Pilot-scale methane degradation biocover at operating landfill

Proving that MBT fine fraction is fit-to-use as functional material for methane degradation layer. Confirmation of the methane degradation efficiency in fine MBT fraction is important from the ecological point of view. The use of a fine fraction.

Рубрика Химия
Вид статья
Язык английский
Дата добавления 11.07.2022
Размер файла 237,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Taras Shevchenko National University of Kyiv

Estonian University of Life Sciences

Linnaeus University

PILOT-SCALE METHANE DEGRADATION BIOCOVER AT OPERATING LANDFILL

A. Sholokhova, MSc student, O. Tsibernaja, MSc student,

V. Mykhaylenko, Ph.D. chemistry Assoc. Professor,

J. Burlakovs, PhD, V. Kuusemets, PhD Professor,

K.-M. Pehme, PhD student, M. Kriipsalu, PhD Professor

Tartu, Vдxjц

Annotation

A landfill is a large bioreactor, in the body of which landfill gases are generated due to anaerobic degradation of organic material. According to European legislation, the emission of methane, one of the landfill gases, should be kept to a minimum as methane is a greenhouse gas and has a significant impact on our climate. With large volumes, methane can be used for energy production, but if the collection is uneconomic, an attractive option would be to cover the landfill with a bioactive layer to degrade methane in-situ. In operational Uikala sanitary landfill, Estonia, where active gas collection system exists, it was found that uncaptured gas could be degraded in bioactive cover layer. To check whether such cover layer could be built from fine fraction after mechanical biological treatment (MBT), two experimental cells were constructed (0-20 mm and 0-40 mm fractions). The paper presents the design of experimental cells, a description of materials for construction and construction process, and preliminary results. Measurement system was installed in both cells: gas wells at eight depths and on three locations on surface. Three-level lysimeters were installed to determine water balance. Research is planned for two years with monthly gas sampling. The objective of the work is proving which of the MBT fractions, 0-20 or 0-40 mm, function better for methane degradation. Confirmation of the methane degradation efficiency in fine MBT fraction is important not only from the ecological point of view. The use of a fine fraction as a material for methane degradation layer would reduce the cost of processing this fraction and become a good example to a circular economy since the landfill would be recultivated using its own resources.

Keywords: Landfill gas, MBT fine fraction, Emission, Methane degradation layer, Landfill cover, Lysimeter

Анотація

fine fraction methane degradation

A. Шолохова, магістр, О. Циберна, магістр, B. Михайленко, канд. наук, доц., Ю. Бурлаковс, д-р наук, В. Куусеметс, д-р наук, проф., K.-M. Пехме, асп., М. Кріпсалу, д-р наук, проф. Київський національний університет імені Тараса Шевченка, Київ, Україна, Естонський університет наук про життя, Естонія, Ліннейський Університет, Швеція

ПІЛОТНЕ МЕТАНОДЕГРАДУЮЧЕ БІОПОКРИТТЯ НА ДІЮЧОМУ ПОЛІГОНІ

Полігон твердих побутових відходів (ТПВ) - це великий біореактор, у тілі якого утворюються звалищні гази. Основним компонентом звалищних газів є метан, який утворюється в результаті анаеробної деструкції органічних фракцій. Викиди метану згідно з європейським законодавством повинні бути зведені до мінімуму, оскільки він є парниковим газом і значно впливає на зміну клімату планети. У процесі генерації великих обсягів метан може бути використаний для виробництва енергії, але якщо продуктивність метаноутворення падає, перспективним варіантом мінімізації викидів є накриття полігону біоактивним шаром, який руйнує метан у товщі накриття. На діючому санітарному полігоні Уйкала (Естонія) існує система збору біогазу, однак за рахунок горизонтальної дифузії не весь газ уловлюється даною системою. Емісію метану з полігону можна знизити шляхом його біодеструкції в товщі накриття. Метою даної роботи є перевірка ефективності роботи двох пілотних майданчиків, сформованих на основі тонких фракцій, отриманих після механічної та біологічної обробки відходів (MBT). З цією метою були побудовані два експериментальні майданчики, накриті фракціями різної крупності: 0-20 мм і 0-40 мм. Нами представлено проект конструкції майданчиків, описано процеси їхнього будівництва, властивості будівельних матеріалів і попередні результати дослідження. Системи моніторингу емісії метану в товщі накриття встановлені на обох майданчиках: газові свердловини із фільтрами розміщені на восьми рівнях і три газові камери облаштовані на поверхні обох майданчиків. Для контролю водного балансу в товщі накриття встановлено три рівневі лізиметри. Дослідження біодеструкції метану заплановано терміном на два роки із щомісячним виміром емісії метану на кожному з рівнів. Завданням експерименту є визначення ефективності біодеструкції метану залежно від крупності фракцій MBT: 0-20 мм або 0-40 мм. Підтвердження ефективності накриття більш дрібною фракцією MBT важливо не тільки з екологічної, але й технологічної точки зору. Застосування дрібної фракції відходів як будівельного матеріалу для створення шару біопокриття зменшить витрати на переробку цієї фракції і стане хорошим прикладом кругової економіки, оскільки в процесі рекультивації полігону планується використання власних ресурсів.

