Исследование формирования тригалогенметанов
Изучение особенностей обеззараживания воды хлором или хлорсодержащими реагентами как наиболее широко распространенного в мире метода обеспечения безопасности питьевой воды в эпидемическом отношении. Преимущества этого метода и эффект его последействия.
Рубрика | Химия |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 21,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Исследование формирования тригалогенметанов в системе водоснабжения Багдада
Амин Абдулфаттах Ахмад Амин
Обеззараживание воды хлором или хлорсодержащими реагентами - наиболее широко распространенный в мире метод обеспечения безопасности питьевой воды в эпидемическом отношении. Преимущества этого метода заключаются в надежности, дешевизне, достаточно высокой эффективности, а также важным эффектом последействия [1, 2]. Эффект последействия, который заключается в поддержании на всем протяжении распределительной сети остаточных количеств дезинфектанта, особенно важен при длительном нахождении воды в водопроводной сети. Повышенные температуры воды (свыше 20 - 25 єС) также способствуют ускоренному размножению микроорганизмов в водопроводной воде. Именно эти особенности хлорирования делают его фактически безальтернативным методом обеззараживания питьевой воды в Багдаде (Ирак).
Население Багдада составляет около 6 млн. чел, хозяйственно-питьевое водоснабжение города обеспечивается восемью основными водоочистными станциями и рядом малых очистных сооружений. Основным источником водоснабжения Багдада являются поверхностные воды реки Тигр и подземные воды из инфильтрационных водозаборов, находящиеся под сильным влиянием речной воды. Общая производительность всех водоочистных станций (ВОС) - 2 млн. м3/сут; суммарный объем регулирующих и запасных емкостей составляет 1,4 млн. м3, а протяженность водопроводной сети - 8000 км.
На всех ВОС применяется традиционная схема очистки, включающая коагуляцию, флокуляцию (осаждение), фильтрацию и хлорирование. В качестве коагулянта используется сульфат алюминия, а обеззараживающих реагентов - гипохлориты кальция и натрия.
Несмотря на высокую эффективность, хлорирование природной воды связано с образованием многочисленных вторичных загрязнителей - галогенорганических соединений, источниками которых являются природные и антропогенные органические вещества [3, 4]. Основными побочными продуктами хлорирования являются тригалогенметаны - хлороформ или трихлорметан (CHCl3), дихлорбромметан (CHCl2Br), хлордибромметан (CHClBr2) и бромоформ или трибромметан (CHBr3), в совокупности называемые ОТГМ или ТГМ4.
На процессы образования ТГМ в конкретной системе водоснабжения влияет целый ряд различных факторов: сезонное изменение качества воды в источнике, время нахождения воды в резервуарах и водопроводной распределительной сети (т.н. «возраст» воды), температура воды, дозы хлорсодержащих реагентов на очистных сооружениях [4 - 7].
Образование ТГМ продолжается в водопроводной сети, где свободный хлор вступает в реакцию с органическими веществами в воде и на стенках труб. Как правило, при наличии значительного количества остаточного хлора в воде концентрация ТГМ возрастает линейно с увеличением времени [8].
В Ираке содержание ТГМ регулируется Правилами Управления по охране окружающей среды США (EPA - Environmental protection agency). Согласно I этапу Правил максимальная концентрация ТГМ4 не должна превышать 80 мкг/л, а II этапу - 40 мкг/л [9, 10]. В странах Европы установлена величина норматива от 30 до 200 мкг/л, а в России - 60 мкг/л.
Особенность стандартов США заключается в том, что они основываются на усредненных по времени и по точкам отбора величинах концентрации ТГМ, а не на конкретных значениях в отдельно взятых точках водопроводной сети [10]. В связи с этим особо актуальны исследования пространственных и временных факторов трансформации ТГМ в водопроводной воде. обеззараживание вода хлор реагент
Исследования проводились на двух главных ВОС Багдада: Аль-Карх и Шарк-Дижла, обеспечивающих водой районы Карх и Расафа соответственно, в которых проживает примерно 4 млн. человек или 70 % населения Багдада. Водопроводные сети этих станций не связаны с остальными и вода не смешивается с водой других станций.
Пробы воды отбирались в 29 точках распределительной сети, расположенных на разном удалении от водоочистных станций (точнее - от начальной точки распределительной сети) и на выходе со станций. Непосредственно при отборе проб измерялась температура воды, величина pH и количество остаточного хлора. Анализ хлорорганических соединений проводился в лаборатории исследовательского центра Иорданского университета (Амман) на газовом хроматографе Varian 3800, пробоподготовка осуществлялась методом жидкостной экстракции гексаном.
Приведены данные о концентрации ТГМ в различных точках двух исследуемых водопроводных систем. Температура водопроводной воды варьировалась от 18,5 єС в начальной точке до 22 єС в конечных пунктах зимой и соответственно от 30 до 32,5 єС летом. Из приведенных данных видно, что в зимний период значения концентраций ТГМ4 не превышают норматив 40 мкг/л, указанный во II этапе Правил [10], исключение составляют самые удаленные точки системы Расафы, а в летний период наблюдается превышение во всех точках сети. Норматив 80 мкг/л, указанный во I этапе Правил [9], соблюдался во все сезоны года.
