Анилин (анилиновое масло)
Открытие анилина разными учеными. Метод его получения восстановлением нитробензола чугунной стружкой. Химические и физические свойства, строение молекул анилина. Его взаимодействие с кислотами (образование солей). Опасность профессиональных отравлений.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 12.04.2020 |
Размер файла | 878,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат
Анилин
Содержание
Введение
1. Открытие анилина
2. Получение
3. Химические свойства
4. Физические свойства
5. Применение
Заключение
Использованная литература
Введение
Анилин (иногда называемый анилиновым маслом) -- один из наиболее широко применяемых в технике полупродуктов. Он имеет большое значение в производстве более сложных промежуточных продуктов, красителей, химических добавок к полимерам, фармацевтических препаратов, пестицидов и др. Здесь будет рассказано о его химических и физических свойствах, о его получении, применении и опасности.
1. Открытие анилина
Анилин - сильно ядовитая, бесцветная маслянистая жидкость, которую получают восстановлением нитробензола. Другое наименование - аминобензол. Является важным исходным продуктом для производства органических соединений, таких как лекарства, взрывчатка и, прежде всего, красители.
Впервые анилин был получен в 1826 году при перегонке индиго с известью немецким химиком Отто Унфердорбеном, который дал ему название «кристаллин».
В 1834 году Фридлиб Фердинанд Рунгe обнаружил анилин в каменноугольной смоле и назвал «кианолом».
В 1840 году Юлий Фрицше получил анилин нагреванием индиго с раствором KOH и назвал его «анилином».
В 1841 году Николай Зинин получил анилин восстановлением нитробензола действием (NH4)2S и назвал его «бензидамом».
В 1843 году Август Вильгельм Гофман установил идентичность всех перечисленных соединений.
2. Получение
Восстановление нитробензола
Это самый распространенный метод получения анилина. В качестве восстановителей могут быть использованы самые разнообразные неорганические и органические вещества. Применение в технике нашли соединения, наиболее доступные по цене и удобные для практического использования: металлы (железо, цинк, олово), соли (хлорид олова, сульфиды щелочных металлов, гидросульфиты), сероводород. Кроме того, восстановление можно вести каталитическим или электрохимическим методом. В лабораторной, а в последние годы -- и в заводской практике все большее значение приобретает восстановление нитробензола смешанными гидридами металлов: алюмогидридом лития, боргидридом натрия.
Конечный продукт реакции зависит от природы восстановителя и характера среды. В кислой среде конечным продуктом восстановления всегда является анилин, а нитрозобензол и фенилгидроксиламин образуются в качестве промежуточных продуктов. Однако в нейтральной среде нитрозобензол и фенилгидроксиламин могут быть получены как конечные продукты восстановления нитробензола. В щелочной среде процесс идет более сложно т. к. фенилгидроксиламин, являясь весьма реакционноспособным соединением, в этих условиях активно взаимодействует с нитрозобензолом, образуя азоксибензол. При дальнейшем восстановлении азоксибензол превращается в азобензол, далее в гидразобензол и, наконец, в анилин.
Периодический способ восстановление нитробензола в анилин в аппаратах периодического действия осуществляется в промышленном масштабе более 100 лет без существенных усовершенствований.
Для восстановления нитробензола применяют цилиндрические реакционные аппараты (редукторы), стальные или чугунные, емкостью 10-20 м3, защищенные изнутри от коррозии и истирания кислотоупорной плиткой. Аппараты снабжены мощными тихоходными мешалками, необходимыми для размешивания тяжелого осадка, состоящего из чугунных стружек и оксидов железа. Через полый вал мешалки в аппарат подают острый пар для нагрева массы в начальный период восстановления. Редукторы некоторых конструкций имеют паровую рубашку для обогрева.
Порядок загрузки реагентов может быть различным. Обычно сначала в аппарат загружают воду (или возвратную анилиновую воду) и часть чугунной стружки, нагревают острым паром и добавляют готовый электролит или кислоту для протравливания стружки. Затем постепенно порциями добавляют нитробензол и оставшееся количество чугунной стружки.