Ключові слова: звалищні гази, метан, фракція MBT, емісія, біодеструкція метану, накриття полігону, лізиметр.

Аннотация

А. Шолохова, магістр, A. Циберная, магістр, B. Михайленко, канд. наук, доц., Ю. Бурлаковс, д-р наук, В. Куусеметс, д-р наук, проф., K.-M. Пехме, асп. М. Крипсалу, д-р наук, проф. Киевский национальный университет имени Тараса Шевченко, Киев, Украина, Эстонский университет наук о жизни, Эстония, Линнейский Университет, Швеция

ПИЛОТНОЕ МЕТАНОДЕГРАДИРУЮЩЕЕ БИОПОКРЫТИЕ НА ДЕЙСТВУЮЩЕМ ПОЛИГОНЕ

Полигон твердых бытовых отходов (ТБО) - это большой биореактор, в теле которого образуются свалочные газы. Основным компонентом свалочных газов является метан, который образуется в результате анаэробной деградации органических фракций. Выбросы метана согласно европейскому законодательству должны быть сведены к минимуму, поскольку он является парниковым газом и значительно влияет на изменение климата планеты. При генерации больших объемов метан может быть использован для производства энергии, но если производительность метанообразования падает, перспективным вариантом минимизации выбросов является накрытие полигона биоактивным слоем, который разрушает метан в толще биопокрытия. На действующем санитарном полигоне Уйкала (Эстония) существует система сбора биогаза, однако за счет горизонтальной диффузии не весь газ улавливается данной системой. Эмиссию метана с полигона можно снизить путем его деструкции в толще биопокрытия. Целью данной работы является проверка эффективности работы биопокрытий, сформированных из мелких фракций, полученных после механической биологической обработки отходов (MBT). С этой целью были построены две экспериментальные площадки, накрытые фракциями различной крупности: 0-20 мм и 0-40 мм. Нами представлен проект конструкции площадок, описаны процессы их строительства, свойства строительных материалов и предварительные результаты исследования. Системы мониторинга эмиссии метана в толще покрытия установлены на обеих площадках: газовые скважины с фильтрами размещены на восьми уровнях и три газовые камеры обустроены на поверхности обеих площадок. Для установления водного баланса в толще покрытия установлены трехуровневые лизиметры. Исследование биодеструкции метана запланировано сроком на два года с ежемесячным измерением эмиссии метана на каждом из уровней. Заданием эксперимента является определение эффективности деградации метана в зависимости от крупности фракций MBT: 0-20 мм либо 0-40 мм. Подтверждение эффективности накрытия более мелкой фракции MBT важно не только с экологической, но и технологической точки зрения. Применение мелкой фракции отходов в качестве строительного материала для создания слоя биопокрытия уменьшит расходы на переработку этой фракции и станет хорошим примером круговой экономики, поскольку в процессе рекультивации полигона планируется использование собственных ресурсов.

Ключевые слова: свалочного газы, метан, фракция MBT, эмиссия, биодеструкция метана, накрытие полигона, лізиметр.

Introduction

Human activity is contributing to increasing the concentration of greenhouse gases in the atmosphere. This results in significant warming of the earth's surface and other associated changes in climate. In addition to industrial and agricultural activities, large contributors of greenhouse gases are landfills. Degradation of organic waste in landfill releases methane a greenhouse gas that is 23 times more effective at trapping heat in the atmosphere than carbon dioxide. Methane discharge accounts as 14 % of the world GHG emissions [1]. As part of the suite of measures to improve the sustainability of waste management and climate system, the Landfill Directive (1999/31/EC) introduces requirements on member states to reduce the methane emissions. In order to comply with these requirements, landfill gas collected and used for energy production or flared. However, gas is produced at a stable rate typically for about 20 years [4] and then the amount of gas gradually decreases. Eventually collection of methane becomes economically unprofitable. An attractive option to destroy methane gas even then would be to cover the landfill with a bioactive layer to degrade methane in-situ. Biocover may be made of various organic-rich materials, including fine fraction from mechanical-biological-treatment (MBT). The properties of such materials, however, have to be confirmed by field trail.

