Synthesis and characterization of NA-JBW zeolite structure from metakaolin

Obtaining JBW zeolite from hydrogels under hydrothermal conditions by alkaline reaction using NaOH as an activating agent. Orthorhombic space group Pmc21 with unit cell parameters, X-ray powder diffraction. Comprehensive study of the synthetic zeotype.

Рубрика Химия
Вид статья
Язык английский
Дата добавления 18.01.2021
Размер файла 748,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Synthesis and characterization of NA-JBW zeolite structure from metakaolin

Annotation

The JBW zeolite was prepared from hydrogels under hydrothermal conditions by alkaline reaction, using NaOH as activating agent Using the Autologous reactor (under 15 bar pressure). The synthetic zeotype was studied by analytical techniques such as X-ray powder diffraction, Fourier transformed infrared spectroscopy. Crystallographic data revealed that the JBW structure can be described by the orthorhombic space group Pmc21, with unit cell parameters a=7.506 A, b=8.229 A and c=5.2195A.

Key words : JBW structure, orthorhombic, space group, unit cell.

Аннотация

zeolite hydrogel synthetic

Цеолит JBW был получен из гидрогелей в гидротермальных условиях путём щелочной реакции использованием NaOH в качестве активирующего агента. Использование реактора Alotoglaf (под давлением 15бар). Синтетический зеотип был изучен такими аналитическими методами, как рентгеновская порошковая дифракция, Фурье - преобразованная инфракрасная спектроскопия. Кристаллогр и афические данные показали, что структура JBW может быть описана орторомбической пространственной группой Pmc21 с параметрами элементарной ячейки a = 7,506 A, b = 8,229 A, c =5,219 A.

Ключевые слова: структура JBW, ромбической, космическая группа, ячейка.

Introduction

Kaolin is considered to be a very cheap and economical raw material for the synthesis of many types of zeolites because it contains an appropriate ratio of both SiO2 and Al2O3. Zeolites are considered to be an important family of three dimensional alumino silicates. There are many types of zeolite differing in Si/Al ratio and also in the three dimensional cages type. Low silica zeolites such as zeolite A(or LTA which abbreviated to Linde type A) are the most common product prepared from kaolin or meta-kaolin without any additional silica source [1, c. 23/2, c. 150]. Healey et al. [3,c.153] synthesised pure aluminosilicate JBW[(Na3H2O)(Si3Al3O12)] abbreviated to J Barrer and White (name of scientests who discover) from the reactant with meta-kaolin in a solution of NaOH and KOH at 498K. The zeolite with a JBW structure is one of the lesser-studied zeolites. It was first reported by Barrer and White in 1952 [4, c. 1561]. Subsequent work referred it inappropriately as `nepheline hydrate'; the crystal structure was solved (with the exception of a full description of the water molecules) in 1982 by Hansen and Falth [5, c. 162]. The structure was found to be orthorhombic with cell parameters a=7.503° A, b = 8.233°A and c =5.230°A crystallising in the Pmc21 space group. The crystals studied were grown hydrothermally at 200°C from a sodium aluminosilicate glass in sodium hydroxide solution [5, c. 162].

Experimental

Apparatus and chemicals:

As initial materials for zeolite Na - J obtaining were used: kaolin from `Kaolin' Company (Bulgaria) and NaOH was obtained from `Merck' Company with 99.9% analytical grade. Kaolin has the following chemical has the following chemical composition, according producer (Table 1).

The samples were characterized by X-ray diffraction (XRD) using CuKa radiation nickel filter (1=1.54060 °A) at 40kV and 30mA from the Japanese company Ultima-Rigaka.

Optical absorption spectrum infrared device model FT-IR-4100 from the Japanese company Jasco. reactor Autoclave from the company AmAr EQuipments PVT. LTD.

Table 1. Chemical analysis of kaolinite mineral

Component

SiO2

AhO3

Fe2O3

TiO2

CaO

%

47

36

0.75

0.3

0.15

Experimental Procedure:

Synthesis of the zeolite (Na-JBW ) in two main stages:

Thermal activation of kaolin to obtain metakaolin.

Hydrothermal treatment of metakaolin in different alkali media.

The metakaolinisation of the initial material was carried out (after drying at 110°C for 1 h) at 700 °C in a muffle oven with isothermal period of 2 h.

The hydrothermal alkali treatment of 5.55 g metakaolin and (25 ml) alkali solution of NaOH (2M) are intensely homogenised at 60DC for 30 min. The homogenised past-like mixture is the placed in an autoclave reactor and treated at 180DC and 15 bar pressure for 3 h. The product obtained is washed several times with water (pH 7-8) and then dried at 110 C for 1 h. The products synthesised were analysed by XRD, FTIR techniques.

Results and Discussion:

Metakaolinisation process. Metakaolinisation of kaolin has been described in many publications but it is important since it refers to certain type of kaolin mined in Bulgaria and synthesis of zeolite from it.

