Этиология и патогенез свободнорадикального окисления
Оксидативный стресс рассматривается как патогенетический фактор таких патологических состояний человека, как атеросклероз, сепсис, синдром диссеминированного внутрисосудистого свертывания крови, полиорганная недостаточность, хроническая болезнь почек.
Рубрика | Химия |
Вид | статья |
Язык | русский |
Дата добавления | 26.12.2024 |
Размер файла | 17,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Этиология и патогенез свободнорадикального окисления
Домнина Н.А., аспирант IV курса кафедры биохимии и микробиологии Оренбургский государственный университет
Россия, г. Оренбург
Аннотация
Статья посвящена этиологии и патогенезу свободно - радикального окисление, являющийся в норме обязательным звеном различных метаболических и физиологических процессов, но повышение уровня свободных радикалов в организме может способствовать развитию различных заболеваний. Оксидативный стресс рассматривается как патогенетический фактор таких патологических состояний человека, как атеросклероз, сепсис, синдром диссеминированного внутрисосудистого свертывания крови, полиорганная недостаточность, хроническая болезнь почек, сахарный диабет. оксидативный стресс патогенез этиология
Ключевые слова:оксидативный стресс, патогенез, этиология, свободные радикалы, антиоксиданты
Annotation: The article is devoted to the etiology and pathogenesis of free radical oxidation, which is normally an essential part of various metabolic and physiological processes, but an increase in the level of free radicals in the body can contribute to the development of various diseases. Oxidative stress is considered as a pathogenetic factor in such human pathological conditions as atherosclerosis, sepsis, disseminated intravascular coagulation syndrome, multiple organ failure, chronic kidney disease, and diabetes mellitus.
Key words:oxidative stress, pathogenesis, etiology, free radicals, antioxidants
Кислород абсолютно необходим для жизни всех аэробных организмов, однако в виде свободных радикалов он становится токсичным. Несмотря на то, что свободно-радикальное окисление в свою очередь является обязательным звеном различных метаболических и физиологических процессов, повышенный уровень свободных радикалов может привести к развитию оксидативного стресса, который в свою очередь может способствовать развитию различных заболеваний [1].
Оксидативный стресс рассматривается как патогенетический фактор таких патологических состояний человека, как атеросклероз, сепсис, синдром диссеминированного внутрисосудистого свертывания крови, полиорганная недостаточность, хроническая болезнь почек, сахарный диабет, артериальная гипертензия, гломерулонефрит, болезнь Паркинсона, болезнь Альцгеймера, инфаркт миокарда и др. [2].
Актуальность проблемы оксидативного стресса обусловлена тем, что наш организм постоянно подвергается воздействию различных факторов, таких как загрязнение окружающей среды, курение, употребление алкоголя, неправильное питание и других факторы, которые способствуют увеличению уровня свободных радикалов в организме. Таким образом, знание этиологии и патогенеза оксидативного стресса имеет большое значение для различных областей научных исследований и медицины, и может помочь в разработке новых методов диагностики, профилактики и лечения заболеваний, улучшения качества жизни людей, а также защиты от негативного воздействия окружающей среды.
Этиология
Свободный радикал - это молекула или атом, имеющий неспаренный электрон на внешней орбите, что обуславливает его агрессивность и способность не только вступать в реакцию с молекулами клеточной мембраны, но также и превращать их в свободные радикалы (самоподдерживающаяся лавинообразная реакция). Проще говоря, это метаболиты, обладающие особенным строением - у них есть неспаренный электрон. При встрече с «обычной» молекулой свободный радикал «отбирает» у нее один электрон, тем самым превращая уже ее в активный свободный радикал. К свободным радикалам относятся такие вещества как супероксид ион радикал, гидроксил, алкоксил, перекись водорода и другие [3].
Свободные радикалы могут быть как эндогенными, так и поступать из внешних источников. Уровень свободных радикалов контролируется мощной системой антиоксидантной защиты, включающей ферменты и низкомолекулярные «перехватчики» радикалов [4]. Антиоксиданты вступают в реакцию с прооксидантами и превращают их в безопасные для организма соединения, но при этом сами не становятся свободными радикалами. Борьба с окислительными процессами -- основная задача антиоксидантов. Как следствие, они помогают клеткам восстанавливаться, замедляют процессы старения, укрепляют иммунную систему, оптимизируют обменные процессы в организме, снижают риск болезней сердца, оберегают организм от вредного излучения, в том числе ультрафиолета.