Theoretical background

According to the R. Hanson and T. Hanson [3] scientific research methane can be oxidized by methanotrophic bacteria. M. Scheutz [10], G. Pedersen [7], Y. Philopoulous [9] consider that methanotrophic bacteria are ubiquitous soil bacteria, but long lag phases towards reaching high CH4 oxidation rates are found especially in mineral materials. Therefore the focus in recent years has been on methane degradation by using organic materials. Studies of organic biocovers are described in scientific papers of H. Hilger and M. Humer [4], M. Barlaz [1].

M. Humer and P. Lechner [5] based on the testing of 25 different materials propose several physical and chemical parameters for biocover materials, including organic content, moisture and pH value. According to various criteria, fine fraction from mechanical-biological-treatment (MBT) can be a good material for biocover. First biocover of its kind in Estonia was designed for Kudjape landfill [8] as a part of recultivated project, and was studied in detail.

Purpose

This study aims to prove that MBT fine fraction is fit-to-use as functional material for methane degradation layer. Another objective was to study how the methane degradation window works at operating landfill.

The main sub-objectives of the project are to:

• prove that CH4 is present in cell

• prove that CH4 is not escaping to atmosphere

• prove that gas is degraded in the cell

• prove that environmental conditions are favorable for microbial degradation

• measure composition of gases

• demonstrate dynamics in gas composition over time

• perform microbiological analysis

Monitoring of the cells is planned within two years at intervals of every month.

Materials and methods

Uikala landfill is located in Ida- Virumaa, Estonia, five kilometres to the north of the town Jцhvi and four kilometres to the south of the Gulf of Finland. The landfill that met the requirements of the EU Landfill Directive (1999/31/EC) commenced on January 1, 2002.

The place for the landfill was chosen so that the negative impact on the environment was minimal. The landfill is surrounded by forest, which helps to minimize the migration of dust and noise to residential areas, approximately 1100 meters from the landfill site. The landfill area is surrounded by drainage trenches and a fence. Disposal area has a watertight bottom liner, and leachate is treated by reverses osmosis. In 2008, the waste sorting line was built at Uikala landfill. In this building, sorting of mixed packaging, paper and cardboard, as well as household waste are takes place. From the mixed wastes are sorted out paper, cardboard, metal, plastic, polyethylene, glass and wood. Unsuitable materials are disposed at the landfill. There are three disposal areas, one of which has already been completed. Landfill gas is collected by active gas collection system, cleaned with a carbon filter and pumped to a co-generation plant where it is used for the production of electricity and heat. The electricity is sold to the grid and surplus heat is used for heating landfill facilities, garages, and office building.

Two experimental cells (0-20 mm and 0-40 mm fractions) were constructed at the side of the landfill so as not to interfere everyday work of landfill. The size of each experimental cells is 10 by 10 meters.

Each of cells consists of two basic layers: methane distribution layer and methane degradation layer (Fig. 2). Gravel was chosen as materials for the methane distribution layer. Approximate amount of spent gravel ranges from 30 to 50 m3 per cell. Main purpose of this layer is distributing gas evenly into the top-layer, where methane is degraded [8]. The height of the mineral layer is 0,3 to 0,5 m.

Two methane degrading layers were built using fine fractions 40 mm at the first cell and 20 mm at the second one. Approximate amount of MBT is 220 m3 per cell. The MBT fractions were not used for any purpose before, so its applicability as a construction material for the methanedegrading layer is important for both environmental and economic prospective.

In order to prevent horizontal migration of methane and ensuring the passage of gas through the experimental layers, the PE foil isolation and temporary barriers were built around the cells (Fig. 1).

8-level gas well was installed in both cells so that the eighth level (8) of measurement is in the landfill body, the next seventh level (7) - in the methane distribution layer and six remaining levels at different depths of the methane degrading layer from sixth (6) level to first (1) near the top. The deepest measurement level is 2,07 m and the top level located at 0,3 m down the surface. Such construction allows studying degradation rates of methane in the landfill body and also at different levels of layers.

