Попытка химического понимания мирового эфира
Обоснование или опровержение отрицания для вещества или для атомов эфира всякой склонности к образованию сколько-либо стойких соединений с другими химическими элементами. Оценка возможности признать за эфиром свойств легчайшего, быстродвижущегося газа.
Рубрика | Химия |
Вид | статья |
Язык | русский |
Дата добавления | 14.11.2018 |
Размер файла | 578,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
1
Размещено на http://www.allbest.ru//
Попытка химического понимания мирового эфира
Менделеев Д.И.
Как рыба об лёд испокон веков билась мысль мудрецов в своём стремлении к единству во всём, то есть в искании «начала всех начал», но добилась лишь того, что всё же должна признавать нераздельную, однако и не сливаемую, познавательную троицу вечных и самобытных: вещества (материи), силы (энергии) и духа, хотя разграничить их до конца, без явного мистицизма, невозможно. Различение и даже противоположение, ещё нередко встречающееся в виде остатка от средних веков, лишь материального от духовного или - что того менее обще - лишь покоя от движения, не выдержало пытливости мышления, потому что выражает крайность и, главное, потому, что покоя ни в чём, даже в смерти, найти не удаётся, а духовное мыслимо лишь в абстракте, в действительности же познается лишь чрез материально ощущаемое, то есть в сочетании с веществом и энергиею, которая сама по себе тоже не сознаваема без материи, так как движение требует и предполагает движущееся, которое само по себе лишь мысленно возможно без всякого движения и называется веществом. Ни совершенно слить, ни совершенно отделить, ни представить какие-либо переходные формы для духа, силы и вещества не удаётся никому, кроме явных мистиков и тех крайних, которые не хотят ничего знать ни про что духовное: разум, волю, желания, любовь и самосознание. Оставим этим мистикам их дуализм, а обратим внимание на то, что вечность, неизменную сущность, отсутствие нового происхождения или исчезновения и постоянство эволюционных проявлений или изменений признали люди не только для духа, но и для энергии или силы, равно как и для материи или вещества. Научное понимание окружающего, а потому и возможность обладания им для пользы людской, а не для одного простого ощущения (созерцания) и более или менее романтического (то есть латинско-средневекового) описания, начинается только с признания исходной вечности изучаемого, как видно лучше всего над химиею, которая как чистая, точная и прикладная наука - ведёт своё начало от Лавуазье, признавшего и показавшего «вечность вещества», рядом с его постоянной, эволюционною изменчивостью. Такое, ещё во многом смутное, но всё же подлежащее уже анализу понимание исходной троицы познания (вещество, сила и дух) составляет основу современного реализма, глубоко отличающегося как от древнего, так и от ещё недавнего, даже ещё до ныне распространённого унитарного материализма, который всё стремится познать из вещества и его движения 1, и от ещё более древнего и также кое-где ещё не забытого унитарного же спиритуализма, всё как будто понимающего, исходя из одного духовного. Думаю даже, что современный «реализм» яснее и полнее всего характеризуется признанием вечности, эволюции и связей: вещества, сил и духа.
Так, сколько я понимаю, мыслят вдумчивые естествоиспытатели - реалисты 2, и это их в некоторой мере успокаивает, когда они изучают вещество, его формы и силы, в нём действующие, и когда они стремятся узнать их предвечные закономерности. Но у них есть свои побочные причины постоянного беспокойства. Их много. Одну из них выбираю предметом статьи, а именно мировой эфир, или просто «эфир». В известной краткой энциклопедии Ларусса (Pierre Larousse, Dictionnaire complet illustrй), составляющей в некотором смысле экстракт и перечень современно-известного и признанного, вот как определяется «эфир» (йther): «жидкость невесомая, упругая, наполняющая пространство, проникающая во все тела и признаваемая физиками за причину света, тепла, электричества и проч.». Сказано немного, но достаточно для того, чтобы смущать вдумчивых естествоиспытателей. Они не могут не признать за эфиром свойств вещества (здесь «жидкости»), а в то же время придумали его, как мировую «среду», наполняющую всё пустое пространство и все тела, чтобы уразуметь хоть сколько-нибудь при помощи движения этой среды передачу энергии на расстоянии, и признали в этой среде разнообразные перемены строения (деформации) и возмущения (пертурбации), какие наблюдаются в твёрдых телах, жидкостях и газообразных веществах, чтобы ими толковать явления света, электричества и даже тяготения. В этой жидкой среде нельзя показать весомости, если эта жидкость всюду и всё проникает, как нельзя было знать весомости воздуха, пока не нашли воздушных насосов, способных удалять воздух. Но нельзя и отрицать весомости эфира, потому что со времён Галилея и Ньютона способность притягиваться, то есть весить, составляет первичное определение вещества. Путём совокупности предположений В. Томсон (лорд Кельвин) пришёл к выводу, что кубический метр эфира должен весить, примерно, не менее 0,0000000000000001 грамма, если куб. метр воды весит около 1000000 граммов 3, а для легчайшего - водородного - газа при 0° и при обыкновенном атмосферном давлении куб. метр весит около 90 граммов. В совершенно законном стремлении придать эфиру весомость или массу начинается то беспокойство вдумчивых естествоиспытателей, о котором сказано выше, потому что рождается вопрос: да при каком же давлении и при какой же температуре эфиру свойствен указанный вес? Ведь, и для воды и водорода при ничтожно малых давлениях или при громадных повышениях температуры должно ждать такой же малой плотности, какая выше указана для эфира. Если дело идёт о плотности эфира в междупланетном пространстве, то там и водяные пары, и водород не могут иметь, несмотря на низкую температуру, видимой, измеримой плотности, так как там давления, определяемые тяготением, ничтожны. Умственно можно представить, что междупланетное пространство наполнено такими разреженными остатками всяких паров и газов. Даже тогда получится согласие с известными космогоническими гипотезами Канта, Лапласа и др., стремящимися выяснить единство плана образования миров, поймётся однообразие химического состава всей вселенной, указанное спектрометрическими исследованиями, так как по существу установится обмен - чрез посредство эфира - между всеми мирами. Исследование упругости или сжимаемости газов под малыми давлениями, задуманное мною в 70-х годах и отчасти тогда же выполненное, имело, между прочим, целью проследить, насколько то возможно для имеющихся способов измерений малых давлений, изменения в газах, находящихся под малыми давлениями. Подмеченные для всех газов (мною с М. Л. Кирпичевым, 1874) так называемые положительные отступления от Бойль-Мариоттова закона, затем подтверждённые многими и, между прочим, Рамзаем (хотя до сих пор и непризнаваемые ещё некоторыми исследователями), до некоторой степени указывают на единообразие поведения всех газов и на стремление их при уменьшении давления к некоторому пределу в расширении, как есть предел для сгущения - в сжижении и критическом состоянии 4. Но в наблюдении очень малых давлений встретились непреоборимые трудности, тем большие, что для определения очень малых давлений оказалось невозможным заменить ртуть более лёгкими жидкостями (например, серною кислотою или нефтяными маслами), потому что они оказались способными выделять из себя в манометрическую пустоту ничтожно малые, однако ясно видимые количества каких-то газов, хотя были предварительно неделями выдержаны при 100° в пустоте, доставляемой лучшими насосами. Таким образом практически оказалось невозможным сколько-либо точно измерять давления, меньшие, чем в десятые доли миллиметра высоты ртутного столба, а это - когда дело идёт о разрежениях, подобных тем, какие надо предполагать даже на высоте 50 километров над уровнем наших морей - чересчур большие величины. Поэтому представление об эфире как сильно-разреженном газе атмосферы, не может доныне подлежать опытному исследованию и измерению, которые одни способны наводить (индуцировать) мысль на правильные пути и приводить затем к следствиям, опять подлежащим опытной и измерительной поверке.
