Метастабильные дефекты вблизи ростовых дислокаций в сульфиде кадмия
Метод нестационарной емкостной спектроскопии глубоких уровней. Зависимость концентрации дефектов от формы ямок травления дислокаций. Расчет состояния приповерхностной области. Возникновение сжимающих напряжений при определенном профиле ямок травления.
Рубрика | Химия |
Вид | статья |
Язык | русский |
Дата добавления | 03.12.2018 |
Размер файла | 223,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Метастабильные дефекты вблизи ростовых дислокаций в сульфиде кадмия
Хлебов Алексей Георгиевич
Кафедра физики. Вятский государственный университет. ул. Московская, 36. г. Киров, 610000. Кировская область. Россия. Тел.: 8-912-822-02-74. E-mail: khlebov1@yandex.ru
Аннотация
В статье исследуются метастабильные дефекты сосредоточенные вблизи ростовых дислокаций в сульфиде кадмия. Методами нестационарной емкостной спектроскопии глубоких уровней установлено, что концентрация этих дефектов зависит от формы ямок травления дислокаций, то есть от соотношения между глубиной и шириной ямок. Используя различные модели, в работе рассчитывается напряжённое состояние приповерхностной области. Делается вывод о том, что проявление глубоких уровней в спектрах связано с возникновением сжимающих напряжений при определённом профиле ямок травления.
Ключевые слова: сульфид кадмия, дислокации, малоугловые границы, метастабильные дефекты, механическое напряжение.
травление спектроскопия дефект ямка
Введение
Известно, что деградация оптоэлектронных устройств, изготовленных на основе полупроводниковых соединений А3В5, А2В6, во многом обусловлена метастабильными центрами, например DX-центрами [1, 2]. В сульфиде кадмия DX-центры и подобные им метастабильные центры (далее MS-центры), как показано в [2, 3], образуются при пластической деформации кристаллов, то есть при введении дислокаций призматической или базисной систем скольжения. Вместе с тем в [4] было отмечено, что MS-центры наблюдаются и в недеформированных кристаллах в областях вблизи ростовых дислокаций призматической системы скольжения, которые в сульфиде кадмия сгруппированы в основном в малоугловых границах (МУГ).
При исследовании MS-центров емкостными методами [3-5]: нестационарной емкостной спектроскопии (DLTS), термостимулированной ёмкости, фотоёмкости, фотопроводимости, было обнаружено, что этим центрам соответствуют два состояния MS1 и MS2, которые проявляются в спектрах при определённых начальных условиях, а концентрация их соотносится примерно как один к двум. На основе экспериментальных данных авторы делают вывод о том, что эти состояния принадлежат двухзарядному точечному дефекту, однозарядное состояние которого является метастабильным. Данный дефект имеет, по-видимому, собственную при-роду (например, междоузельный кадмий) и группируется в непосредственной близости от дислокаций.
В настоящей работе приводятся экспериментальные данные по влиянию режима травления образцов CdS с ростовыми дислокациями на спектр электронных состояний центра MS. Анализируется связь между концентрацией этих дефектов и формой ямок травления от ростовых дислокаций. Приводится расчёт напряжённого состояния приповерхностных областей вблизи малоугловых границ.
Экспериментальная часть
В работе исследовались низкоомные монокристаллы сульфида кадмия вырезанные вдоль базис-ной плоскости (001), образцы шлифовались и полировались до шероховатости менее 1 мкм. Затем образцы подвергались травлению в полирующем травителе следующего состава: CrO3 (6-8 мл), HCl (6-8 мл), H2O (6-10 мл), при кипении. Время травления изменялось от 15 с до 2 мин. Сразу после травления, на одну сторону образцов наносились омические контакты наплавлением индия, на другую сторону, термическим напылением в вакууме не хуже 10-5 торр, наносились золотые Шоттки-контакты диаметром 0.5 мм. Место для напыления Шоттки-контакта выбиралось таким образом, чтобы общая длина малоугловых границ под ним была не менее 1-2 мм.
Профили ямок травления записывались с помощью автоматического профилометра Абрис-ПМ7. Емкостные спектры DLTS и DLOS снимались с помощью универсального емкостного спектрометра [6] с чувствительностью C/C не хуже 10-6 на частотах 1 МГц и 10 МГц. Качество контактов проверялось исследованием вольтамперных и вольтфарадных характеристик.
