Обмен углеводов
Роль в общем метаболизме катаболизма углеводов. Процесс фосфоролиза, гидролиза и гидролитического распада гликогена. Этапы процесса гликолиза. Фосфорилирование глюкозы. Аэробный обмен пировиноградной кислоты и стадии окислительного декарбоксилирования.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.09.2017 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Контрольная работа
на тему: Обмен углеводов
Содержание
1. Катаболизм углеводов
2. Гликолиз
3. Аэробный обмен ПВК
1. Катаболизм углеводов
Хотя обмен углеводов в организме по сравнению с обменом нуклеиновых кислот и белков («ядро метаболизма») занимает подчиненное положение, тем не менее, роль его в общем метаболизме весьма значительна. По существу, именно в химических связях между атомами в молекулах углеводов в первую очередь консервируется энергия света или энергия, выделяющаяся при окислении неорганических соединений при первичном биосинтезе органического вещества в природе. В процессе жизнедеятельности органических форм запасенная впрок энергия высвобождается из молекул углеводов и служит для поддержания на должном уровне многих жизненных функций.
Нередко функцию углеводов в обмене веществ сводят только к энергетическому обеспечению химических реакций. Это далеко не так. Бесспорно, что при распаде (окислении) углеводов в организме идет высвобождение энергии, которая запасается далее в макроэргических связях АТФ, и что АТФ, синтезированная сопряженно с окислением углеводов, поставляет энергию для осуществления химических процессов и для других нужд организма. Однако углеводы выполняют еще одну важнейшую функцию в процессе обмена веществ - они являются источником большого числа органических соединений, которые служат исходными продуктами для биосинтеза липидов, белков и нуклеиновых кислот. Распадаясь теми или иными путями, углеводы поставляют разнообразные метаболиты, преобразование которых приводит к созданию необходимого фонда мономеров, потребных для новообразования биополимеров.
Таким образом, в углеводах, образующихся в процессе первичного биосинтеза органического вещества, связывается углерод и запасается энергия. Распад углеводов обеспечивает углеродом и энергией процессы построения всех других органических соединений.
Запасным полисахаридом в тканях человека является гликоген. Процесс распада гликогена называется гликогенолизом. Этот процесс может осуществляться либо путём гидролиза, либо фосфоролиза.
Фосфоролиз является основным путём распада гликогена, его катализирует фермент гликогенфосфорилаза, относящийся к классу трансфераз. Гликогенфосфорилаза отщепляет остатки глюкозы с нередуцирующего конца гликогена и переносит их на молекулу фосфорной кислоты с образованием глюкозо-1-фосфата:
Глюкозо-1-фосфат быстро изомеризуется, превращаясь в глюкозо-6-6фосфат, который в печени гидролизуется фосфатазами до глюкозы и фосфорной кислоты:
Процесс фосфоролиза гликогена тонко регулируется. Регуляция активности гликогенфосфорилазы носит каскадный характер, в котором можно выделить несколько видов регуляции ферментативной активности:
гормональная (глюкагон в печени, адреналин в мышцах);
аллостерическая;
протеинкиназные реакции (в данном случае -- фосфорилирование бокового радикала серина в гликогенфосфорилазе).
Активность мышечной фосфорилазы увеличивается при определенной концентрации АМФ и ацетилхолина, а также в присутствии катионов кальция и натрия.
Снижение скорости фосфоролиза происходит при уменьшении запасов гликогена и фосфорной кислоты, а также при увеличении концентрации глюкозо-6-фосфата. Механизмы, снижающие скорость фосфоролиза гликогена, предохраняют организм от больших трат углеводных запасов (гликогена), которые могли бы привести к недостатку глюкозы, необходимой для работы головного мозга и сердечной мышцы.
Гидролиз гликогена катализируется ферментами амилазами, которые относятся к классу гидролаз. В результате гидролиза гликоген расщепляется до свободной глюкозы:
Гидролитический распад гликогена происходит обычно в печени. Глюкоза, полученная при фосфоролизе и гидролизе гликогена, поступает в различные ткани и органы организма, где подвергается дальнейшему распаду. Распад глюкозы возможен двумя путями. Один из них заключается в распаде шестиуглеродной молекулы глюкозы на две трехуглеродные молекулы. Этот путь называется дихотомическим распадом глюкозы. При реализации второго пути происходит потеря молекулой глюкозы второго атома углерода, что приводит к образованию пентозы; этот путь носит название апотомического пути.