Но и помимо этого, представление о мировом эфире, как предельном разрежении паров и газов, не выдерживает даже первых приступов вдумчивости - в силу того, что эфир нельзя представить иначе, как веществом, всё и всюду проникающим; парам же и газам это не свойственно. Они сгущаемы при увеличении давлений, и их нельзя представить содержащимися во всех веществах, хотя они и широко распространены во всех телах природы, даже в аэролитах. Притом - и это, всего важнее - они, по своей химической природе и по своим отношениям к другим веществам, бесконечно разнообразны; эфир же однообразен всюду, насколько то нам известно. Будучи разнородны по своим химическим свойствам, известные нам пары и газы должны были бы химически разнообразно воздействовать на тела, которые они проникают, если бы эфир был их совокупностью.
Прежде чем идти далее, считаю неизбежно необходимым оговориться в отношении здесь и далее вводимых мною химических соображений. Избежать их при обсуждении мирового эфира было трудно, но во времена Галилея и Ньютона ещё возможно. Ныне же это было бы противно самым основным началам дисциплины естественной философии, потому что со времён Лавуазье, Дальтона и Авогадро-Жерара химия получила все высшие права гражданства в обществе наук о природе и, поставив массу (вес) вещества во главе всех своих обобщений, пошла за Галилеем и Ньютоном. Мало того, чрез химию, только при её приёмах, действительно вкоренилось во всём естествознании стремление искать решение всяких задач, касающихся конечных, измеримых тел и явлений, в постижении взаимодействия беспредельно малых их отдельностей, называемых атомами, но в сущности (по реальному представлению) мыслимых, как химически неделимые индивидуумы, ничего общего не имеющих с механически-неделимыми атомами древних метафизиков. Доказательства этому последнему многочисленны, но достаточно упомянуть о том, что современные атомы не раз объясняли вихревыми кольцами (vortex), что и поныне живо стремление понять сложение химических атомов или друг из друга, или из «первичной материи» и что как раз в последнее время, особенно по поводу радиоактивных веществ, стали признавать деление химических атомов на более мелкие «электроны», а всё это логически не было бы возможно, если бы «атомы» признавались механически неделимыми. Химическое миросозерцание можно выразить образно, уподобляя атомы химиков небесным телам: звёздам, солнцу, планетам, спутникам, кометам и т. п. Как из этих отдельностей (индивидуумов) слагаются системы, подобные солнечной или системам двойных звёзд, или некоторым созвездиям (туманностям) и т. п., так представляется сложение из атомов целых частиц, а из частиц тел и веществ. Это для современной химии не простая игра слов или не одно уподобление, а сама реальность, руководящая всеми исследованиями, всякими анализами и синтезами химии. У неё свой микрокосм в невидимых областях, и, будучи архиреальною наукою, она всё время оперирует с невидимыми своими отдельностями, вовсе не думая считать их механически неделимыми. Атомы и частицы (молекулы), о которых неизбежно говорится во всех частях современной механики и физики, не могут быть чем-либо иным, как атомами и частицами, определяемыми химией, потому что того требует единство познания. Поэтому и метафизика нашего времени, если желает помогать познанию, должна понимать атомы так же, как их понимать могут естествоиспытатели, а не на манер древних метафизиков китайско-греческого образца. Если Ньютоново всемирное тяготение реально раскрыло силы, всегда действующие даже на беспредельно больших расстояниях, то познание химии, внушённое Лавуазье, Дальтоном и Авогадро-Жераром, раскрыло силы, всегда действующие на неизмеримо малых расстояниях, и показало как громадность этих сил (что видно, например, из того, что силами этими легко сжижаются газы, подобные водороду, едва недавно сжиженному совокупностью физических и механических усилий), так и превращаемость их во все прочие виды проявления энергии, так как химическими силами (например при горении) достигаются механические и физические. Поэтому все современные основные понятия естествознания - следовательно, и мировой эфир - неизбежно необходимо обсудить под совокупным воздействием сведений механики, физики и химии, и, хотя понятие об эфире родилось в физике, и хотя скептическая индифферентность старается во всём усмотреть «рабочую гипотезу», вдумчивому естествоиспытателю, ищущему саму действительность, какова она есть, и не довольствующемуся смутными картинами волшебного фонаря фантазии, хотя бы украшенного логичнейшим анализом, нельзя не задаваться вопросом: что же такое это за вещество в химическом смысле?
Моя попытка и начинается с этого вопроса.