Результаты и их обсуждение
В работах [3-5] авторы неоднократно обращали внимание на то, что вид спектров, при примерно равном количестве ростовых дислокаций под контактом, зависит также от состава травителя и времени травления. Первоначальное предположение о поверхностном характере исследуемых дефектов не подтверждается исследованием вольтамперных и вольтфарадных характеристик, которые для всех образцов практически совпадали. Более того, исследование зарядовых характеристик центров (зависимость емкостного сигнала от амплитуды заполняющих импульсов) свидетельствует о концентрации дефектов преимущественно в объёме полупроводника вблизи границы области пространственного заряда [5].
Рис. 1. Профиль ямки травления при разных временах травления
(¦ - 15 с, ^ - 45 с, ? - 90 с)
Было высказано предположение, что количество дефектов вблизи МУГ зависит от профиля ямок травления. Исследование профиля ямок от времени травления, было проведено с помощью автоматического профилометра Абрис-ПМ7. На рис. 1 приведён характерный вид профиля малоугловых границ при временах травления 15, 45 и 90 секунд. Видно, что при малых временах (порядка 15 секунд) ширина ямки составляет примерно 4 мкм при относительно небольшой глубине 0.6-0.7 мкм. При увеличении времени травления до 45 секунд, ширина ямки увеличивается незначительно до 5 мкм при значительном увеличении глубины до 1.9-2.0 мкм и более. Дальнейшее увеличение времени травления до 90 секунд и более, приводит к значительному увеличению ширины ямки до 10-14 мкм при небольшом увеличении глубины до 2.5-2.7 мкм.
На рис. 2 приведены спектры DLTS образцов протравленных согласно режимам рассмотренным выше. Видно, что существенный сигнал во всём диапазоне температур (с характерными особенностями центров типа MS, описанными в [2-4]) появляется при травлении 45 секунд. При травлении в течение 15 с и 90 с сигнал практически полностью отсутствует, кроме небольшого максимума при 100 К и некоторого увеличения сигнала DLTS при Т > 400 K.
Аналогичные результаты наблюдаются и в спектрах оптической емкостной спектроскопии (фотоёмкость, DLOS) при температурах порядка 70-100 К.
Рис. 2. Спектры DLTS образцов при различных временах травления.
(¦ - время травления 45 с, ^ - время травления 15 с, 90 с)
Приведённые результаты подтверждают предположение о повышенном содержании центров MS вблизи малоугловых границ только при определённом профиле ямок травления. Если ввести безразмерный параметр равный отношению глубины ямки к её ширине b, то можно сказать, что концентрация дефектов максимальна при b = 0.4 и более, и практически равна нулю при b = 0.2 и менее.
Для объяснения полученных результатов авторами был применён способ расчёта напряжённого состояния приповерхностной области в зависимости от формы поверхности, рассмотренный в [7, 8].
Наиболее простой моделью при расчётах напряжённого состояния является ямка травления сферической формы (рис. 3).
Рис. 3. Сферическая модель ямки травления
С учётом того, что масштаб по оси Y на рис. 1 сильно увеличен, это допущение можно считать вполне приемлемым. Из оболочечной модели в безмоментной теории следует [7], что напряжённое состояние элемента оболочки описывается двумя составляющими уn - нормальное и уф - тангенциальное напряжения соответственно (смотри рисунок 3). При этом, выражения для уn и уф в зависимости от угла ц для выбранной модели, выглядят следующим образом.
уn = у0 (1-cos3ц)/sin2 ц (1)
(2)
В формулах (1), (2) у0 соответствует напряжению, которое создаётся внешним давлением. В нашем случае, такое напряжение может возникать вследствие деформаций решётки вблизи дислокаций [8].
Из формул (1, 2) следует, что уm положительно при 00 < ц < 900, а уt убывает с ростом ц и меняет знак при ц = 720, то есть тангенциальное напряжение растяжения при значениях ц > 720 переходит в напряжение сжатия (уt < 0). Если выразить через ц безразмерный параметр b = h/a, то полученная из тригонометрических соображений формула при ц = 720 даёт значение b = 0.36, что вполне согласуется с результатами наших экспериментов.
Поскольку в действительности профиль ямок травления отличается от идеальной сферической формы, а размеры ямок могут сильно варьироваться для одного и того же образца, был применён способ расчёта напряжённого состояния приповерхностной области шероховатой поверхности предложенный в [8].
Усреднённую ямку травления можно представить с помощью опорной кривой, форма которой задаётся математической функцией вида
(3)
где к - коэффициент формы определяющий усреднённые параметры ямок.
На рис. 4а представлена опорная кривая для к2 = 11.