2. Гликолиз
Дихотомический распад глюкозы может происходить как в анаэробных (без присутствия кислорода), так и в аэробных (в присутствии кислорода) условиях. При распаде глюкозы в анаэробных условиях в результате процесса молочнокислого брожения образуется молочная кислота. Иначе этот процесс называется гликолизом. Гликолиз (фосфотриозный путь, или шунт Эмбдена -- Мейерхофа) -- анаэробный ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ и завершающийся образованием пировиноградной кислоты (пирувата) -- аэробный гликолиз, или молочной кислоты (лактата) -- анаэробный гликолиз. Гликолиз является основным путём катаболизма глюкозы в организме животных. Название «гликолиз» происходит от греч. glykos -- сладкий и lysis -- растворение.
Гликолитический путь представляет собой 10 последовательных реакций, каждая из которых катализируется отдельным ферментом.
Процесс гликолиза условно можно разделить на два этапа. Первый этап, протекающий с расходом энергии 2 молекул АТФ, заключается в расщеплении молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата. На втором этапе происходит НАД-зависимое окисление глицеральдегид-3-фосфата, сопровождающееся синтезом АТФ. Сам по себе гликолиз является полностью анаэробным процессом, то есть не требует для протекания реакций присутствия кислорода.
Гликолиз -- один из древнейших метаболических процессов, известный почти у всех живых организмов. Предположительно, гликолиз появился более 3,5 млрд лет назад у первичных прокариотов.
В клетках эукариотических организмов десять ферментов, катализирующих распад глюкозы до ПВК, находятся в цитозоле, все остальные ферменты, имеющие отношение к энергетическому обмену, -- в митохондриях. Поступление глюкозы в клетку осуществляется двумя путями: натрий-зависимый ко-транспорт (преимущественно для энтероцитов и эпителия почечных канальцев) и облегчённая диффузия глюкозы с помощью белков-переносчиков. Работа этих белков-транспортёров контролируется гормонами и, в первую очередь, инсулином. Сильнее всего инсулин стимулирует транспорт глюкозы в мышцах и жировой ткани.
Результатом гликолиза является превращение одной молекулы глюкозы в две молекулы пировиноградной кислоты (ПВК) и образование двух восстановительных эквивалентов в виде кофермента НАД•H.
Полное уравнение гликолиза имеет вид:
Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД•Н + 2ПВК + 2АТФ + 2H2O + 2Н+.
При отсутствии или недостатке в клетке кислорода пировиноградная кислота подвергается восстановлению до молочной кислоты, тогда общее уравнение гликолиза будет таким:
Глюкоза + 2АДФ + 2Фн = 2лактат + 2АТФ + 2H2O.
То есть при анаэробном расщеплении одной молекулы глюкозы суммарный чистый выход АТФ составляет две молекулы, полученные в реакциях субстратного фосфорилирования АДФ.
У аэробных организмов конечные продукты гликолиза подвергаются дальнейшим превращениям в биохимических циклах, относящихся к клеточному дыханию. В итоге после полного окисления всех метаболитов одной молекулы глюкозы на последнем этапе клеточного дыхания -- окислительном фосфорилировании, происходящем на митохондриальной дыхательной цепи в присутствии кислорода, -- дополнительно синтезируются ещё 34 или 36 молекулы АТФ на каждую молекулу глюкозы.
Первой реакцией гликолиза является фосфорилирование молекулы глюкозы, происходящее при участии тканеспецефичного фермента гексокиназы с затратой энергии 1 молекулы АТФ; образуется активная форма глюкозы -- глюкозо-6-фосфат (Г-6-Ф):
Для протекания реакции необходимо наличие в среде ионов Mg2+, с которым комплексно связывается молекула АТФ. Эта реакция необратима и является первой ключевой реакцией гликолиза.
Фосфорилирование глюкозы преследует две цели: во-первых, из-за того, что плазматическая мембрана, проницаемая для нейтральной молекулы глюкозы, не пропускает отрицательно заряженные молекулы Г-6-Ф, фосфорилированная глюкоза оказывается запертой внутри клетки. Во-вторых, при фосфорилировании глюкоза переводится в активную форму, способную участвовать в биохимических реакциях и включаться в метаболические циклы. Фосфорилирование глюкозы -- это единственная реакция в организме, в которой глюкоза участвует как таковая. Печёночный изофермент гексокиназы -- глюкокиназа -- имеет важное значение в регуляции уровня глюкозы в крови.
В следующей реакции (2) ферментом фосфоглюкоизомеразой Г-6-Ф превращается во фруктозо-6-фосфат (Ф-6-Ф):
Энергия для этой реакции не требуется, и реакция является полностью обратимой. На данном этапе в процесс гликолиза может также включаться путём фосфорилирования и фруктоза.