Ранее, чем излагать свой посильный ответ на вопрос о химической природе эфира, считаю долгом высказаться о мнении, которое читал между строк и не раз слыхал от своих учёных друзей, верящих в единство вещества химических элементов (или простых тел) и в происхождение их из одной первичной материи. Для них эфир содержит эту первичную материю в несложившемся виде, то есть не в форме элементарных химических атомов и образуемых ими частиц и веществ, а в виде составного начала, из которого сложились сами химические атомы. Нельзя не признать в таком воззрении увлекательной стороны. Как миры представляют иногда сложившимися из разъединённых тел (твёрдой космической пыли, болидов и т. п.), так атомы представляют происшедшими из первичного вещества. Сложившиеся миры остаются, но рядом с ними остаётся в пространстве космическая пыль, кометы, болиды и т. п. материалы, из которых предполагается их сложение уже многими. Так остаются и сложившиеся атомы, но рядом с ними сохранился и между ними движется их материал, то есть всепроникающий и первозданный эфир. Одни при этом полагают, что есть ряд видимых явлений, при которых атомы рассыпаются в свою пыль, то есть в первичную материю, как рассыпаются кометы в потоки падающих звёзд. Химики и физики, так думающие, представляют, что как геологические изменения или как сложение и распадение миров идут перед нашими глазами, так пред нами же в тиши разрушаются и вновь слагаются и атомы в своей вечной эволюции. Другие, не отрицая такой возможности - в виде особо редкого и исключительного случая, считают мир атомов сложенным в твердь прочно и полагают невозможным направить опыт на то, чтобы уловить это, то есть считают невозможным на опыте рассыпать атомы в первичную материю или образовать из неё на наших глазах новые атомы химических элементов, то есть процесс их происхождения понимают раз бывшим и законченным навсегда, а в эфире видят остатки, отбросы. С последними - реалистами не приходится считаться, потому что при таком представлении мыслители руководятся не следствиями из наблюдений или опытов, а только воображением, свобода которого обеспечена в республике науки. Но с первыми, то есть с истинными поклонниками продолжающейся эволюции вещества атомов, считаться химическому реализму неизбежно, потому что исходные положения нашей науки состоят не только в том, что вся общая масса вещества постоянна, но постоянны и те формы вещества, которые понимаются как элементарные атомы и в отдельности являются как «тела простые», признаваемые неспособными превращаться друг в друга. Если бы эфир происходил из атомов и атомы из него слагались, то нельзя было бы отрицать образование новых, небывалых атомов и должно было бы признавать возможность исчезания части простых тел, взятых в дело, при тех или иных наблюдениях и опытах. Давно-давно масса людей, по старому предрассудку, верит в такую возможность и, если бы это мнение не сохранялось в наши дни, не являлись бы Емменсы в С.А.С. Штатах, стремящиеся, по манере алхимиков, превратить серебро в золото, или такие учёные, как Фиттика (F. Fittica), в Германии, который ещё недавно, в 1900 году, старался доказывать, что фосфор может превращаться в мышьяк. Множество случаев подобного превращения одних простых тел в другие описывалось в те 50 лет, в течение которых я внимательно слежу за химической литературой. Но каждый раз, при тщательном исследовании подобных случаев, оказывалась или простая ошибка предубеждения, или недостаточная точность исследования, и вновь 5 защищать индивидуальную самобытность химических элементов я здесь не предполагаю. Мне следовало, однако, напомнить об этом, рассматривая эфир, потому что, помимо химической бездоказательности, мне кажется, невозможно сколько-либо реальное понимание эфира, как первичного вещества, потому что у веществ первейшими принадлежностями должно считать массу или вес и химические отношения: - первую для понимания большинства явлений при всех расстояниях, вплоть до бесконечно больших, а вторые - при расстоянии неизмеримо малых или соизмеримых с величинами тех мельчайших отдельностей, которые называют атомами. Если бы дело шло об одном том эфире, который наполняет пространство между мировыми телами (солнцем, планетами и т. п.) и передаёт между ними энергию, то можно было бы - с грехом пополам, ограничиваться только предположением о массе, не касаясь его химизма, можно было бы даже считать эфир содержащим «первичную материю», как можно говорить о массе планеты, не касаясь её химических составных начал. Но вполне, так сказать, бескровный, ближе ничем не определяемый эфир окончательно теряет всякую реальность и составляет причину беспокойства вдумчивых естествоиспытателей, лишь только спускаемся с неба на землю и признаём его проникающим все тела природы. Необходимость лёгкого и полного проникновения всех тел эфиром следует признать не только ради возможности понимания множества общеизвестных физических явлений, начиная с оптических (над чем не считаю надобным останавливаться), но и по причине великой упругости и, так сказать, тонкости эфирного вещества, атомы которого всегда и все представляют себе не иначе, как очень малыми сравнительно с атомами и частицами химически известных веществ, то есть подобными аэролитам среди планет. Притом такая проницаемость эфиром всех тел объясняет и невозможность уединить это вещество, как нельзя собрать ни воды, ни воздуха в решете, каким для эфира должно считать всякие твёрдые или иные вещества и преграды. Способность эфира проникать всюду, во все тела можно, однако, понимать, как высшую степень развития того проникновения газов чрез сплошные преграды, которое Грем изучал для каучука в отношении многих газов, а Девилль и др. нашли для железа и платины по отношению к водороду 6.
Обладая малым весом атома и низшею из всех известных газов плотностью, водород не только вытекает или диффундирует сильнее или быстрее всяких других газов чрез малейшие отверстия, но способен проникать и чрез сплошные стенки таких металлов, как платина и особенно палладий, чрез которые другие газы не проникают. Но тут несомненно действует не только быстрота движения частиц водорода, тесно связанная с его малою плотностью, но и химическая способность того же разряда, которая проявляется как при образовании сложных тел, содержащих водород, так и при образовании растворов, сплавов и тому подобных, так называемых, неопределённых соединений. Механизм этого проникновения можно представить подобным - на поверхности проницаемого тела - растворению газа в жидкости, то есть вскакиванию его частиц в промежутки между частицами жидкости, замедлению движения (отчасти некоторому сгущению газа) и такому или иному согласованию движений обоих видов частиц. В массе проницаемого тела сжатый газ, поглощённый на поверхности прикосновения, конечно, распространяется во все стороны, диффундируя от слоя к слою, если в опытах Робертс-Аустена даже золото диффундировало в твёрдом свинце на основании тех же сил. Наконец, на другой поверхности проницаемого тела сжатый газ находит возможность вырваться на большую свободу и, пока будет накопляться до исходного давления, станет проникать туда, где его нет или где его мало, то есть входить в преграду будет более со стороны превышающего давления, чем в обратном направлении. Когда же давления уравняются, наступит не покой, а подвижное равновесие, то есть с каждой стороны в преграду будет проникать и выбывать одинаковое число частиц или атомов. Допуская, а это необходимо, проницаемость эфира в отношении ко всем веществам, должно приписать ему, прежде всего, лёгкость и упругость, то есть быстроту собственного движения, ещё в большем развитии, чем для водорода, и, что всегда важнее, ему должно приписать ещё меньшую, чем для водорода, способность образовать с проницаемыми телами определённые химические соединения, так как эти последние характеризуются именно тем, что разнородные атомы образуют системы или частицы, в которых вместе или согласно движутся различные элементы, как солнечная система характеризуется зависимым, согласным и совместным движением образующих её многих светил. А так как надо предполагать, что такое совместное движение водорода, например, с палладием, им проницаемым, действительно совершается для тех атомов водорода, которые находятся в среде атомов палладия, и что водород с палладием дает своё определённое соединение Pd2H (или какое иное), но при нагревании оно легко диссоциирует, то следует, мне кажется, допустить, что атомы эфира в такой высокой мере лишены этой, уже для водорода слабой, способности к образованию определённых соединений, что для них всякая температура есть диссоциационная, а потому ничего, кроме некоторого сгущения в среде атомов обычного вещества, для эфира признать нельзя.
