи:
; (3.23)
Поверхностная плотность потока:
; (3.24)
Определим ориентировочно значения и , исходя из того, что
; (3.25)
где сумма .
Найдем: С; (3.26)
С; (3.27)
С; (3.28)
Проверка: сумма ;
12,3 + 4,3 + 8,5 = 25,1 С;
Отсюда
С; (3.29)
С; (3.30)
Введем поправку в коэффициенты теплоотдачи, определив .Критерий Прандтля для смеси бензол-толуол при С;
;(3.31)
где [1, с.262]; [1, с.556]; [1, с.561].
Коэффициент теплоотдачи для смеси:
(3.32)
Коэффициент теплоотдачи для воды:
(3.33)
где [1, таб. XXXIX];
Исправленные значения К, q, и (3.23):
;
; (3.34)
С; (3.35)
С; (3.36)
(3.37)
(3.38)
Дальнейшее уточнение , и других величин не требуется, так как расхождение между крайними значениями не превышает 5%.
Расчетная площадь поверхности теплопередачи:
; (3.39)
запас
Вариант 2. Теплообменник «кожухотрубный» (ГОСТ 15120-79)
Скорость течения в трубах, для обеспечения турбулентного режима, должна быт более
Составим схему процесса теплопередачи (Рис. 3.2).
а) В трубное пространство. Определим критерии Рейнольдса и Прандтля для смеси бензол-толуол. Рассчитаем Рейнольдс по формуле (3.12)
Бензол-толуол Вода
Рис. 3.2 (ко второму варианту расчета)
;
Критерий Прандтля (3.13).
;
где =0,14 Вт/(м К) - коэффициент теплопроводности смеси бензол-толуол [1, рис. X].
Для выбора формулы расчета коэффициента теплоотдачи рассчитаем значение GrPr при Re < 10000.
где - плотность воды при 48,5 С [1, таб. XXXIX]; ; и - плотности смеси при 25 и 80,5 С; =0,00045 Па с [1, с.556] - динамический коэффициент вязкости смеси при 48,5 С.
;
Для вертикального расположения труб примем выражение [1, форм. 4.28]
примем значение = 1 с дальнейшей поправкой где и вязкость смеси бензол-толуол при 48,5 С и температуре стенки соответственно. Рассчитаем по формуле (3.20).
;
Коэффициент теплоотдачи для смеси бензол-толуол (3.15):
;
б) Межтрубное пространство. Рассчитаем коэффициент теплоотдачи для воды. Скорость воды в межтрубном пространстве (3.16).
;
Критерий Рейнольдса для воды (3.17):
;
где =0,0011 Па с [1, таб. XXXIX], = 998 при температуре +17,5 С;
Критерий Прандтля для воды при +17,5 С (3.18):
;
где =0,59 Вт/(м К) - коэффициент теплопроводности воды [1, рис. XXXIX].
Для выбора формулы расчета коэффициента теплоотдачи рассчитаем значение GrPr при Re < 10000 (3.19).
;
где - плотность воды при 17,5 С [1, таб. XXXIX]; ; и - плотности воды при 10 и 25 С; =0,0011 Па с [1, таб. XXXIX] - динамический коэффициент вязкости воды при 17,5 С.
;
Для вертикального расположения труб примем выражение [1, форм. 4.28]
примем значение = 1 с дальнейшей поправкой где и вязкость воды при 17,5 С и температуре стенки соответственно (3.20).
;
Коэффициент теплоотдачи для воды (3.21):
;
Рассчитаем термическое сопротивление стенки и загрязнений [1, таб. XXXI] (3.22):
;
Коэффициент теплопередачи (3.23):
;
Поверхностная плотность потока (3.24):
;
Определим ориентировочно значения и , исходя из формулы (3.25).
Найдем: С; (3.26)
С; (3.27)
С; (3.28)
Проверка: сумма ;
13,9 + 3,6 + 7,6 = 25,1 С;
Отсюда
С; (3.29)
С; (3.30)
Введем поправку в коэффициенты теплоотдачи, определив . Для смеси бензол-толуол при С и воды при С;
Коэффициент теплоотдачи для смеси (3.33):
где - кинематическая вязкость [1, с.556].
Коэффициент теплоотдачи для воды (3.33):
где - вязкость воды при температуре стенки [1, таб. XXXIX];
Исправленные значения К, q, и (3.23),(3.34),(3.35) и (3.36):
;
;
С;
С;
Проверка расхождения по формулам (3.37) и (3.38).
Дальнейшее уточнение , и других величин не требуется, так как расхождение между крайними значениями не превышает 5%.