The calcinations of the initial material was carried out with isothermal periods. At 7000C. Figure1 and 2 shows the IR spectra of the initial kaolin and the calcinated at 7000C.

Figure 1. IR spectra of original kaolinite

Figure 2. IR spectra at 700oC calcined kaolinite

Figure 1 show the characteristic bands of kaolinite [6, c. 223/7, c. 8080]. OH- at 3700, 3650, 3620 cm-1, Al-OH at 913 cm-1, Si-O at 1032, 1008, 469 cm-1 and Si-O-AlVI at 538 cm-1. Absence of the detectable Al-O-H bands at 913 cm-1, and the doublet at 3700 and 3620 cm-1, is evident from Figure 2. Absence of the band at 539 and 913 cm-1 and the appearance of a new band at 800 cm-1 can be related to the change from octahedral coordination of Al3+ in kaolinite to tetrahedral coordination in metakaolinite.

The bands at 1100 and 1200 cm-1 are assigned to amorphous SiO2.

XRD patterns of (JBW) zeolite is shown in Figure 3.

Figure 3. XRD pattern of prepared Na- JBW Zeolite

Table 2 shows a comparison of lattice spacing and angle, between prepared Na-JBW zeolite and standard.

Table 2. Comparison of lattice spacing and angle, between prepared Na-JBW catalyst and standard

Prepared catalyst

Standard of catalyst [8]

Angle (2Theta)

d, spacing(A)

Angle (2Theta)

d, spacing(A)

10.75

8.223

10.75

8.233

11.78

7.506

11.79

7.503

15.78

5.611

15.98

5.546

20.16

4.401

20.11

4.415

21.58

4.114

21.59

4.116

26.06

3.416

26.10

3.414

27.8

3.206

27.57

3.235

Prepared catalyst

Standard of catalyst [8]

Angle (2Theta)

d, spacing(A)

Angle (2Theta)

d, spacing(A)

30.12

2.964

30.08

2.970

31.24

2.860

31.29

2.859

32.63

2.744

32.63

2.744

34.36

2.607

34.29

2.615

36.68

2.450

36.68

2.450

36.99

2.430

36.99

2.430

a= 7.506 (A) ,b =

=8.229(A), c= 5.219(A)

Unit cell Volume ;

V= a .b. c = 322.361(A)3

XRD result is shown high purity and a good crystallinity of zeolite. These results are in good agreement with those reported in JCPDS [8]. After indexation of XRD patterns of prepared zeolites, all diffraction planes (hkl) correspond to JBW phases. That is, JBW has a structure Orthorhombic. As shown in the spectrum XRD of peaks with small intensities(14, 24.4, 27.74 20) returning to the form of Cancrinite which is in agreement with Lin et al. [9,c.63]. Figure 4 shows the FT-IR spectra of Na- JBW Zeolite.

44JЬLI ПЬЩЩ 2ЬЬЩ liЬЬЬ 4ЬЬ

vVsvBiunbs-r [cm-lj

Figure 4. IR spectra of Na- JBW zeolite

The vibration bands in the region between 500 and 420 cm-1 were assigned to internal tetrahedron vibrations of Si-O and Al-O in the as-synthetized zeotypes. The range of 800-400 cm-1, which has been considered as the `fingerprint' region for and CAN in previous studies [10, c.3093/11,c. 287], also reveals the presence of the JBW zeolite.

Conclusion:

The possibility to prepare synthetic zeolite Na-JBWfrom natural kaolin using the method of hydrothermal synthesis (at 1800C, pressure 15 bar, 3 h in an autoclave reactor). The structure of the zeolite obtained was studied by IR spectroscopy and XRD.

List of references

1. C.A. RFos, C.D. Williams ,M.A .Fullen, Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites, Appl.Clay Sci // Journal of Hazardous Materials .-2008.- Volume 156, Issues 1-3 - C. 23-35.

2. Hegazy E.Z., Abd El Maksod I.H., Abo El Enin R.M.M., Synthesis and characterization of JBW structure and its thermal transformation., Appl. Clay Sci, // Journal of Solid State Chemistry.- 2012.- № (196) .C. 150-156.

3. A.M. Healey, G.M. Johnson, M.T. Weller, The synthesis and Characterisation of JBW-type zeolites: Part A: Sodium/potassium aluminosilicate, Na2K[Al3Si3O12]-0.5H2O // Journal of Microporous Mesoporous Mater Materials.- 2000.- Volume 37, Issues (12). C. 153-163.

4. Barrer R.M., White E.A.D., The hydrothermal chemistry of silicates .Part II. Synthetic crystalline sodium aluminosilicates // Journal of the Chemical Society, .1952.- № (286).C. 1561-1571.

5. Hansen S., Falth L., X-ray study of the nepheline hydrate I structure, // Journal of the Elsevier Science Direct - 1982.- Volume 2, Issue 3, C. 162-166.