Такое допущение, то есть отрицание для вещества или для атомов эфира всякой склонности к образованию сколько-либо стойких соединений с другими химическими элементами, ещё несколько лет тому назад должно было бы считать совершенно произвольным, а потому и мало вероятным даже гипотетически, так как все известные ещё недавно простые тела и элементы, так или иначе, труднее или легче и прочнее или шатче, прямо или косвенно вступали во взаимные соединения, и тогда представить вещество, вовсе лишённое склонности подвергнуться под влиянием других веществ каким-либо химическим изменениям и чуждое способности образовать сложные частицы, - было бы чересчур смело и лишено всякой реальности, то есть чуждо известной действительности. Но вот в 1894 г. лорд Релей и проф. Рамзай открывают в воздухе аргон и определяют его, как недеятельнейшее из всех известных газообразных и всяких иных веществ. Скоро затем последовало открытие Рамзаем гелия, который по его яркому спектру Локьер предчувствовал, как особое простое тело на солнце; а затем Рамзай и Траверс открыли в сжиженном воздухе ещё три таких же недеятельных, как аргон, газа: неон, криптон и ксенон, хотя содержание их в воздухе ничтожно мало и должно считаться для гелия и ксенона миллионными долями по объёму и весу воздуха 7. Для этих пяти новых газов, составляющих, вместе с открытием радиоактивных веществ, одни из блистательнейших опытных открытий конца XIX века, до сих пор не получено никаких сложных соединений, хотя в них ясно развита способность сжижаться и растворяться, то есть образовать так называемые неопределённые, столь легко диссоциирующие, соединения. Поэтому ныне, с реальной точки зрения, уже смело можно признавать вещество эфира лишённым - при способности проникать все вещества - способности образовать с обычными химическими атомами какие-либо стойкие химические соединения. Следовательно, мировой эфир можно представить, подобно гелию и аргону, газом, не способным к химическим соединениям.
Оставаясь на чисто химической почве, мы старались сперва показать невозможность понимания эфира ни как рассеянный пар или газ всюду распространенных веществ, ни как атомную пыль первичного вещества, из которого нередко ещё доныне многие признают сложение элементарных атомов, а потом пришли к заключению о том, что в эфире должно видеть вещество, лишённое способности вступать в сколько-либо прочные определённые химические соединения, что свойственно недавно открытым гелию, аргону и их аналогам.
Это первый этап на нашем пути; на нём, хотя недолго, необходимо остановиться. Когда мы признаем эфир газом - это значит прежде всего, что мы стремимся отнести понятие о нём к обычным, реальным понятиям о трёх состояниях веществ: газообразном, жидком и твёрдом. Тут не надо признавать, как то делает Крукс, особого четвёртого состояния, ускользающего от реального понимания природы вещей. Таинственная, почти спиритическая подкладка с эфира при этом допущении скидывается. Говоря, что это есть газ, очевидно, мы признаём его «жидкостью» в широком смысле этого слова, так как газы вообще суть упругие жидкости, лишённые сцепления, то есть той способности настоящих жидкостей, которая проявляется в виде свойства образовать - в силу сцепления - капли, подниматься в волосных (капиллярных) трубках и т. п. У жидкостей мера сцепления есть определённая, конечная величина, у газов она близка к нулю или, если угодно, величина очень малая. Если эфир - газ, то, значит, он имеет свой вес; это неизбежно приписать ему, если не отвергать ради него всей концепции естествознания, ведущего начало от Галилея, Ньютона и Лавуазье. Но если эфир обладает столь сильно развитою проницаемостью, что проходит чрез всякие оболочки, то нельзя и думать о том, чтобы прямо из опыта найти его массу в данном количестве других тел, или вес его определённого объёма - при данных условиях, а потому должно говорить не об невесомом эфире, а только о невозможности его взвешивания. Конечно, тут скрыта своя гипотеза, но совершенно реальная, а не какая-то мистическая, внушающая сильное беспокойство вдумчивым естествоиспытателям.
Всё предшествующее, мне кажется, не только не противоречит общераспространённому представлению о мировом эфире, но прямо с ним согласуется. Добавка, нами сделанная, стремящаяся ближе реализовать понятие об эфире, состоит только в том, что мы пришли к необходимости и возможности приписать эфиру свойства газов, подобных гелию и аргону, и в наивысшей мере неспособность вступать в настоящие химические соединения. Над этим понятием, составляющим центральную посылку моей попытки, необходимо остановиться подробнее, чем над какою-либо иною стороною сложного и важного предмета, например, над сопротивлением эфирной среды движению небесных светил, над следованием за Бойль-Мариоттовым или Ван-дер-Ваальсовым законом, над громадною упругостью массы эфира, над мерою его сгущения и упругостью в разных телах и в небесном пространстве и т. п. Все такие вопросы придётся так или иначе умственно решать и при всяком ином представлении об эфире, как весомом, но не взвешиваемом веществе. Мне кажутся все эти стороны доступными для реального обсуждения уже ныне, но они завлекли бы нас слишком далеко и всё же основной вопрос - о химическом составе эфира - остался бы при этом висеть в пустоте, а без него не может быть, на мой взгляд, никакой реальности в суждении об эфире; после же такого или иного ответа на этот вопрос, быть может, удастся двинуться дальше в реальном понимании других отношений эфира. Поэтому далее я стану говорить только о своей попытке понять химизм эфира, исходя из двух основных положений, а именно: 1) эфир есть легчайший - в этом отношении предельный - газ, обладающий высокою степенью проницаемости, что в физико-химическом смысле значит, что его частицы имеют относительно малый вес и обладают высшею, чем для каких-либо иных газов, скоростью своего поступательного движения 8, и 2) эфир есть простое тело, лишённое способности сжижаться и вступать в частичное химическое соединение и реагирование с какими-либо другими простыми или сложными веществами, хотя способное их проницать, подобно тому, как гелий, аргон и их аналоги способны растворяться в воде и других жидкостях.
Дальнейшие стороны моей попытки - понять природу эфира - так тесно связаны с гелием, аргоном и их аналогами и с периодическою системою элементов, что мне ранее, чем идти вперёд, необходимо особо остановиться над этими предметами и их взаимною связью.