Рис. 4. а - опорные кривые; б - зависимости уэкв от Y (¦ - к2 = 8, ^ - к2 = 11, ? - к2 = 15)
Напряжённое состояние элемента оболочки описывается эквивалентным напряжением уэкв, которое рассчитывается с помощью уравнения Лапласа через уn и уt, а также энергию формоизменения, которая по гипотезе Хуберта-Мизеса является критерием перехода от упругой к пластической деформации (подробнее смотри [8]). В результате для уэкв получено следующее выражение с учётом (1):
уэкв = у0[1-1/2 exp(-k2x2)] (4)
На рис. 4б представлены зависимости уэкв от уровня x для различных значений параметра k. Из графиков видно, что при k2 > 8 уэкв становится отрицательным в области значений 0.07 < x < 0.22, при этом резко возрастает градиент уэкв (наклон кривых относительно оси x) при x = 0.2-0.4. Анализируя опорную кривую можно сделать вывод, что наиболее вероятной глубиной ямки травления (для k2 = 11), при которой уэкв < 0, является ?y ~0.28, что даёт оценочную ширину ямки ?x = (1-x)~0.6. При этом параметр b равный отношению глубины ямки к её ширине составляет ~0.47, то есть, полученный из усреднённой модели результат также не противоречит экспериментальным данным.
Таким образом, приведённые расчёты показывают, что изменение профиля ямки травления существенно влияет на напряжённое состояние приповерхностной области, причём при определённых условиях меняется полярность напряжённого состояния, то есть напряжение растяжения меняется на сжимающее напряжение. Важным, на наш взгляд, является также появление больших градиентов уэкв по высоте 0.2 < x < 0.4 при значениях k2 > 8.
Заключение
Полученные результаты хорошо согласуются с данными полученными при пластической деформации образцов сульфида кадмия, для которых емкостной сигнал соответствующий MS-центрам наблюдался вне зависимости от режимов травления [3-5], так как сжимающие напряжения в данном случае возникают во всём объёме образца. На основании результатов данной работы, а также результатов [3-5], можно считать доказанным, что энергетическое положение уровней соответствующих MS-центрам в запрещённой зоне, очень сильно зависит от механических напряжений в области, где находятся эти центры (то есть вблизи дислокаций ростовых или введённых при пластической деформации). При воздействии сжимающих напряжений любого рода, энергия ионизации дефектов увеличивается из-за сильного электрон-фононного взаимодействия (подобный эффект наблюдается для DX-центров в арсениде галлия [1]), и соответствующий сигнал проявляется в емкостных спектрах. В результате, в запрещённой зоне появляется не один локальный энергетический уровень, а целый ряд уровней, энергия ионизации которых зависит от величины сжимающего напряжения в той точке, где находится соответствующий центр. Это предположение подтверждается необычной шириной спектров DLTS (рис. 2) и DLOS, которые оказываются на порядок шире спектров полученных от локальных энергетических уровней. По мнению авторов, MS-центры могут являться мелкими донорами собственной природы (например, междоузельный кадмий) образовавшимися в процессе роста кристаллов, нельзя исключать также возможность образования таких дефектов при зарождении и движении дислокаций в ходе пластической деформации или при травлении образцов.
Выводы
1. Методами нестационарной емкостной спектроскопии (DLTS, DLOS) исследованы метастабильные центры в сульфиде кадмия с ростовыми дислокациями. Уточнены параметры центров, в частности пороговая энергия оптической ионизации центров Eопт = (0.88±0.05) эВ. Обнаружена зависимость емкостного сигнала соответствующего этим центрам от режима травления образцов. Максимальный сигнал наблюдается при времени травления ~45 с, при меньших или больших временах травления особенности спектров соответствующих этим центрам практически полностью исчезают;
2. Получены профили ямок травления ростовых дислокаций сгруппированных в малоугловых границах в кристаллах сульфида кадмия. Установлено, что при изменении времени травления изменяется соотношение между глубиной (h) и шириной ямок (a), причём максимальное соотношение h/a > 0.4 достинается при временах травления ~45 с, в то время как при малых или наоборот больших временах травления значение h/a < 0.2.
3. Проведён расчёт напряжённого состояния приповерхностного слоя в пределах ямки травления в кристаллах сульфида кадмия для упрощённой модели сферической формы и для обобщённого случая с помощью опорной кривой. Установлено, что при определённых параметрах формы напряжения растяжения могут переходить в напряжения сжатия, причём это происходит во всех случаях при увеличении отношения глубины ямки к её ширине. Сделано предположение о том, что при воздействии сжимающих напряжений любого рода, энергия ионизации метастабильных центров увеличивается из-за сильного электронфононного взаимодействия.