К наиболее известным эндогенным антиоксидантам относятся глутатион, супероксиддисмутаза, а экзогенные - поступают с пищей, богатой витаминами А, С, Е, полиненасыщенными жирными кислотами Омега-3 и Омега-6, микроэлементами. Больше всего антиоксидантов содержится в следующих продуктах: ягодах (особенно чернике, ежевике, малине, вишне и землянике); брюссельской капусте и брокколи; свекле; винограде и изюме; сливах и черносливе; зеленом чае; кофе; темном шоколаде и какао [5].
Свободные радикалы есть в организме каждого человека, их содержание менее 5% от всех метаболитов считается нормой [6]. Прооксиданты возникают в процессе физиологических реакций нашего организма, но усиление образования свободных радикалов происходит в результате самых разнообразных причин -- в ответ на ультрафиолетовое (УФ) излучение, курение сигарет, употребление алкоголя, прием нестероидных противовоспалительных препаратов (НПВП) и многих других экзогенных агентов. Инфекции, ишемически-реперфузионное повреждение и различные воспалительные процессы также приводят к повышению уровня активных форм кислорода (АФК) [6].
Патогенез
Основным объектом поражения свободными радикалами считаются липиды [7]. Нарушение интенсивности и скорости реакций перекисного окисления липидов является основной причиной клеточной дисфункции. В норме в процесс вступают полиненасыщенные жирные кислоты (ПНЖК), входящие в состав биологических мембран и липопротеинов. На первой стадии - атака двойных связей ПНЖК гидропероксидным радикалом и гидроксильным, в результате образуется липидный радикал. Затем образуется липопероксид - радикал, который атакует молекулы ПНЖК. Некоторые липиды и липидные радикалы, взаимодействуя с железом, образуют биорадикалы, поддерживающие липопероксидацию. Также эти радикалы инициируют окислительную модификацию белков и нуклеиновых кислот. Данные нарушения химического состава соединений ведут к невыполнению их функций должным образом. Гипероксидация мембран изменяет их стабильность, ухудшает свойства мембраносвязанных протеинов. Это приводит к ингибированию таких ферментов, как глюкозо -6- фосфатаза и Na/K АТФаза, функция которых - поддержание постоянства ионов в клетке. Также повреждение биорадикалами мембраны уменьшает их способность к возбуждению. Приводит к недостатку энергии. На тканевом уровне это проявляется в виде воспаления, нейродегенеративных изменений, онкогенезах [8].
Также, свободно-радикальное окисление ведет к повреждению митохондрий. В митохондриях в цепи переноса электронов возможно неполное восстановление кислорода: в случае присоединения только 2 -х электронов образуется перекись водорода, одного - супероксидный анион- радикал (О2 *-). В процессе нормального аэробного метаболизма 1 -2% общего количества потребляемого кислорода подвергается последовательному одновалентному восстановлению с образованием свободнорадикальных соединений [8].
Основными источниками продукции АФК являются комплекс I и комплекс III дыхательной цепи. Сперва в митохондриях происходит блокирование переноса электронов, что приводит к угнетению дыхания, снижению синтеза аденозинтрифосфата (АТФ) и, самое главное, к увеличению образования митохондриями супероксид анион-радикала. Затем под действием митохондриальной супероксиддисмутазы образуется пероксид водорода в матриксе. В дальнейшем происходит образование комплекса специфического митохондриального фосфолипида -- кардиолипина с цитохромом С. Данный комплекс обладает пероксидазной активностью и в присутствии пероксида водорода окисляет органические субстраты, полиненасыщенные жирные кислоты, в исходе чего образуются свободные радикалы липидов и запускается цепная реакция липопероксидации. Липопероксидация в мембранах митохондрий приводит к набуханию матрикса, разрыву наружной мембраны или по меньшей мере образованию в ней больших пор, через которые из митохондрий выходит цитохром С. Появление цитохрома с в цитоплазме приводит к запуску реакций апоптоза.
Заключение
Таким образом, оксидативный стресс развивается вследствие дисбаланса между прооксидантной и антиоксидантной системами. Свободные радикалы приводят к повреждению митохондрий, липидов мембран и других биологических структур в клетках. Это способствует развитию воспалительных реакций, нейродегенеративных изменений, онкопатологических процессов, активации апоптоза.
Использованные источники:
1. С.М. Виничук, В.А. Мохнач, М.М. Прокопив, Н.С. Турчина окислительный стресс при остром ишемическом инсульте и его коррекция с использованием антиоксиданта мексидола // Международный неврологический журнал. 2006. №1. С. 18-22.