Когда, в 1869 г., на основании сближений, подмеченных уж Дюма, Ленсеном, Петтенкофером и другими, между величинами атомных весов сходственных элементов, мною была выставлена периодическая зависимость между свойствами всех элементов и их истинными (то есть по системе Авогадро-Жерара с дополнениями Канницаро и с изменениями, вызываемыми периодическою законностью) атомными весами, не только не было известно ни одного элемента, неспособного образовать определённые сложные соединения, но нельзя было даже и подозревать возможности существования подобных элементов. Поэтому в периодической системе, данной мною в том виде, какой она сохранила и до сих пор, а именно при расположении по группам, рядам и периодам (см. 1-е издание книги моей «Основы химии», выпуск 3-й, вышедший в 1870 году, и статьи мои в журнале Русского Химического Общества 1869 г.), система элементов начиналась с группы I-й и с ряда 1-го, где помещался и до сих пор помещается водород, легчайший из элементов, судя по атомному весу, и легчайший газ, судя по плотности, - при данных давлении и температуре. Никогда мне в голову не приходило, что именно водородом должен начинаться ряд элементов, хотя легче его не было и ещё поныне между известными нет ни одного другого элементарного или сложного газа. Оставаясь на реальной почве, я решался предсказывать не только существование неизвестных элементов в среде известных, но и их свойства, как химические, так и физические, для них самих в свободном состоянии (простых тел) и для их соединений. Это, как известно, оправдалось последующими открытиями: галлия - Лекоком де Боабодраном, скандия - Нильсоном и, блистательнее всего, германия - Клементом Винклером, моим (ныне уже скончавшимся) хорошим другом и научным собратом. Предсказания эти были, по существу, тем, что называется в математике интерполированием, то есть нахождением, промежуточных точек на основании крайних, когда известен закон (или направление кривой, его выражающей), по которому точки следуют друг за другом. Поэтому оправдание предсказанного есть не что иное, как способ утверждения законности, и, следовательно, теперь можно смело полагаться на то, что в 1869-1871 гг. было только вероятным, и уверенно признавать, что химические элементы и их соединения находятся в периодической зависимости от атомных весов элементов. Экстраполировать, то есть находить точки вне пределов известного, нельзя было на основании ещё неупроченной законности. Но когда она утвердилась, можно на это решиться, и то, что дальше будет сказано об эфире, как элементе, гораздо более лёгком, чем водород, составляет такое экстраполирование. Решимость моя, при той осторожности, какая должна быть свойственна всякому деятелю науки, определяется двумя соображениями. Во-первых, я думаю, что откладывать - по старости лет - мне уже нельзя. А, во-вторых, за последнее время стали много и часто говорить о раздроблении атомов на более мелкие электроны, а мне кажется, что такое дробление должно считать не столько метафизическим, сколько метахимическим представлением, вытекающим из отсутствия каких-либо определённых соображений, касающихся химизма эфира, и мне захотелось на место каких-то смутных идей поставить более реальное представление о химической природе эфира, так как, пока что-нибудь не покажет либо превращения обычного вещества в эфир и обратно, либо превращения одного элемента в другой, всякое представление о дроблении атомов должно считать, по моему мнению, противоречащим современной научной дисциплине, а те явления, в которых признаётся дробление атомов, могут быть понимаемы, как выделение атомов эфира, всюду проникающего и признаваемого всеми. Словом, мне кажется, хотя рискованным, но своевременным говорить о химической природе эфира, тем более, что, сколько мне известно, об этом предмете ещё никто не говорил более или менее определённо. Когда я прилагал периодический закон к аналогам бора, алюминия и кремния, я был на 33 года моложе, во мне жила полная уверенность, что рано или поздно предвидимое должно непременно оправдаться, потому что мне всё там было ясно видно. Оправдание пришло скорее, чем я мог надеяться. Теперь же у меня нет ни прежней ясности, ни бывшей уверенности. Тогда я не рисковал, теперь рискую. На это надобна решимость. Она пришла, когда я видел радиоактивные явления, как объяснено в конце статьи, и когда я сознал, что откладывать мне уже невозможно и что, быть может, мои несовершённые мысли наведут кого-нибудь на путь более верный, чем тот возможный, какой представляется моему слабеющему зрению.
Первоначально я выскажусь о положении гелия, аргона и их аналогов в периодической системе элементов, потом о представляемом мною месте эфира в той же системе, а закончу несколькими беглыми замечаниями по поводу ожидаемых свойств эфира, основанных на понятии о нём, выводимом из его положения в этой системе.
Когда в 1895 г. дошли до меня первые сведения об аргоне и его беспримерной химической инертности (он ни с чем, ни при каких условиях не реагирует), мне казалось законным сомневаться в элементарной простоте этого газа, и я предполагал, что аргон можно считать полимером азота N3, как озон О3 есть полимер кислорода О2, но с тем различием, что озон происходит, как известно, из кислорода с присоединением - как говорится - тепла, то есть выделяет на данный свой вес более тепла, вступая в реакции, одинаковые с кислородом, чем кислород при том же весе, а аргон можно было представить, как азот, потерявший тепло, то есть ещё менее энергичный, чем обычный азот. Этот последний всегда служил в химии образцом химической инертности, то есть простым телом, очень трудно вступающим в реакции, и если бы представить, что его атомы, уплотняясь при полимеризации из N2 в N3, теряют теплоту, можно было ждать вещества ещё в высшей мере инертного, то есть ещё более сопротивляющегося воздействию других веществ. Так, кремнезём, происходящий с отделением тепла из кремния и кислорода, менее последних способен к химическим реакциям. Подобное же представление о природе аргона и о связи его с азотом высказано было затем известнейшим учёным Бертело. Теперь, уже давно, я отказался от такого мнения о природе аргона и соглашаюсь с тем, что это есть самостоятельное элементарное вещество, как это с самого начала утверждал Рамзай. Поводов к такой перемене было очень много. Главнейшими служили: 1) несомненная уверенность в том, что плотность аргона гораздо менее 21, а именно, вероятно, лишь немногим более 