Далее почти сразу друг за другом следуют две реакции: необратимое фосфорилирование фруктозо-6-фосфата (3) и обратимое альдольное расщепление образовавшегося фруктозо-1,6-бифосфата (Ф-1,6-бФ) на две триозы (4). катаболизм углеводы аэробный обмен
Фосфорилирование Ф-6-Ф осуществляется фосфофруктокиназой с затратой энергии ещё одной молекулы АТФ; это вторая ключевая реакция гликолиза, её регуляция определяет интенсивность гликолиза в целом.
Альдольное расщепление Ф-1,6-бФ происходит под действием альдолазы фруктозо-1,6-бифосфата:
В результате четвёртой реакции образуются дигидроксиацетонфосфат и глицеральдегид-3-фосфат, причём первый почти сразу под действием фосфотриозоизомеразы переходит во второй (5), который и участвует в дальнейших превращениях:
Каждая молекула глицеральдегидфосфата окисляется НАД+ в присутствии дегидрогеназы глицеральдегидфосфата до 1,3-дифосфоглицерата (6):
Далее с 1,3-дифосфоглицерата, содержащего макроэргическую связь в 1 положении, ферментом фосфоглицераткиназой на молекулу АДФ переносится остаток фосфорной кислоты (реакция 7) -- образуется молекула АТФ:
Это первая реакция субстратного фосфорилирования. С этого момента процесс расщепления глюкозы перестаёт быть убыточным в энергетическом плане, так как энергетические затраты первого этапа оказываются компенсированными: синтезируются 2 молекулы АТФ (по одной на каждый 1,3-дифосфоглицерат) вместо двух потраченных в реакциях 1 и 3. Для протекания данной реакции требуется присутствие в цитозоле АДФ, то есть при избытке в клетке АТФ (и недостатке АДФ) её скорость снижается. Поскольку АТФ, не подвергающийся метаболизму, в клетке не депонируется, а просто разрушается, то эта реакция является важным регулятором гликолиза.
Затем последовательно: фосфоглицеролмутаза образует 2-фосфоглицерат (8):
Енолаза образует фосфоенолпируват (9):
И, наконец, происходит вторая реакция субстратного фосфорилирования АДФ с образованием енольной формы пирувата и АТФ (10):
Реакция протекает под действием пируваткиназы. Это последняя ключевая реакция гликолиза. Изомеризация енольной формы пирувата в пируват происходит неферментативно.
С момента образования Ф-1,6-бФ с выделением энергии протекают только реакции 7 и 10, в которых и происходит к субстратное фосфорилировнаие АДФ.
Окончательная судьба пирувата и НАД•H, образованных в процессе гликолиза зависит от организма и условий внутри клетки, в особенности от наличия или отсутствия кислорода или других акцепторов электронов.
У анаэробных организмов пируват и НАД•H далее подвергаются брожению. При молочнокислом брожении, например, у бактерий, пируват под действием фермента лактатдегидрогеназы восстанавливается в молочную кислоту. У дрожжей сходным процессом является спиртовое брожение, где конечными продуктами будут этанол и углекислый газ.
У аэробов пируват, как правило, попадает в цикл трикарбоновых кислот (цикл Кребса), а НАД•H в итоге окисляется кислородом на дыхательной цепи в митохондриях в процессе окислительного фосфорилирования.
Несмотря на то, что метаболизм человека преимущественно аэробный, в интенсивно работающих скелетных мышцах наблюдается анаэробное окисление. В условиях ограниченного доступа кислорода пируват превращается в молочную кислоту, как происходит при молочнокислом брожении у многих микроорганизмов:
ПВК + НАД•Н + H+ > лактат + НАД+.
Боли в мышцах, возникающие через некоторое время после непривычной интенсивной физической нагрузки, связаны именно с накоплением в них молочной кислоты.
Образование молочной кислоты является тупиковой ветвью метаболизма, но не является конечным продуктом обмена веществ. Под действием лактатдегидрогеназы молочная кислота окисляется снова, образуя пируват, который и участвует в дальнейших превращениях.
3. Аэробный обмен ПВК
В аэробных условиях пировиноградная кислота окисляется; этот процесс называется окислительным декарбоксилированием пировиноградной кислоты. Катализирует этот процесс мультиэнзимный комплекс, который называется пируватдегидрогеназным комплексом. В состав этого комплекса входят три фермента и пять коферментов.