Рис. 1 Схема непрерывного восстановления нитробензола чугунной стружкой: 1 -- смеситель; 2 -- насос; 3 -- редуктор; 4 -- шнековый питатель; 5, 7 -- конденсаторы; 6 -- аппарат для отгонки анилина; 8 -- отстойник шлама; 9 -- холодильник; 10 -- сепаратор; 11 -- сборник сырого анилина; 12 -- сборник анилиновой воды.
Восстановление нитробензола в анилин сопровождается выделением большого количества тепла (548 кДж/моль), поэтому реакционная масса в редукторе находится постоянно в состоянии кипения, которое поддерживается за счет теплоты реакции. При этом испаряется большое количество воды и образующегося анилина. Пары воды и анилина конденсируются в обратном холодильнике и возвращаются в редуктор. Отгоняющийся анилин содержит некоторое количество непрореагировавшего нитробензола. После окончания загрузки нитробензола проводят небольшую выдержку до полного восстановления. Конец реакции определяют по исчезновению окраски конденсата, возвращающегося в редуктор, или по концентрации образовавшегося анилина, которую определяют с помощью титрования нитритом натрия.
После нейтрализации реакционной массы анилин из смеси выделяют. Применяется несколько методов выделения: отгонка анилина из редуктора острым паром, вакуум-отгонка анилина из реакционной массы, сифонирование анилина из редуктора. Из-за сложности аппаратурного оформления первый и второй методы не нашли широкого применения. Наиболее распространенным является третий метод -- сифонирование, основанный на том, что при комнатной температуре плотность анилина больше, чем воды, но уже при 71 °С его плотность меньше. Разность в плотностях еще больше увеличивается при добавлении в редуктор хлорида натрия. Анилин всплывает наверх и может быть отделен сифонированием. Около половины анилина остается в водном слое и железном шламе и отгоняется с острым паром. Так как анилин частично растворим в воде (~3 %), водный слой после отделения анилина вновь возвращают в процесс или экстрагируют нитробензолом. Общий выход анилина ~97 % от теоретического.
3. Химические свойства
Химическая формула анилина - C6H5NH2. Молярная масса - 93,12 г/моль. Растворимость в воде - 3,6 г/100 мл.
Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов.
С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком.
С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол.
Уменьшение электронной плотности на атоме азота приводит к снижению способности отщеплять протоны от слабых кислот.
Рис. 2 Строение молекул анилина
Анилин более слабое основание, чем предельные амины и аммиак.Поэтому анилин взаимодействует лишь с сильными кислотами (HCl, H2SO4) и, в отличие от алифатических аминов и аммиака, не образует с водой гидроксида, а его водный раствор не окрашивает лакмус в синий цвет.
Взаимодействие с кислотами (образование солей)
Анилин реагирует с сильными кислотами, образуя соли фениламмония, которые растворимы в воде, но не растворимы в неполярных органических растворителях.
Анилин, который практически не растворяется в воде, можно растворить в соляной кислоте и отделить нерастворимые примеси.
Солянокислый анилин хорошо растворим в воде, если к такому раствору добавить достаточное количество щелочи, то анилин снова выделится в свободном виде.
Галогенирование
Анилин энергично реагирует с бромной водой с образованием белого осадка 2,4,6-триброманилина. Эта реакция может использоваться для качественного и количественного определения анилина.
Сульфирование
Сульфаниловая кислота является важным промежуточным продуктом в синтезе лекарственных веществ (сульфаниламидных препаратов).
Окисление анилина
Анилин легко окисляется различными окислителями с образованием ряда соединений, поэтому он темнеет при хранении.
При действии хлорной извести на водный раствор анилина появляется интенсивное фиолетовое окрашивание.
При взаимодействии анилина с хромовой известью (смесь концентрированной серной кислоты и дихромата калия К2Cr2O7) образуется черный осадок, называемый черным анилином (краситель «анилиновый черный»).
Черный анилин применяется как прочный краситель (для окраски тканей и меха в черный цвет). Обычно ткань сначала пропитывают раствором окислителя. Образующийся черный анилин откладывается в порах волокна. Он не растворим в воде и устойчив к мылу и свету.