2. Андрианова Е.В., Егорова Е.Н. Оксидативный стресс в патогенезе заболеваний // 2018. С.30-34.
3. Е.В. Проскурнина, Ю.А. Владимиров Свободные радикалы как участники регуляторных и патологических процессов // Биофизические медицинские технологии. 2015. С. 38-72.
4. Asima Bhattacharyya, Ranajoy Chattopadhyay, Sankar Mitra, and Sheila E. Crowe Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases // Physiol Rev .2014. №2. С. 329-354.
5. Активация липопероксидации как ведущий патогенетический фактор развития типовых патологических процессов и заболеваний различной этиологии // Научная электронная библиотека URL: https://monographies.ru/ru/book/section?id=5541 (дата обращения: 27.04.2024).
6. А.К Мартусевич, К. А Карузин Оксидатианый стресс и его роль в формировании дизадаптаци и патологии // Биорадикалы и антиоксиданты. - 2015. №2. С. 5-18 .
7. Чеснокова Н.П. Понукалина Е.В. Бизенкова М.Н. Источники образования свободных радикалов и их значение в биологических системах в условиях нормы // Современные наукоемкие технологии. 2006. - №6. С. 28-34.
8. А. А. Джатдоева, А. М. Полимова, Е. В. Проскурнина, Ю. А. Владимиров Тканевая хемилюминесценция как метод оценки супероксид радикал-продуцирующей способности митохондрий // Вестник РГМУ. 2016. №1
Размещено на Allbest.ru
Подобные документы
Анализ перекисного окисления в плазме крови и гомогенате почек у контрольной группы животных и у тех, кто подвергся воздействию тетрахлорметана. Уровень антиоксидантных ферментов в плазме и почках после введения витамина Е до и после его воздействия.
дипломная работа [523,8 K], добавлен 11.05.2014Строение и основные свойства белков, их роль в живой природе. Пространственное строение белков. Качественные реакции на белки. Образование сгустков крови при ее свертывании. Белковые компоненты крови. Процесс образования и свертывания казеина.
презентация [1,2 M], добавлен 01.10.2012Понятие об оксидазном типе окисления. Оксигеназный тип окисления. Роль микросомального окисления. Специфические превращения аминокислот в организме. Обезвреживание чужеродных веществ. Связывание в активном центре цитохрома. Восстановление железа в геме.
презентация [175,5 K], добавлен 10.03.2015Понятие степени окисления элементов в неорганической химии. Получение пленок SiO2 методом термического окисления. Анализ влияния технологических параметров на процесс окисления кремния. Факторы, влияющие на скорость получения и качество пленок SiO2.
реферат [147,2 K], добавлен 03.12.2014Общие сведения о диоксиде серы, термодинамика окисления. Ванадиевые катализаторы для окисления, механизм и кинетика. Материальный и тепловой баланс РИВ. Обоснование выбора адиабатического реактора для синтеза аммиака, программа расчёта коэффициента.
курсовая работа [236,2 K], добавлен 16.09.2011Классификация реакций окисления. Изучение особенностей теплового эффекта реакций окисления. Гомогенное окисление по насыщенному атому углерода. Гомогенное окисление ароматических и нафтеновых углеводородов. Процессы конденсации по карбонильной группе.
презентация [3,5 M], добавлен 05.12.2023Основные требования к промышленным реакторам. Термодинамика и кинетика окисления диоксида серы. Математические модели химических реакторов. Модель реактора идеального вытеснения и полного смешения. Получение максимальной степени окисления диоксида серы.
курсовая работа [284,2 K], добавлен 17.06.2010Кинетический анализ схемы перекисного окисления нефтяных сульфидов. Влияние способа приготовления катализатора на кинетику перекисного окисления нефтяных сульфидов. Автокатализ в реакции окисления нефтяных сульфидов в присутствии оксида молибдена.
курсовая работа [647,6 K], добавлен 13.01.2015Окисление органических соединений и органический синтез. Превращение, протекающее с увеличением степени окисления атома. Соединения переходных металлов. Реакции окисления алкенов с сохранением углеродного скелета. Окисление циклических соединений.
лекция [2,2 M], добавлен 01.06.2012Активные формы, функции и механизмы возникновения кислорода. Типы окислительных реакций. Антиоксидантная система организма, факторы клеточной защиты. Антиоксидантные ферменты крови. Виды свободных радикалов. Процессы перекисного окисления липидов.
курсовая работа [56,0 K], добавлен 29.09.2015