6. MARKOKOVIC. S., DONDUR. V., DIMITRIEVIC. R.: FTIR Spectroscopy of Framework Aluminosilicate Structures: Carnegieite and Pure Sodium Nepheline.// Journal of Molecular Structure at Science Direct. - 2003.- № (654).-C. 223.

7. C.T. Johnston, D.L. Bish, J. Eckert, L.A. Brown: Infrared and Inelastic Neutron Scattering Study of the 1.03- and 0.95-nm Kaolinite-hydrazine Intercalation Complexes // Journal of physical chemistry B.- 2000. № (104).- C - .8080-8088.

8. Treacy, M.M. J. and Higgins, J.B., Collection of simulated XRD Powder Patterns for Zeolites. Published on behalf of the Structure Commission of the International Zeolite Association Fourth Revised Edition // Journal of Elsevier Science Direct, 2001.

9. D.-Ch. Lin, X.-W. Xu, F. Zuo, and Y.-C. Long, “Crystallization of JBW, CAN, SOD and ABW type zeolite from transformation of metakaolin,” // Journal of Microporous Mesoporous Materials.-2004.- vol. 70 (1-3).C. 63-70.

A. Aronne, S. Esposito, C. Ferone, M. Pansini, and P.Pernice, “FT-IR study of the thermal transformation of barium-exchanged zeolite A to celsian,” // Journal of Materials Chemistry.- 2002.- vol. 12 (10). C. 3039-3045.

10. M.C. Barnes, J. Addai -Mensah, and A.R. Gerson, “The mechanism of the sodalite-to-cancrinite phase transformation in synthetic spent Bayer liquor,” // Journal of Microporous Mesoporous Materials.- 1999.-vol. 31 (3).C. 287-302.

Размещено на Allbest.ru


Подобные документы

  • Ethyl acetate. The existing methods of obtaining the desired product. Technological scheme of EtOAc production. Chemical reactions. Production in industry. Chemical reactions. Methanol as intermediate product. The technology of receiving ethanol.

    презентация [628,4 K], добавлен 15.02.2015

  • Experimental details of the chemical transients kinetics and pulsed field desorption mass spectrometry methods. Kinetic measurements with the PFDMS method. Data on the CO hydrogenation over CoCu-based catalysts using CTK. CO hydrogenation reaction.

    статья [334,2 K], добавлен 10.05.2011

  • Основные положения теории пространственного строения. Схема образования связывающей и разрыхляющей молекулярных орбиталей. Колебание молекул - один из основных видов внутримолекулярного движения, при котором происходит периодическое изменение ядер атомов.

    курсовая работа [554,4 K], добавлен 23.08.2011

  • Потенциометрическое титрование в лабораторной практике. Возникновение потенциала на границе раздела двух сред. Кислотно-основное титрование (нейтрализация). Аппаратура для проведения анализа. Результаты ориентировочного титрования стандартизации NaOH.

    курсовая работа [1,1 M], добавлен 25.12.2011

  • Эпоксидирование (+)-карвона, с использованием NaOH(в.) для получения эпоксида с 89% выходом. Способы получения йодолактона. Внедрение атома азота, с последующим стереоселективным алкилированием. Синтез из азетидинона и синтез кольца пирролидина.

    курсовая работа [5,2 M], добавлен 26.04.2016

  • Выбор наиболее оптимального варианта индикатора, соответствующего скачку рН на заданной кривой титрования. Определение точки эквивалентности линии нейтральности. Титрование NaOH и HCl с помощью индикатора фенолфталеина. Интервал перехода окраски.

    контрольная работа [81,4 K], добавлен 03.01.2016

  • Расчет тепловой нагрузки. Определение температуры кипения раствора гидроксида натрия. Особенности теплообменника типа "труба в трубе". Одноходовый, шестиходовый теплообменник. Расчёт гидравлических сопротивлений. Двухтрубчатый, шестиходовый теплообменник.

    курсовая работа [180,1 K], добавлен 03.07.2011

  • Chemistry and thermodynamics of process. Reforming catalysts. Raw materials. Process parameters. Reforming industrial devices. Criteria of an assessment of catalysts. Catalyst promoters. Temperature influence The volumetric feed rate. Rigidity of process.

    презентация [193,6 K], добавлен 29.04.2016

  • Description of the general laws of physical and colloid chemistry of disperse systems and surface phenomena. The doctrine of adsorption, surface forces, stability of disperse systems. Mathematical description. Methods of research. Double electric layer.

    контрольная работа [688,2 K], добавлен 15.11.2014

  • Study of synthetic properties of magnetic nanoparticles. Investigation of X-ray diffraction and transmission electron microscopy of geometrical parameters and super conducting quantum interference device magnetometry of magnetic characterization.

    реферат [857,0 K], добавлен 25.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.