4. Физические свойства
Плотность анилина - 1,0217 г/смі. Температура плавления - ?6,3 °C. Температура кипения - 184,13 °C.
Токсичность
Анилин токсичен, обладает способностью проникать не только через слизистую оболочку дыхательных путей, но и через кожу. При вдыхании больших количеств анилина возникает отравление, сопровождающееся головокружением и повышенной возбудимостью. Анилин действует на кровь, вызывая превращение оксигемоглобина в метгемоглобин.
Обнаруживают анилин при помощи цветных реакций. Так, водные растворы анилина окрашиваются хлорной известью в интенсивно фиолетовый цвет. Пары анилина с K2Cr2O7 и серной кислотой вначале окрашиваются в красный, а затем в синий цвет. Количественное определение анилина основано на реакции диазотирования по израсходованному нитриту.
Опасность профессиональных отравлений имеется при производстве самого анилина или применении его в качестве сырья: при выполнении работ внутри аппаратов, загрязненных анилином, при ремонте трубопроводов, при нарушениях технологического процесса, при бездействии вентиляции, при работах, связанных с отпуском, транспортировкой и выгрузкой анилина.
Острое отравление анилином чаще всего происходит в результате загрязнения им кожи рук, ног, лица, а также вдыхания горячих паров анилина. Благоприятствующим отравлению моментом является теплый и влажный воздух производственного помещения, почему опасность отравления анилином больше в помещениях с повышенной температурой и влажностью воздуха, особенно летом. Особо важную роль в качестве предрасполагающего момента к отравлению анилином играет потребление алкоголя.
В легких случаях отравления анилином -- выраженная синюшная окраска слизистой оболочки губ, кожи ушных раковин, концевых фаланг пальцев рук, небольшая слабость (особенно в ногах) и чувство разбитости, головная боль, головокружение, в крови появляется метгемоглобин.
При отравлениях анилином средней тяжести -- сильная головная боль, усиление синюшности и других описанных выше симптомов, появляется тошнота, иногда рвота, шатающаяся походка, печень иногда увеличена и чувствительна при пальпации.
В случаях тяжелого отравления наступает нарушение или полная потеря сознания, рвота, учащение пульса, дыхания, содержание метгемоглобина доходит до 60--70%, печень значительно увеличена и при пальпации болезненна.
Первая помощь при острых отравлениях.
Немедленное удаление пострадавшего из среды, где имело место отравление, освобождение его от загрязненной одежды, обмывание загрязненного участка кожи 1--2% раствором уксусной кислоты (горячий душ и ванна противопоказаны). Вдыхание кислорода и карбогена; в некоторых случаях показано кровопускание с последующим внутривенным введением раствора глюкозы (противопоказано при гипотонии), полный покой, сердечные средства по показаниям.
5. Применение
В России вещество в основном применяют для синтеза красителей и лекарственных средств, в текстильной и фармацевтической промышленности. С помощью анилина получают препараты группы сульфамидов, обладающие антибактериальным действием, а также синтезируют заменители сахара. Существуют и другие области применения аниолина. В химии его используют для получения гидрохинона - вещества, использующегося в косметике, в основном в составе отбеливающих кожу средств. Также вещество применяется в создании взрывчатых веществ, клеев, герметиков. При помощи анилина замедляется коррозия металлов: его фосфаты добавляют к растворам сильных электролитов, в результате чего ингибируется коррозия углеродистой стали. Применяют анилин и для повышения антидетонационности топлива (автомобильного, ракетного, авиационного). Октановое число бензина при однопроцентном содержании анилина повышается на 3 единицы и более. Но в чистом виде вещество стараются не использовать, так как при длительном хранении понижается качество бензина с анилином, а также токсичность его газов. Чаще используются производные вещества. В ряде западных государств существуют ограничения на применение анилина в составе топлива. В мире большая часть получаемого анилина используется в производстве полиуретанов, а также синтетических каучуков, красок, средств от сорняков.
Самой главной сферой применения анилина было и остается производство красителей. Они изготовляются при помощи окисления анилина и его солей.
