Предмет, цели и основные направления в нанотехнологии

Изучение закономерностей физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами при создании новых молекул, наноструктур и материалов со специальными биологическими свойствами.

Рубрика Химия
Вид статья
Язык русский
Дата добавления 03.12.2018
Размер файла 131,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Предмет, цели и основные направления в нанотехнологии

Согласно Энциклопедическому словарю, технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.

Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами. Понятие "нанотехнология" еще не устоялось. По-видимому, можно придерживаться следующего рабочего определения.

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустроиств и материалов со специальными физическими, химическими и биологическими свойствами.

Анализ текущего состояния бурно развивающейся области позволяет выделить в ней ряд важнейших направлений [1]:

· Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях.

· Материаловедение. Создание "бездефектных" высокопрочных материалов, материалов с высокой проводимостью.

· Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов, магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.

· Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.

· Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами.

· Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа.

· Медицина. Проектирование наноинструментария для уничтожения вирусов, локального "ремонта" органов, высокоточной доставки доз лекарств в определенные места живого организма.

· Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.

· Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции.

Фуллерены как новая форма существования углерода в природе наряду с давно известными алмазом и графитом, были открыты в 1985 г. при попытках астрофизиков объяснить спектры межзвездной пыли. Оказалось, что атомы углерода могут образовать высокосимметричную молекулу С60. Такая молекула состоит из 60 атомов углерода, расположенных на сфере с диаметром приблизительно в один нанометр и напоминает футбольный мяч. В соответствии с теоремой Л. Эйлера, атомы углерода образуют 12 правильных пятиугольников и 20 правильных шестиугольников. Молекула названа в честь архитектора Р. Фуллера, построившего дом из пятиугольников и шестиугольников. Первоначально С60 получали в небольших количествах, а затем, в 1990г., была открыта технология их крупномасштабного производства [7].

Фуллериты. Молекулы С60, в свою очередь, могут образовать кристалл фуллерит с гранецентрированной кубической решеткой и достаточно слабыми межмолекулярными связями. В этом кристалле имеются октаэдрические и тетраэдрические полости, в которых могут находиться посторонние атомы. Если октаэдрические полости заполнены ионами щелочных металлов (К (калий), Rb (рубидий), Cs (цезий)), то при температурах ниже комнатной структура этих веществ перестраивается и образуется новый полимерный материал ¦1С60. Если заполнить также и тетраэдрические полости, то образуется сверхпроводящий материал ¦зС60 с критической температурой 20-40 К. Изучение сверхпроводящих фуллеритов проводится, в частности, в Институте им. Макса Планка в Штутгарте. Существуют фуллериты и с другими присадками, дающими материалу уникальные свойства. Например, С60-этилен имеет ферромагнитные свойства. Высокая активность в новой области химии привела к тому, что уже к 1997 г. насчитывалось более 9000 фуллереновых соединений.

Углеродные нанотрубки. Из углерода можно получить молекулы с гигантским числом атомов. Такая молекула, например С=1000000, может представлять собой однослойную трубку с диаметром около нанометра и длиной в несколько десятков микрон (рис. 1).

Рис. 1. Нехиральные нанотрубки.

На поверхности трубки атомы углерода расположены в вершинах правильных шестиугольников. Концы трубки закрыты с помощью шести правильных пятиугольников. Следует отметить роль числа сторон правильных многоугольников в формировании двухмерных поверхностей, состоящих из атомов углерода, в трехмерном пространстве. Правильные шестиугольники являются ячейкой в плоском графитовом листе, который можно свернуть в трубки различной хиральности (m, n)3. Правильные пятиугольники (семиугольники) являются локальными дефектами в графитовом листе, позволяющими получить его положительную (отрицательную) кривизну. Таким образом, комбинации правильных пяти-, шести- и семиугольников позволяют получать разнообразные формы углеродных поверхностей в трехмерном пространстве (рис. 2).

Рис. 2. Изогнутая трубка.

Геометрия этих наноконструкций определяет их уникальные физические и химические свойства и, следовательно, возможность существования принципиально новых материалов и технологий их производства. Предсказание физико-химических свойств новых углеродных материалов осуществляется как с помощью квантовых моделей, так и расчетов в рамках молекулярной динамики. Наряду с однослойными трубками имеется возможность создавать и многослойные трубки. Для производства нанотрубок используются специальные катализаторы[1].