2.4. Расчетная площадь поверхности теплопередачи (3.39):
;
запас
Гидравлический и экономический расчет
Расчет гидравлического сопротивления. Сопоставим два выбранных варианта кожухотрбчатых теплообменников по гидравлическому сопротивлению.
Вариант 1. Скорость жидкости в трубах
; (4.1)
; (4.2)
Коэффициент трения рассчитываем по формуле (4.2):
;
где - высота выступов шероховатости на поверхности, d - диаметр трубы.
Диаметр штуцеров в распределительной камере - трубного пространства, - межтрубного пространства [2, с.55].
; (4.3)
Рассчитаем скорость в штуцерах по формуле (4.3).
В трубном пространстве следующие местные сопротивления: вход в камеру и выход из нее, 5 поворотов на 180 градусов, 6 входов в трубы и 6 выходов из них. В соответствии с формулой [2, форм. 2.35] получим
(4.4)
Рассчитаем гидравлическое сопротивление по формуле (4.4)
Число рядов труб, омываемых потоком в межтрубном пространстве, ; примем округляя в большую сторону 9. Число сегментных перегородок x = 10 [2, таб. 2.7]
Диаметр штуцеров к кожуху - межтрубного пространства [2, с.55], скорость потока в штуцерах по формуле (4.3)
Скорость потока в наиболее узком сечении [2, таб. 2.3]
(4.5)
В межтрубном пространстве следующие местные сопротивления: вход и выход жидкости через штуцера, 10 поворотов сегменты и 11 сопротивлений трубного пучка при его обтекании
(4.6)
Рассчитаем гидравлическое сопротивление по формуле (4.6)
Вариант 2. Скорость жидкости в трубах (4.1)
;
Коэффициент трения рассчитываем по формуле (4.2):
;
Диаметр штуцеров в распределительной камере - трубного пространства, - межтрубного пространства [2, с.55].
Рассчитаем скорость в штуцерах по формуле (4.3).
В трубном пространстве следующие местные сопротивления: вход в камеру и выход из нее, 3 поворотов на 180 градусов, 4 входов в трубы и 4 выходов из них. В соответствии с формулой [2, форм. 2.35] рассчитаем гидравлическое сопротивление по формуле (4.4)
Число рядов труб, омываемых потоком в межтрубном пространстве, ; примем округляя в большую сторону 9. Число сегментных перегородок x = 10 [2, таб. 2.7]
Диаметр штуцеров к кожуху - межтрубного пространства [2, с.55], скорость потока в штуцерах по формуле (4.3)
Скорость потока в наиболее узком сечении [2, таб. 2.3]
(4.5)
В межтрубном пространстве следующие местные сопротивления: вход и выход жидкости через штуцера, 10 поворотов сегменты и 11 сопротивлений трубного пучка при его обтекании. Рассчитаем гидравлическое сопротивление по формуле (4.6)
Экономический расчет
Вариант 1. Масса теплообменника по [2, таб. 2.8]
Чтобы оценить стоимость аппарата необходимо рассчитать массу теплообменных труб.
(5.1)
где по [1, с.529]
Доля массы труб от массы всего теплообменника
Цена единицы массы теплообменника по [2, таб. 2.17] Цтр = 0,99 руб/кг. Цена теплообменника
Энергетические затрату с учетом КПД насосной установки на прокачивание горячей жидкости по трубам составит:
(5.2)
где по практическим расчетам [2, с.82].
Энергетические затраты на прокачивание холодной жидкости по межтрубному пространству
(5.3)
Приведенные затраты составят
(5.4)
где 8000 - время работы насосов в году; = 0,02 - стоимость одного киловата энергии руб/кВт.
Вариант 2. Масса теплообменника по [2, таб. 2.8]
Чтобы оценить стоимость аппарата необходимо рассчитать массу теплообменных труб (5.1).
Доля массы труб от массы всего теплообменника
Цена единицы массы теплообменника по [2, таб. 2.17] Цтр = 0,975 руб/кг. Цена теплообменника
Энергетические затрату с учетом КПД насосной установки на прокачивание горячей жидкости по трубам составит (5.2):
где по практическим расчетам [2, с.82].
Энергетические затраты на прокачивание холодной жидкости по межтрубному пространству (5.3)
Приведенные затраты составят (5.4)
Выводы
Для наглядности результаты расчетов сведем в таблицу. Из (таб. 1) видно, что разница между приведенными затратами выбранных вариантов
Таблица 1.