19, если плотность водорода принять за 1, а для N3 надо ждать плотности около 21, так как вес частицы N3=3·14=42, а плотность близка к половине веса частицы; 2) гелий, открытый тем же Рамзаем в 1895 г., представляет плотность, по водороду, около 2-х и обладает такою же полною химическою инертностью, как и аргон, а для него нельзя уже было реально мыслить о сложности частицы и ею объяснять инертность; 3) такую же инертность Рамзай и Траверс нашли для открытых ими неона, криптона и ксенона, и что пригодно было для аргона - было не применимо к ним; 4) самостоятельные особенности спектра каждого из указанных пяти газов, при полной их неизменности от ряда электрических искр, убеждали, что это целая семья элементарных газов, глубоко отличающихся от всех, до тех пор известных, своею полною химическою инертностью, и 5) постепенность и определённость физических свойств в зависимости от плотности и от веса атома 9 дополняют, благодаря трудам того же Рамзая, уверенность в том, что здесь дело идёт о простых телах, самобытность которых, при отсутствии химических превращений, и можно было утверждать только постоянством физических признаков. Укажем для примера на изменение температуры кипения (при давлении в 760 миллим.) или той, при которой достигается упругость, равная атмосферной, и могут существовать - при указанном давлении - как жидкая, так и газообразная фазы:
Гелий. |
Неон. |
Аргон. |
Криптон. |
Ксенон. |
||
Химич. знак и состав частицы |
He |
Ne |
Ar |
Kr |
Xe |
|
Вес атома и частицы, считая O = 16 10 |
4,0 |
19,9 |
38 11 |
81,8 |
128 |
|
Наблюдённая плотность, считая H = 1 |
2,0 |
9,95 |
18,8 |
40,6 |
63,5 |
|
Наблюденная температура кипения |
ниже -262° |
-239° |
-187° |
-152° |
-100° |
Это напоминает то, что известно для галоидов:
Фтор. |
Хлор. |
Бром. |
Иод. |
||
Состав частицы |
F2 |
Cl2 |
Br2 |
J2 |
|
Вес частицы |
38 |
70,9 |
159,9 |
254 |
|
Плотность газа или пара |
19 |
35,5 |
80 |
127 |
|
Температура кипения |
-187° |
-34° |
+58°,7 |
+183°,7 |
В обеих группах температура кипения явно возрастает по мере увеличения атомного или частичного веса 12. Когда же получилось убеждение в элементарности аналогов аргона и в том, что все эти газы отличаются по своей исключительной инертности, стало необходимым ввести эту группу аналогов в систему элементов и притом отнюдь не в одну из известных групп элементов, а в особую, потому что здесь проявились новые, совершенно до сих пор неизвестные химические свойства, а периодическая система и сводит в одну группу элементы, сходственные первее всего в их коренных химически свойствах, исходя не из этих свойств, а из величины атомного веса, на взгляд - до закона периодичности - не связанного с этими свойствами никакими прямыми связями. Испытание было критическим как для периодической системы, так и для аналогов аргона. Оба новичка с блеском выдержали это испытание, то есть атомные веса (по плотности), из опыта найденные для гелия и его аналогов, оказались прекрасно отвечающими периодической законности.
Хотя я должен предполагать, что сущность периодической системы известна читателям, но всё же считаю неизлишним напомнить о том, что, располагая элементы по величине их атомного веса, легко заметить, что не только сходственные изменения химических свойств периодически повторяются, но и порядок, отвечающий возрастанию атомных весов, оказывается точно отвечающим порядку по способности элементов к соединениям с разными другими элементами, как видно из простейшего примера. По величине атомного веса (отбрасывая мелкие дроби - ради наглядности) все элементы, имеющие атомные веса не менее 7 и не более 35,5, располагаются в 2 ряда:
Литий Li = 7,0 |
Бериллий Ве = 9,1 |
Бор В = 11,0 |
Углерод С = 12,0 |
Азот N = 14,0 |
Кислород O = 16,0 |
Фтор F = 19,0 |
|
Na = 23,0 Натрий |
Mg = 24,3 Магний |
Al = 27,0 Алюминий |
Si = 28,4 Кремний |
Р = 31,0 Фосфор |
S = 32,1 Сера |
Cl = 35,5 Хлор |
Каждая пара представляет сходство коренных свойств, но особенно видно это по высшим солеобразным окислам, то есть таким, которые содержат наиболее кислорода и способны давать соли. Они для элементов последнего ряда:
Na2O MgO A12O3 SiO2 P2O5 SO3 Cl2O7
и если состав всех представить с двумя атомами элемента:
Na2O Mg2O2 A12O3 Si2O4 P2O5 S2O6 Cl2O7.
то тотчас видим, что порядок по величине атомных весов совершенно точно отвечает арифметическому порядку чисел от 1 до 7, а потому, не входя в рассмотрение усложняющих обстоятельств (например, водородных соединений, перекисей, различия больших и малых периодов, металлического характера, физических свойств и т. п.), естественно было назвать группы аналогов цифрами, означаемыми обыкновенно римскими цифрами, от I до VII, и если говорится, что фосфор относится к V группе, это значит, что он даёт, как высший солеобразный окисел, Р2O5. Если же аналоги аргона вовсе не дают соединений, то очевидно, что их нельзя включить ни в одну из групп ранее известных элементов, и для них должно открыть особую группу нулевую 13, чем уже сразу выразится индифферентность этих элементов, а при этом неизбежно было ждать для элементов этой группы атомных весов меньших, чем у таких элементов I группы, каковы: Li, Na, К, Rb и Cs, но больших, чем для соответственных галоидов: F, Сl, Br, J 14. Это априорное суждение было оправдано действительностью, как видно из следующего сопоставления:
Галоиды. |
Аналоги аргона. |
Щелочные металлы. |
|
- |
Не = 4,0 |
Li = 7,03 |
|
F = 19,0 |
Ne = 19,9 |
Na = 23,05 |
|
Cl = 35,45 |
Ar = 38 |
К = 39,1 |
|
Br = 79,95 |
Кr = 81,8 |
Rb = 85,4 |
|
J = 127 15 |
Xe=128 |
Cs = 132,9 |
Пяти давно известным щелочным металлам ответило и пять вновь найденных аналогов аргона, и в атомных весах ясно виден один и тот же общий закон периодичности. Но галоиды и щелочные металлы представляют наиболее сильно развитую способность реагировать и притом, так сказать, до некоторой степени противоположную; одни представляют особо развитую способность реагировать со всеми металлами, другие с металлоидами; первые являются на аноде, вторые на катоде и т. д. Поэтому их необходимо поставить по краям периодической системы на концах периодов, что и выражается в наиболее полной форме периодической системы.
Хотя такое распределение элементов лучше всего выражает периодический закон, но нагляднее нижеследующее, помещенное на стр. 25, распределение по группам и рядам, где под знаками x и y я уже означил ожидаемые ныне мною, ещё неизвестные элементы, с атомными весами меньшими, чем у водорода.