Сверхпрочные материалы. Связи между атомами углерода в графитовом листе являются самыми сильными среди известных, поэтому бездефектные углеродные трубки на два порядка прочнее стали и приблизительно в четыре раза легче ее! Одна из важнейших задач технологии в области новых углеродных материалов заключается в создании нанотрубок "бесконечной" длины. Из таких трубок можно изготовлять легкие композитные материалы предельной прочности для нужд техники нового века. Это силовые элементы мостов и строений, несущие конструкции компактных летательных аппаратов, элементы турбин, силовые блоки двигателей с предельно малым удельным потреблением топлива и т.п. В настоящее время научились изготавливать трубки длиной в десятки микрон при диаметре порядка одного нанометра.

Высокопроводящие материалы. Известно, что в кристаллическом графите проводимость вдоль плоскости слоя наиболее высокая среди известных материалов и, напротив, в направлении, перпендикулярном листу, мала. Поэтому ожидается, что электрические кабели, сделанные из нанотрубок, при комнатной температуре будут иметь электропроводность на два порядка выше, чем медные кабели. Дело за технологией, позволяющей производить трубки достаточной длины и в достаточном количестве

Наноустройства. Нанотрубки могут составлять основу новых конструкций плоских акустических систем и плоских дисплеев, то есть привычных макроскопических приборов. Из наноматериалов могут быть созданы определенные наноустройства, например нано-двигатели, наноманипуляторы, молекулярные насосы, высокоплотная память, элементы механизмов нанороботов. Кратко остановимся на моделях некоторых наноустройств.

Молекулярные шестерни и насосы. Модели наноустройств предложены К.Е. Drexler и R. Merkle из IMM (Institute for Molecular Manufacturing, Palo Alto). Валами шестеренок в коробке передач являются углеродные нанотрубки, а зубцами служат молекулы бензола. Характерные частоты вращения шестеренок составляют несколько десятков гигагерц. Устройства "работают" либо в глубоком вакууме, либо в инертной среде при комнатной температуре. Инертные газы используются для "охлаждения" устройства.

Медицинский наноробот. Для совместимости организма человека с инородными объектами необходим материал, который не вызывает реакцию иммунной системы. Таким материалом может быть, например, алмазоид, представляющий собой мельчайшие кристаллики, из которых состоит микроскопическокий алмаз, полностью повторяющий его тетраэдрическую структуру. Ряд экспериментов подтвердил, что гладкие алмазоиды вызываю меньшую активность лейкоцитов. Антенны такого робота должны иметь вид диполей, выступающих за пределы корпуса, для приема незатухающих электромагнитных волн, распространяющихся в теле человека. Для надежной управляемости молекулярных роботов необходимо использовать нанокомпьютер. Сформировать навигационную систему и обеспечить связь роботов друг с другом поможет еще один тип наноустройств - коммуноциты, так же выполняющих роль усилительных станций.

Каким образом будет происходить процесс лечения? Для восстановления нормальной работы клетки необходима доставка к ней различных ферментов. Так же, используя ферменты, можно уничтожать различные вирусы, которые вызывают механизм клеточного апоптоза (программируемой клеточной смерти). Если же угроза не слишком велика и нет необходимости проникать внутрь поврежденного участка, достаточно инъекции специального вещества, вызывающего восстановления ДНК и возвращение клетки к нормальной работе.

Заключение

физика химический молекула наноструктура

Современные возможности лабораторного эксперимента по наблюдению и изучению явлений в нанометровой шкале пространственных размеров и заманчивые перспективы создания уникальных материалов и наноустройств порождают новые теоретические проблемы. Необходимость конструктивного решения этих проблем ведет к интенсивным исследованиям, формирующим новые разделы в вычислительной физике и вычислительной химии. Исследования в области нанокластеров и наносистем лежат в основе создания новой технологии XXI века - нанотехнологии. Среди них - одноэлектронные устройства, позволяющие на несколько порядков уменьшить размер современных микронных вычислительных элементов и перейти от микро- к нанотехнологии. Работы в области полупроводниковых кластеров ведут к созданию лазеров с изменяемой длиной волны за счет изменения размера нанокластера, а также светодиодов. Конструирование наносистем из отдельных нанокластеров позволяет изменить электронные и магнитные свойства наносистемы за счет возникновения избыточных внутренних напряжений (давлений) и влияния поверхностно активных веществ. Перспективны газовые и жидкостные сенсоры на основе наносистем с полупроводниковыми кластерами. Кластерные катализаторы позволяют развивать новые направления управления конверсией и селективностью каталитических реакций за счет размера кластера и взаимодействия его с матрицей. Нанотехнология нанесения пленок создает предельно ровные поверхности и приводит к экономии дорогостоящих материалов для покрытий.