Благодарности
Авторы статьи выражают огромную благодарность Базлову Н.В. за помощь в проведении экспериментов, а также Вывенко О.Ф. и Хлебовой И.Л. за ценные советы и обсуждения.
Литература
[1] C. H. Park and D. J. Chadi. Appl. Phys. Lett. 1995. 66. Р.167.
[2] Istratov A.A., O.F.Vyvenko. J. Appl. Phys. 1996. Vol.80. No8. P.15.
[3] Вывенко О.Ф., Истратов А.А., Хлебов А.Г. ФТП. 1990. Т.24. В.9. C.1650-1658.
[4] Истратов А.А., Вывенко О.Ф., Хлебов А.Г. ФТП. 1989. Т.23. В.8. C.1521-1524.
[5] Хлебов А.Г. Известия вузов. Физика. 1997, В.6. C.107-109.
[6] Базлов Н.В., Вывенко О.Ф., Тульев А.В. ПТЭ. 1987. Т.3. C.176-183.
[7] Феодосьев В.И. Сопротивление материалов. М.: Наука. 1986. 227с.
[8] Хирт Дж., Лоте И. Теория дислокаций. М.: Атомиздат. 1972. C.549.
[9] Хлебов А.Г., Хлебова И.Л. Известия вузов. Физика. 2005. №5. C.76-81.
Размещено на Allbest.ru
Подобные документы
Получение и изучение свойств растворов ПАН/ДМФА и ПАН/ДМФА/AgNO3 методом УФ спектроскопии. Контроль структурного градиента у нановолокна Ag/ПАН с помощью обработки растворителем. Метод дифференциальной сканирующей калориметрии. Метод ИК спектроскопии.
дипломная работа [4,0 M], добавлен 04.06.2017Спектральный переход в атоме или в молекуле, поглощение (испускание) электромагнитного излучения. В области оптической спектроскопии излучение разделяют с помощью дифракционных решёток, призм, линз. Диапазоны излучения, области молекулярной спектроскопии.
реферат [100,9 K], добавлен 01.02.2009Сущность и применение методов оптической спектроскопии. Зависимость поглощения света веществом от электролитической структуры молекул. Определение и характеристика групп атомов, обуславливающих поглощение в видимой и ультрафиолетовой областях спектра.
лекция [1,7 M], добавлен 06.02.2009Характеристика сульфида кадмия: кристаллическая структура, термодинамические и электрофизические свойства. Методы получения халькогенидов металлов. Метод вакуумной конденсации, распыления раствора на нагретую подложку (пиролиз). Технологии производства.
курсовая работа [461,9 K], добавлен 24.12.2012Понятие и общая характеристика алюминия, его свойства. Особенности электрохимической обработки металлов. Специфика применения анодирования, полирования, эматалирования и травления сплавов и алюминия. Использование исследуемых процессов в полиграфии.
курсовая работа [41,0 K], добавлен 31.05.2013Три типа поведения ПАВ или полярных липидов в зависимости от концентрации. Сферическая мицелла, зависимость процесса роста мицелл от типа ПАВ. Разветвленные мицеллы, мицеллярные растворы. Ламелярная фаза, обращенные структуры. Построение фазовых диаграмм.
контрольная работа [1,9 M], добавлен 04.09.2009Состав художественных масляных красок, история их применения, предъявляемые к ним требования, технологический процесс производства. Открытие кадмия, распространение элемента в природе, способы получения, свойства. Применение соединений кадмия в живописи.
курсовая работа [36,7 K], добавлен 18.02.2015Сущность рентгенофлуоресцентного метода анализ. Проблемы возникающие при определении концентраций с помощью рентгенофлуоресцентного анализа. Влияние состояния поверхности на интенсивность флуоресценции. Основные модули и принцип работы спектрометра.
дипломная работа [1,1 M], добавлен 15.06.2012Характеристика химического равновесия. Зависимость скорости химической реакции от концентрации реагирующих веществ, температуры, величины поверхности реагирующих веществ. Влияние концентрации реагирующих веществ и температуры на состояние равновесия.
лабораторная работа [282,5 K], добавлен 08.10.2013Ультрафиолетовая спектроскопия, применяемая при исследовании атомов, ионов, молекул твердых тел, для изучения их уровней энергии, вероятностей переходов. Приборы, применяемые для УФ-спектроскопии. Спектры поглощения классов органических соединений.
контрольная работа [2,9 M], добавлен 08.04.2015