To measure the amount of actual water transpiration three lysimeters were installed at the depths of 0,4 m, 1 m and 1,6 m. The discharge from lysimeters is carried out beyond the boundaries of the experimental cells in special well where six tipping buckets were installed to record water discharge. Online weather station (Davis Instruments, USA) was installed nearby.

Plastic liner was used to separate these two cells from each other, and to prevent gas migration through embankments of experimental cell. The first stage of the isolation construction works was the excavation of trenches around the cells (Fig. 2). The depth of the trench was about one meter. In the trenches, plastic sheets were placed to form a solid rack base for the main insulation and after they were covered with polyethylene sheets (Fig. 3, 4). The height of sheets is about 3 meters and a length is 10 meters. This height is enough to form a continuous isolation in upper and lower part so half of each sheet is located under the surface and another between methane degradation layer and temporary barriers.

The insulation lay with a slight inclination toward embankments. For the integrity and proper placement of the upper part of the insulation, the material on both sides fills up gradually. For corners, ordinary polyethylene and plastic sheet were used. Embankments were constructed with mineral construction and demolition waste with fraction 20 to 40 mm. Approximate amount of materials used for embankment is 280 m3 per cell.

Fig. 2 Excavation of trenches

Fig. 3 Plastic sheets for side insulation

Fig. 4 Polyethylene sheets

The operational properties of the cells were verified by measuring the concentration of methane once a month. Concentration of was measured from both gas well from eight levels by portable gas analyzer GA5000 (Geotechnical Instruments, UK). Measuring the gas at various depths provides information on its distribution, and which the main methane degradation processes undergoes.

For surface gas measurements closed chamber method was used. Three rings for gas chambers per cell with permanent location are used. The concentration of gases was measured in the gas chamber after 0, 10, 20 and 30 minutes, by GA5000. Parallel temperature measurement conducted to compare with data on methane gas amount.

Fig. 5 Methane content in gas cell 0-40 mm

Fig. 6 Methane content in gas cell 0-20 mm

Preliminary result and discussion. The part of experimental cell 0-40 mm fractions was completed in and first measurements from gas well were made the same date. The level no 8 is deepest level and level no 1 is close to the surface (labelled as 40,8 and 40,1, accordingly). The second experimental cell with 0-20 mm fractions (labelled as 20,1 and 20,8) was ready by and first measurements were made in 24.07.2018. Fig. 5 and 6 show methane concentration measurements at different levels of gas wells.

In both gas cells, methane concentration at 1 level is less than at 8 level, except first measurement in cell 020 mm due to the fact that at the beginning the construction material has not settled. In general the amount of methane at 8 level increases from July to September for the cell 0-40 mm and to August for the cell 0-20 mm and after that it decreases due to lowering the air temperature and frozen landfill surface at winter time [5].

In August and October, the amount of methane at 8-th level is similar in both cells but at first level is less in cell 0-20 mm. In September methane concentration at 1 level is less than at 8-th level in 3,7 times cell in 0-40 mm and in 7,4 times in cell 0-20 mm. In December situation quite similar, methane concentration at 1 level is less than at 8 level in 4,7 times in cell 0-40 mm and in 6,4 times in 020 mm. So, based on this result, it can be said, that the cell 0-20 mm at the present time works a bit more effective than the cell 0-40 mm.

There are no pronounced trends in the distribution of methane in both cells jet. However, there are several similarities. Amount of methane decreases from level 8 to level 5-6, then at level 4-5 sharply increases and then decreases to level 1 in the end of July and December in cell 0-40 mm, in February in cell 0-20 mm and in October in both. In April, September and at the beginning of July in cell 0-40 mm amount of methane decreases gradually from 8-th level to first one. And in April, September in cell 0-20 mm and February in cell 0-40 mm amount of methane increases from level 8 to level 5-6, then from 45 level decreases to first level, Also, in both cells from September till April methane amount decreases from level 4 to level 1 and is quite unstable from level 8 to 4.

Conclusion

Landfill gas has a significant impact on the climatic system of our planet due to the high content of methane, which is greenhouse gas. One of the promising options for reducing methane emissions is the coverage of landfill with a bioactive layer. It can be made of various organic-rich materials. In the framework of this project it is planned to check whether fine fraction after mechanical biological treatment (MBT) can be a function material for such biocover. For this purpose two experimental cells were built. Gas emissions are measured in-suit using 8- level gas well. Such a system of measurement and cells design allows investigating the movement and dynamics of methane. Preliminary results show that at that time cells work and well simulate biocover. The percentage of methane near the surface is less than in 8 level of gas well. The behavior of methane in cells is different. Further research will show common and distinctive trends in methane distribution and cells efficiency.