Первый этап аэробного превращения ПВК заключается в ее декарбоксилировании, катализируемом пируватдекарбоксилазой (E1), коферментом которой является тиаминпирофосфат. В результате образуется оксиэтильный радикал, ковалентно связанный с коферментом.
Фермент, ускоряющий второй этап окислительного декарбок-силирования ПВК, -- липоат-ацетилтрансфераза содержит в своем составе два кофермента: липоевую кислоту и коэнзим A (KoASH). Происходит окисление оксиэтильного радикала в ацетильный, который сначала акцептируется липоевой кислотой, а затем переносится на KoASH. Результатом второго этапа является образование ацетил-КоА и дегидролипоевой кислоты:
Заключительную стадию окислительного декарбоксилирования ПВК катализирует дигидролипоилдегидрогеназа, коферментом которой является ФАД. Кофермент отщепляет два атома водорода от дигидролипоевой кислоты, тем самым воссоздавая первоначальную структуру данного кофермента:
Конечным акцептором атомов водорода является НАД:
ФАД·2Н + НАД+ > ФАД + НАДН +Н+
Суммарная схема процесса может быть представлена в виде:
Ацетил-КоА представляет собой соединение с макроэргической связью, иначе его можно назвать активной формой уксусной кислоты. Освобождение коэнзима А от ацетильного радикала происходит при включении его в амфиболический цикл, который называется циклом ди- и трикарбоновых кислот.
Размещено на Allbest.ru
Подобные документы
Биологическая роль углеводов, действие ферментов пищеварительного тракта на углеводы. Процесс гидролиза целлюлозы (клетчатки), всасывание продуктов распада углеводов. Анаэробное расщепление и реакция гликолиза. Пентозофосфатный путь окисления углеводов.
реферат [48,6 K], добавлен 22.06.2010Строение углеводов. Механизм трансмембранного переноса глюкозы и других моносахаридов в клетке. Моносахариды и олигосахариды. Механизм всасывания моносахаридов в кишечнике. Фософорилирование глюкозы. Дефосфорилирование глюкозо-6-фосфата. Синтез гликогена.
презентация [1,3 M], добавлен 22.12.2014Классификация углеводов (моносахариды, олигосахариды, полисахариды) как самых распространенных органических соединений. Химические свойства вещества, его роль в питании как основного источника энергии, характеристика и место глюкозы в жизни человека.
реферат [212,0 K], добавлен 20.12.2010Углеводы, их химический состав, биологическая роль, характеристика классов, процесс обмена в организме при мышечной деятельности, расщепление в процессе пищеварения и их всасывание в кровь. Уровень глюкозы в крови, его регуляция и влияние на организм.
реферат [4,1 M], добавлен 18.11.2009Глюкоза как основной энергетический субстрат, ее источники для организма. Взаимосвязь между процессами гликолиза в мышечной ткани и глюконеогенезом в печени. Окислительное декарбоксилирование пировиноградной кислоты. Сахарный диабет: этиология, патогенез.
презентация [1,6 M], добавлен 30.11.2013Аэробное окисление углеводов - основной путь образования энергии для организма. Клеточное дыхание - ферментативный процесс, результате которого, молекулы углеводов, жирных кислот и аминокислот расщепляются, освобождается биологически полезная энергия.
реферат [20,9 K], добавлен 17.01.2009Оротовая кислота как витаминоподобное вещество, влияющее на обмен веществ и стимулирующее рост живых организмов. Химическая структура. Конденсация ацетоуксусного эфира с мочевиной. Влияние оротовой кислоты на белковый обмен. Применение кислоты в медицине.
презентация [224,7 K], добавлен 10.12.2015Общая формула углеводов, их первостепенное биохимическое значение, распространенность в природе и роль в жизни человека. Виды углеводов по химической структуре: простые и сложные (моно- и полисахариды). Произведение синтеза углеводов из формальдегида.
контрольная работа [602,6 K], добавлен 24.01.2011Значение ионофоров в исследовании функционирования биологических мембран, их химическая природа и классификация. Стадии механизма переноса ионов. Препараты, функционально разобщающие окислительное фосфорилирование, их назначение и механизм действия.
доклад [496,3 K], добавлен 16.12.2009Формула углеводов, их классификация. Основные функции углеводов. Синтез углеводов из формальдегида. Свойства моносахаридов, дисахаридов, полисахаридов. Гидролиз крахмала под действием ферментов, содержащихся в солоде. Спиртовое и молочнокислое брожение.
презентация [487,0 K], добавлен 20.01.2015