Технико-экономические показатели |
Вариант 1 |
Вариант 2 |
|
D, м |
0,6 |
0,6 |
|
L, м |
4 |
4 |
|
K, |
306,7 |
250,1 |
|
F, |
61 |
65 |
|
M, кг |
2290 |
2290 |
|
0,03495 |
0,01379 |
||
680,1 |
669,9 |
||
5,6 |
2,4 |
||
П, |
685,7 |
672,3 |
незначительна. Но все-таки наиболее экономичным является второй вариант по приведенным затратам. К тому же у второго варианта больший запас поверхности, что дает преимущества, при загрязнении аппарата, перед первым вариантом.
Список литературы
1. Луканин В.Н.и др. Теплотехника., Учебник для ВУЗ-ов, ред. Луконин В.Н., М.. Высшая .школа ,2002 ,-671с.
2. Исаченко В.П. и др.Теплопередача ,М., Энергоиздат, 1981.
3.Долотов Г.П., Кондаков Е.А. Печи и сушила литейного производства, М., Машиностроение ,1984 ,-230 с.
4. Баскаков А.П. и др. Теплотехника ,Учебник для ВУЗ-ов , ред.Баскаков А.П., М., Энергоиздат ,1991,-224 с.
5. Краснощеков Е.А., Сукомел А.С.Задачник по теплопередаче. М., «Энергия», 1975.
6. Нащекин В.В.Техническая термодинамика и теплопередача. Учебное пособие для ВУЗ-ов ,М., Высшая школа ,1980 ..
7. Михеев М.А., Михеева И.М.Основы Теплопередачи , М., 1977.
8. Авчухов В.В., Паюстев В.Я. Задачник по процессам тепломассообмена, М., 1986.
Подобные документы
Создание эффективной теплоизоляции в помещении. Параметры микроклимата; точка росы; санитарная норма тепловой защиты; расчёт толщины утеплителя. Проверка теплоустойчивости ограждения и его внутренней поверхности; теплофизические характеристики материалов.
курсовая работа [500,2 K], добавлен 22.10.2012Расчётные параметры наружного и внутреннего воздуха. Описание технологических процессов. Тепловой баланс помещения. Расчёт газовыделений, местных отсосов от оборудования, воздухообмена. Подбор воздухораспределителей. Аэродинамический расчет вентиляции.
курсовая работа [107,2 K], добавлен 01.02.2016Методика расчета индивидуальных тепловых пунктов для систем отопления и горячего водоснабжения с помощью энергосберегающих подогревательно-аккумуляторных установок со скоростными и трехконтурными теплообменниками; схема присоединения систем отопления.
методичка [824,2 K], добавлен 20.05.2011Исходные данные для проектирования системы отопления для жилого семиэтажного здания в г. Ульяновск. Теплотехнический расчёт ограждающих конструкций. Определение тепловой мощности системы отопления, особенности ее конструирования и гидравлического расчета.
курсовая работа [174,1 K], добавлен 02.02.2014Выполнение проектирования двухэтажного жилого дома: составление конструктивной схемы основных элементов здания (фундамента, стен, перегородок, лестниц, окон, дверей, пола, крыши), расчет тепловой изоляции, выполнение внутренней и наружной отделки.
курсовая работа [2,5 M], добавлен 30.07.2010Общие вопросы теплоснабжения жилых районов городов и других населенных пунктов. Определение теплопотребления промышленного предприятия, построение графиков температур. Расход сетевой воды на каждом участке. Тепловой расчёт магистрали тепловой сети.
дипломная работа [2,0 M], добавлен 28.03.2012Исходные данные для проектирования жилого дома. Решение генерального плана, объёмно-планировочное и конструктивное решение. Отделочные работы здания. Противопожарные нормы проектирования. Основы строительной теплотехники и теплотехнический расчёт.
курсовая работа [80,4 K], добавлен 08.06.2011Знакомство с правилами проектирования автотранспортного предприятия. Калькуляция объёмов работ, численности рабочих; выбор метода организации и диагностики. Расчёт площадей производственных и складских помещений. Обоснование планировочных решений.
курсовая работа [416,7 K], добавлен 25.02.2014Тепловой расчёт схемы котельной, находящейся в г. Свислочь; проектирование сетевого подогревателя воды. Составление схемы теплоснабжения жилого посёлка и вычисление электрического оборудования котельной. Создание схемы тепловых защит и автоматики.
дипломная работа [1,1 M], добавлен 16.03.2013Определение теплопотерь через наружные ограждения помещений здания и расхода топлива. Тепловой расчёт отопительных приборов. Гидравлический расчёт циркуляционного кольца системы отопления. Элементы системы приточно-вытяжной вентиляции двухсветного зала.
дипломная работа [627,8 K], добавлен 12.07.2013