Сводя вышесказанное о группе аргоновых элементов, должно прежде всего видеть, что такой нулевой группы, какая им соответствует, невозможно было предвидеть при том состоянии знаний, какое было при установке в 1869 году периодической системы, и хотя у меня мелькали мысли о том, что раньше водорода можно ждать элементов, обладающих атомным весом менее 1, но я не решался высказываться в этом смысле по причине гадательности предположения и особенно потому, что тогда я остерегся испортить впечатление предполагавшейся новой системы, если её появление будет сопровождаться такими предположениями, как об элементах легчайших, чем водород. Да притом в те времена мало кто интересовался природою эфира, и к нему не относили электрических явлений, что в сущности и придало эфиру особый и новый интерес. Теперь же, когда стало не подлежать ни малейшему сомнению, что пред той I группой, в которой должно помещать водород, существует нулевая группа, представители которой имеют веса атомов меньшие, чем у элементов I группы, мне кажется невозможным отрицать существование элементов более лёгких, чем водород 16. Из них обратим внимание сперва на элемент 1-го ряда 0-й группы. Его означим через y. Ему, очевидно, будут принадлежать коренные свойства аргоновых газов. Но прежде всего следует получить понятие о его атомном весе. Для получения приближённого понятия о нём, обратимся к изменяющемуся отношению между весами атомов двух элементов той же группы из соседних рядов. Начиная с Се=140 и Sn=119 (здесь это отношение равно 1,18), отношение это при переходе в низшие группы и ряды явно и довольно правильно (судя по мере возможных погрешностей) возрастает по мере уменьшения атомного веса сравниваемых элементов. Но мы начнём расчёт лишь с Cl =35,45, потому, во-первых, что интерес в искомом смысле может быть только для легчайших элементов, во-вторых, потому, что для этих последних отыскиваемое отношение находится точнее, и, в-третьих, потому, что хлором кончаются малые периоды типических элементов (где нет VIII группы и по концам малых периодов стоят щелочные металлы и галоиды), среди которых должны быть и элементы более лёгкие, чем водород. Так как атомный вес хлора=35,45, а фтора=19,0, то отношение Cl:F=35,45:19,0=1,86, то точно так же находим:
Группа VII |
Cl : F =1,86 |
|
" VI |
S : O = 2,00 |
|
" V |
P : N = 2,21 |
|
" IV |
Si : C =2,37 |
|
" III |
Al : B = 2,45 |
|
" II |
Mg : Be = 2,67 |
|
" I |
Na : Li = 3,28 |
|
" 0 |
Ne : He = 4,98 |
Из этого можно сделать заключение, что находимое отношение в данном ряде явно и последовательно увеличивается при переходе от высших групп к низшим, и притом для I и 0-й группы оно изменяется наиболее быстро. Поэтому должно полагать, что отношение He:y будет значительно более отношения Li:H, а это последнее=6,97, следовательно, отношение He:y будет по крайней мере=10, а, вероятно, что оно будет ещё значительнее. А потому, так как атомный вес He=4,0, то атомный вес y будет не более 4,0/10, то есть не более 0,4, а вероятно, что ещё менее этого. Таким аналогом гелия, быть может, должно счесть короний, которого спектр, ясно видимый в солнечной короне выше, то есть дальше от солнца, чем спектр водорода, представляет простоту, подобную простоте спектра гелия, что даёт некоторое ручательство за то, что он отвечает газу, сходному с гелием, предугаданному Локьером и др. по спектру. Юнг и Харкнес при солнечном затмении 1869 года, независимо друг от друга, установили спектр этого, ещё доныне воображаемого, элемента, который особо характеризуется ярко-зелёною линиею с длиной волны 531,7 миллионных миллиметра (или µµ, то есть тысячных микрона, по означению Ролланда 5317, по шкале Кирхгофа 1474), как гелий характеризуется жёлтою линиею: 587 µµ. Назини, Андреоли и Сальвадори, исследуя (1898) вулканические газы, полагают, судя по спектру, что в них видели следы корония. А так как линии корония удалось наблюдать даже на расстоянии многих радиусов солнца выше его атмосферы и протуберанций, там, где и водородных линий уже не видно, то коронию надо приписать меньший вес атома и меньшую плотность, чем водороду. А так как для гелия, аргона и их аналогов, судя по отношению двух теплоёмкостей (при постоянном давлении и при постоянном объёме), должно думать, что частица, то есть количество вещества, занимающее по закону Авогадро-Жерара объём, равный с объёмом 2-х весовых частей водорода, содержит лишь один атом (как у ртути, кадмия и большинства металлов), то если 0,4 есть наибольший вес атома элемента y, то плотность этого газа, по отношению к водороду, должна быть менее 0,2. Следовательно частицы этого газа будут - по расчётам кинетической теории газов - двигаться в 2,24 раза быстрее водорода, и если уже для водорода и даже гелия скорость собственного поступательного движения частиц, как старались показать Стоней (Stoney) в 1894-1898 гг. (The Astrophysical Journal, VII, стр. 38) и Роговский в 1899 г. («Известия Р. Астрономического общества», вып. VII, стр. 10), такова, что их частицы могут выскакивать из сферы притяжения земли 17, то газ, которого плотность, по крайней мере, в 5 раз меньше, чем водорода, подавно должно считать возможным лишь в атмосфере светила столь громадной массы, как солнечная. Но всё же этот y, то есть короний или иной газ с плотностью около 0,2 - по отношению к водороду, не может быть никоим образом мировым эфиром; его плотность (по водороду) для этого высока, он побродит, быть может, и долго, в мировых полях, вырвется из уз земли, опять в них случайно ворвётся, но всё же из сферы притяжения солнца не вырвется, а, конечно, между звёздами найдутся и помассивнее нашей центральной звезды. Атомы же эфира надо представить не иначе, как способными преодолевать даже солнечное притяжение, свободно наполняющими всё пространство и везде могущими проникать. Этот элемент y, однако, необходим для того, чтобы умственно подобраться к тому наилегчайшему, а потому и наиболее быстро движущемуся элементу x, который, по моему разумению, можно считать эфиром.