Время стремительно толкает нас к вершинам новых побед и открытий, нанороботы не являются исключением, все только в начале пути, а нам остается только наблюдать, как молекулярные наномашины будут изменять жизнь вокруг нас.

Список использованной литературы

1. Г.Г. Еленин - «НАНОТЕХНОЛОГИИ, НАНОМАТЕРИАЛЫ, НАНО-УСТРОЙСТВА» (часть 1).

2. Суздалев И.П. - «ФИЗИКО-ХИМИЯ НАНОКЛАСТЕРОВ И НАНОСТРУКТУР», курс лекций.

3. А.И. Гусев, А.А. Ремпель, Нанокристаллические материалы, Москва, Физматгиз, 2001.

4. Рыбалкина М. - «Нанотехнологи для всех», 2005 г.

5. «Российский электронный наножурнал» - 15.05.2008.

Размещено на Allbest.ru


Подобные документы

  • Определение газа как агрегатного состояния вещества, характеризующегося очень слабыми связями между составляющими их частицами (молекулами, атомами, ионами). Основные свойства газов: давление, теплоемкость, абсолютная температура и скорость его молекул.

    презентация [2,1 M], добавлен 17.01.2012

  • Важные преимущества химических волокон перед волокнами природными. Изучение истории и тенденций развития производства и потребления химических волокон в Республике Беларусь. Оценка развития новых разработок. Нанотехнологии в заключительной отделке.

    реферат [2,0 M], добавлен 08.05.2014

  • Закономерности трансформации состава, свойств бентонита в процессе модифицирования. Исследование сорбционной активности природных и модифицированных форм бентонита. Определение закономерностей модифицирования бентонита Кабардино-Балкарского месторождения.

    магистерская работа [9,2 M], добавлен 30.07.2010

  • Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.

    реферат [26,7 K], добавлен 27.02.2010

  • Физические и эксплуатационные характеристики тонкопленочных покрытий и нанослоев. Современные системы откачки остаточных газов. Получение качественных и технологически воспроизводимых покрытий. Частота столкновения отдельной молекулы газа с молекулами.

    реферат [42,1 K], добавлен 01.03.2014

  • Классификация физико-химических методов анализа веществ и их краткая характеристика, определение эквивалентной точки титрования, изучение соотношений между составом и свойствами исследуемых систем. Метод низкочастотного кондуктометрического титрования.

    учебное пособие [845,9 K], добавлен 04.05.2010

  • Хемосорбционное модифицирование минералов. Свойства глинистых пород. Методика модификации бентонитовой глины месторождения "Герпегеж". Физико-химические способы исследования синтезированных соединений. Определение сорбционных характеристик бентонина.

    курсовая работа [9,2 M], добавлен 27.10.2010

  • Понятие и назначение химических методов анализа проб, порядок их проведения и оценка эффективности. Классификация и разновидности данных методов, типы проводимых химических реакций. Прогнозирование и расчет физико-химических свойств разных материалов.

    лекция [20,3 K], добавлен 08.05.2010

  • Электростатическая связь: виды взаимодействий. Свойства ковалентных связей (длина, полярность и энергия). Средняя величина дипольных моментов связей и функциональных групп. Строение метана. Строение молекул с n, o-атомами с неподеленной парой электронов.

    лекция [417,9 K], добавлен 21.02.2009

  • Характеристика состава и физико-химических свойств флюсов, способы их получения. Изучение процесса рафинирования алюминиевых сплавов от магния при использовании флюса, обладающего покровными свойствами; исследование его влияния и технология применения.

    дипломная работа [1,7 M], добавлен 28.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.