References

1. Barlaz, M. A., Green, R. B., Chanton, J. P., Goldsmith, C. D., Hater, G. R. (2004). Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environmental Science & Technology 38: 48914899.

2. Crawford J. F., Smith P. G.(1985). Landfill Technology. Wiley, New York,159 P.

3. Hanson,R.S., Hanson,T.E. (1996). Methanotrophic bacteria. Microbiological Reviews 60: 439-471.

4. Hilger, H., Humer, M. (2003). Biotic landfill cover treatments for mitigating methane emissions. Environmental Monitoring and Assessment 84: 71-84.

5. Humer, M., Lechner, P. (2001). Design of a landfill cover layer to enhance methane oxidation - Results of a two-year field investigation. 30th anniversary book. Milestone papers and photostory. Sardinia 2017. 16th International Waste Management and Landfill Symposium. 226-235.

6. IPCC (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlцmer, C. von Stechow, T. Zwickel, J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, Ny, USA.

7. Pedersen, G. B. (2010). Processes in a compost based landfill biocover; methane emission, transport and oxidation. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU).

8. Pehme, K.-M., Kriipsalu, M. (2018). Full scale project - from landfill to recreational area. Detritus, V. 1. 174-179.

9. Philopoulos, A., Felske, C., McCartney, D. (2008). Field-scale treatment of landfill gas with a passive methane oxidizing biofilter. Journal of Environmental Engineering and Science 7: 531-542.

10. Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management Research 27: 409-455.

Размещено на Allbest.ru


Подобные документы

  • Ethyl acetate. The existing methods of obtaining the desired product. Technological scheme of EtOAc production. Chemical reactions. Production in industry. Chemical reactions. Methanol as intermediate product. The technology of receiving ethanol.

    презентация [628,4 K], добавлен 15.02.2015

  • Description of the general laws of physical and colloid chemistry of disperse systems and surface phenomena. The doctrine of adsorption, surface forces, stability of disperse systems. Mathematical description. Methods of research. Double electric layer.

    контрольная работа [688,2 K], добавлен 15.11.2014

  • Degradation of environment in cities has brought to destruction of ecosystems and its inconvertible nature. At characteristics of the occupied (housing) lands in the city as important condition of formation of favorable ambience of environment for people.

    статья [20,4 K], добавлен 10.02.2015

  • Political power as one of the most important of its kind. The main types of political power. The functional analysis in the context of the theory of social action community. Means of political activity related to the significant material cost-us.

    реферат [11,8 K], добавлен 10.05.2011

  • Системы счисления: понятие и содержание, классификация и типы, отличительные свойства и принципы. Перевод чисел из одной системы счисления в другую, виды программного обеспечения. Возможности программы сканирования и распознавания текста Fine Reader.

    контрольная работа [37,2 K], добавлен 15.12.2013

  • Клавіатури та маніпулятори, принципи їх дії, основні характеристики та застосування. Графічні планшети та сенсорні екрани. Автоматичні засоби вводу графічної інформації. Програма Fine Reader 4. Сканування та автоматичне розпізнавання документів.

    курсовая работа [3,8 M], добавлен 30.03.2017

  • Процессоры Intel Core 2 Duo, энергопотребление. Размер кристалла Core 2 Duo и число транзисторов. Технологии управления энергопотреблением Core 2 Duo. Ultra Fine Grained Power Control. Индикация энергопотребления процессора/PSI-2. Цифровые термодатчики.

    курсовая работа [5,4 M], добавлен 16.01.2009

  • The Iron Age Celtic culture on the British Isles. Cultural life of London: in the West End, in the East End and in the parts of central London. The characteristics of British arts and letters, theatre and cinema, music, literature, the fine arts.

    контрольная работа [17,8 K], добавлен 18.07.2009

  • Тематический план курса разработки цифрового образовательного ресурса по технологии создания электронных графических документов (электронных книг). Особенности сканирования, программное обеспечение. Основные возможности программы ABBYY Fine Reader.

    дипломная работа [3,7 M], добавлен 07.07.2011

  • Понятие, классификации и типы стандартных форм. Этапы ввода и обработки форматированных документов. Требования к системам массового ввода стандартных форм. Подходы к реализации систем обработки форм. Система ABBYY Fine Reader Form и Cognitive Forms.

    курсовая работа [42,4 K], добавлен 20.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.