(Фотовоспроизведение таблицы, «Попытка химического понимания мирового эфира», СПб., 1905, стр. 25)
Для гелия, аргона и их аналогов должно было признать сверх обычных групп - химически действующих элементов - нулевую группу инертных - в химическом смысле - элементов, ставших осязаемыми, благодаря образцовой наблюдательности Рамзая. Теперь они стали всем доступными газами, чуждыми химических сноровок, то есть отличающимися специфическим свойством не притягиваться ни друг к другу, ни к другим атомам, когда расстояния малы, но всё же обладающих, конечно, весомостью, то есть подчиняющихся законам того механического притяжения на расстояниях, которое лишено следов специфически химического притяжения, как можно видеть из опытов Ньютона и Бесселя с маятниками из разных веществ. Всемирное тяготение, так или иначе, ещё можно надеяться понять при помощи давлений или ударов, производимых со всех сторон, но химическое тяготение, начинающее действовать лишь при ничтожно малых расстояниях, останется ещё долго - после постижения причины тяготения - элементарным, исходным и непонятным людям, тем более, что оно для разных атомов весьма неодинаково. Задача о мировом эфире, более или менее тесно связанная с задачею тяготения, делается проще, когда от неё совершенно отнять вопрос о химическом притяжении атомов эфира, а, помещая его в нулевую группу, мы этого и достигаем. Но в этой группе, за элементом y, не остаётся места для ещё более лёгкого элемента, каким и надо представить эфир, если ряды элементов начинать с 1-го, то есть с того, где водород. Поэтому я прибавляю в последнем видоизменении распределения элементов по группам и рядам не только нулевую группу, но и нулевой ряд, и на место в нулевой группе и в нулевом ряде помещён элемент x 18, который и решаюсь считать, во-первых, наилегчайшим из всех элементов, как по плотности, так и по атомному весу, во-вторых, наибыстрее движущимся газом, в-третьих, наименее способным к образованию с какими-либо другими атомами или частицами определённых сколько-либо прочных соединений, и, в-четвёртых, - элементом, всюду распространённым и всё проникающим, как мировой эфир. Конечно, это есть гипотеза, но вызываемая не одними «рабочими» потребностями, а прямо - реальным стремлением замкнуть реальную периодическую систему известных химических элементов пределом или гранью низшего размера атомов, чем я не хочу и не могу считать простой нуль - массы. Не представляя себе возможности сложения известных элементов из водорода, я не могу считать их и сложенными из элемента x, хотя он легче всех других. Не могу допустить этой мысли не только потому, что ничто не наводит мыслей на возможность превращения одних элементов в другие, и если бы элементы были сложными телами, так или иначе это отразилось бы в опытах, но особенно потому, что не видно при допущении сложности элементов никаких выгод или упрощения в понимании тел и явлений природы. А когда мне говорят, что единство материала, из которого сложились элементы, отвечает стремлению к единству во всём, то я свожу это стремление к тому, с чего начата эта статья, то есть к неизбежной необходимости отличить в корне вещество, силу и дух, и говорю, что зачатки индивидуальности, существующие в материальных элементах, проще допустить, чем в чём-либо ином, а без развития индивидуальности никак нельзя признать никакой общности. Словом, я не вижу никакой цели в преследовании мысли об единстве вещества, а вижу ясную цель как в необходимости признания единства мирового эфира, так и в реализировании понятия о нём, как о последней грани того процесса, которым сложились все другие атомы элементов, а из них все вещества. Для меня этот род единства гораздо больше говорит реальному мышлению, чем понятие о сложении элементов из единой первичной материи. Задачу тяготения и задачи всей энергетики нельзя представить реально решёнными без реального понимания эфира, как мировой среды, передающей энергию на расстояниях. Реального же понимания эфира нельзя достичь, игнорируя его химизм и не считая его элементарным веществом; элементарные же вещества ныне немыслимы без подчинения их периодической законности. Поэтому я постараюсь заключить свою попытку такими следствиями выше высказанного понятия о природе эфира, которые представляют возможность опытного, то есть в конце концов реалистического изучения этого вещества, хотя его, быть может, и нельзя ни уединить, ни с чем-либо прочно соединить, ни как-либо уловить.
Подобные документы
Характеристика этапов и особенностей переведения установки метилтретбутилового эфира на выпуск этилтретбутилового эфира. Изучение условий синтеза этилтретбутилового эфира. Разработка технологической схемы производства ЭТБЭ. Нормы технологического режима.
презентация [165,5 K], добавлен 01.12.2014Строение и схема получения малонового эфира. Синтез ацетоуксусного эфира из уксусной кислоты, его использование для образования различных кетонов. Таутомерные формы и производные барбитуровой кислоты. Восстановление a,b-Непредельных альдегидов и кетонов.
лекция [270,8 K], добавлен 03.02.2009Достижения Московских нефтехимических НИИ по внедрению диметилового эфира в качестве альтернативы дизельному топливу. Исследование каталитических систем на основе аморфного алюмофосфата с SiO2 в процессе дегидратации метанола до диметилового эфира.
дипломная работа [3,6 M], добавлен 04.01.2009Формирование стабильных желтых корриноидов. Структура и основные электронные свойства гептаметилового эфира дициано- и аквацианокобириновой кислот и их стабильных желтых форм гептаметилового эфира. Особенности проведения спектрофотометрического анализа.
реферат [2,5 M], добавлен 04.04.2015Класификация дикарбонильных соединений, физические свойства альдегидо- и кетокислот. Ацетоуксусная кислота, ее эфир, химические свойства. Получение опытным путем натриевого производного ацетоуксусного эфира, исследование ее взаимодействия с веществами.
курсовая работа [71,7 K], добавлен 07.06.2011Свойства диэтилового эфира малеиновой кислоты. Практическое применение диэтилмалеата - использование в качестве органического растворителя. Методика синтеза. Дикарбоновые кислоты. Реакция этерификации. Механизм этерификации. Метод "меченых атомов".
курсовая работа [585,5 K], добавлен 17.01.2009Рассмотрение методов проведения реакций ацилирования (замещение водорода спиртовой группы на остаток карбоновой кислоты). Определение схемы синтеза, физико-химических свойств метилового эфира монохлоруксусной кислоты и способов утилизации отходов.
контрольная работа [182,3 K], добавлен 25.03.2010Синтез алкилроданидов. Синтез ароматических роданидов. Синтез роданоспиртов и роданоэфиров. Свойства тиоцианатов. Экспериментальная часть. Реагенты. Лабораторная посуда и оборудование. Методика синтеза. Органические тиоцианаты в народном хозяйстве.
курсовая работа [96,3 K], добавлен 21.11.2008Химическое строение - последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния. Связь атомов, входящих в состав органических соединений; зависимость свойств веществ от вида атомов, их количества и порядка чередования.
презентация [71,8 K], добавлен 12.12.2010Грань между органическими и неорганическими веществами. Синтезы веществ, ранее вырабатывавшихся только живыми организмами. Изучение химии органических веществ. Идеи атомистики. Сущность теории химического строения. Учение об электронном строении атомов.
реферат [836,2 K], добавлен 27.09.2008