Первоначально анилиновые краски выпускались только в форме порошка. В СССР им находили применение в быту, реставрируя и переделывая вещи посредством их окраски. Но покрашенные вещи быстро блёкли при попадании солнечного света, краска вымывалась в процессе стирки. В настоящее время анилиновые красители производятся и в форме растворов, причем некоторые производители выпускают концентрированные растворы, которые в отличие от порошков не требуют особой подготовки ткани. Но, несмотря на ощутимый прогресс и улучшение красителей, ткани, покрашенные ими, по-прежнему быстро выгорают на солнце.
анилин нитробензол кислота
Заключение
Анилин - это одно из важнейших соединений, которое внесло в нашу жизнь много нового. Область применения анилина огромна и возможно она станет еще больше. И пуска мы не так часто слышим слово «анилин», но нам стоит знать, что это оно несет в себе очень много важного и нужного для нас.
Использованная литература
1. Химические свойства анилина
2. Анилин
3. Методы получения анилина
4. Википедия. Анилин
5. Анилин
6. Свойства и применение анилина
Размещено на Allbest.ru
Подобные документы
Аппаратурное оформление процесса получения анилина из нитробензола в трубчатом реакторе. Формализованное описание процесса. Метод Эйлера и метод Рунге-Кутты второго и четвертого порядка. Характеристика программного обеспечения и технических средств.
курсовая работа [856,8 K], добавлен 20.11.2012Методы получения ароматических аминов: первичные, вторичные, третичные. Физические и химические свойства ароматических аминов. Галогенирование анилина свободными галогенами. Гидрирование анилина в присутствии никеля. Отдельные представители аминов.
реферат [278,6 K], добавлен 05.10.2011Реакция получения анилина из нитробензола. Производство салициловой кислоты. Схема азосочетания диазотированной сульфаниловой кислоты с N,N-диметиланилином. Структурные формулы фурана и пиримидина. Таутомерные превращения барбитала; строение папаверина.
контрольная работа [451,5 K], добавлен 24.04.2013Получение ацетиленовых сульфонов и их химические свойства. Присоединение N-нуклеофилов, спиртов, карбоновых кислот, тиолов и галогенов. Алкилирование, гидролиз и восстановление. Анализ химической реакции синтеза 4-нитро-2-(фенилэтинилсульфонил)анилина.
курсовая работа [1,6 M], добавлен 01.11.2012Применение дифениламина. Амины. Ацилирование и алкилирование аминов. Образование производных мочевины. Алкилирование первичных и вторичных аминов. Расщепление и окисление аминов. Синтез на основе анилина и анилиновой соли. Синтез из хлорбензола и анилина.
курсовая работа [471,2 K], добавлен 17.01.2009Использование солей натрия в Древнем Египте, химические способы добычи натрия. Линии щелочных металлов в видимой части спектра, физические и химические свойства щелочей. Взаимодействие соды с синтетической азотной кислотой и гигроскопичность солей натрия.
реферат [3,6 M], добавлен 04.07.2012Способы получения, физические свойства, биологическое значение и методы синтеза простых эфиров. Примеры сложных эфиров, их химические и физические свойства. Методы получения: этерия, взаимодействие ангидридов со спиртами или солей с алкилгалогенидами.
презентация [405,8 K], добавлен 06.10.2015Общая характеристика, классификация и номенклатура моносахаридов, строение их молекул, стереоизомерия и конформации. Физические и химические свойства, окисление и восстановление глюкозы и фруктозы. Образование оксимов, гликозидов и хелатных комплексов.
курсовая работа [1,6 M], добавлен 24.08.2014Понятие фенолов, их номенклатура и изомерия. Способы получения фенола, его физические и химические свойства. Образование солей (фенолятов), реакции гидрирования, сульфирования и электрофильного замещения. Определение нафтолов, их свойства и получение.
лекция [169,5 K], добавлен 27.11.2010Получение, строение и разновидности полиэтилентерефталата - термопластика, наиболее распространённого представителя класса полиэфиров, который известен под разными фирменными названиями: полиэфир, лавсан или полиэстер. Физические и химические свойства.
реферат [137,0 K], добавлен 13.01.2011