Представлены зависимости концентрации ТГМ4 и остаточного хлора от расстояния между местом взятия пробы и водоочистной станцией для водопроводных систем Расафы и Аль-Карха. Расстояние от водоочистной станции не связано напрямую со временем пребывания воды в сети и, соответственно, со временем контакта хлора с органическим веществом, поэтому для определения «возраста» воды была выбрана величина остаточного хлора в водопроводной воде [11].
Во все сезоны года наблюдается увеличение концентрации ТГМ4 с уменьшением концентрации остаточного хлора по мере удаления от начальной точки распределения воды и увеличением времени контакта свободного хлора с органическим веществом, что подкрепляется и теоретическими исследованиями [12]. В среднем около 30 - 38 % от общего уровня ТГМ4 образуется в процессе движения воды по водопроводной сети.
В летнее время наблюдается более высокий уровень ТГМ, так как при более высокой температуре скорость взаимодействия свободного хлора с органическим веществом возрастает. Скорость роста концентрации ТГМ4 летом также была выше (в 1,3-1,4 раза), чем зимой. Существенное значение для формирования ТГМ имеет доза хлора, которую в теплое время года обычно повышают из-за повышенного риска повторного микробиологического загрязнения воды. Исследования показывают, что количество образующихся хлорорганических соединений прямо пропорционально дозе введенного хлора [6, 13]. Эта тенденция наблюдается и для рассматриваемых водоочистных станций Багдада: повышение дозы хлора летом на 20 % сразу отразилось на уровне ТГМ в начале сети. Коэффициент корреляции между количеством остаточного хлора и концентрацией ТГМ4 составил -0,83…-0,98.
На рис. 3 приведены данные о концентрации четырех основных хлорорганических соединений (CHCl3, CHCl2Br, CHBr2Cl, CHBr3) в водопроводной системе Карха, а на рис. 4 - средние значения концентрации основных хлорорганических соединений для всех исследованных ВОС. Из графиков видно, что процент соединений брома (CHCl2Br, CHBr2Cl и CHBr3) составляет около трех четвертых от общего количества хлорорганических соединений. Скорее всего, это обусловлено наличием бромидов в источниках воды, что способствует повышению концентрации бромированных соединений ТГМ на всех очистных станциях Багдада, и наиболее высокая она в Кархе [14].
Основным источником образования галогенорганических соединений в хлорированной питьевой воде являются содержащиеся в ней органические вещества. Одним из эффективных методов снижения образования тригалогенметанов в процессе хлорирования является удаление органических компонентов из воды на начальной стадии водоочистки. Однако наибольшее количество хлорорганических соединений образуется в воде при первичном хлорировании, до удаления из нее загрязнений. Поэтому традиционные методы решения проблемы повышенного содержания ТГМ в питьевой воде заключаются в замене хлорирования на озонирование и в применении сорбционной обработки воды. Однако, недостатком озоно-сорбционной технологии являются высокие затраты на ее реализацию, как капитальные, так и эксплуатационные.
В настоящее время разрабатываются новые способы дезинфекции воды, основанные на сочетании ультразвуковой и кавитационной обработки воды с ультрафиолетом или озоном, применении электрических разрядов и т.п. [15]. Так, китайскими учеными разработан фотохимический катализатор с наночастицами палладия, который при воздействии даже обычного света обладает чрезвычайно высоким эффектом обеззараживания [16]. К сожалению, все эти методы не обладают последействием, что накладывает ограничения на область их применения. Редким исключением здесь являются препараты на основе полигексаметиленгуанидина гидрохлорида - биоциды неокислительного действия, сохраняющие свою эффективность в течение длительного времени [17].
Одним из эффективных решений проблемы образования ТГМ может стать применение диоксида хлора. Диоксид хлора (ClO2) используется в области подготовки воды для ее дезинфекции при одновременном осуществлении окислительных процессов. При растворении в воде диоксида хлора образуются хлористая (HClO2) и хлорноватая (HClO3) кислоты. Хлораты (ClO3-) обладают сильной окислительной способностью, в несколько раз превышающей окислительную способность хлорноватистой кислоты (HClO) и гипохлорит-ионов, образующихся в воде использовании жидкого хлора и гипохлоритов натрия или кальция.
Применение диоксида хлора практически полностью исключает образование тригалогенметанов [18]. Это обусловлено тем, что при наличии диоксида хлора в питьевой воде не протекают реакции хлорирования. Вещества, вызывающие неприятный запах и вкус воды, например, фенолы и продукты их распада, окисляются диоксидом хлора и преобразуются в нейтральные по вкусу и запаху вещества, что существенно повышает качество питьевой воды.
Скорость уничтожения микроорганизмов диоксидом хлора возрастает с увеличением показателя pH. Диоксид хлора не вступает в реакцию с аммонием и его соединениями. Это существенное отличие от гипохлоритов, которые образуют с аммонием хлорамины, оказывающие отрицательное влияние на дезинфекцию и вкус обрабатываемой воды.
Диоксид хлора очень устойчив в воде. После окончания поглощения избыток сохраняется длительное время, что важно в условиях обширной сети трубопроводов и резервуаров для эффективного предотвращения повторного загрязнения воды.
Учитывая особенности физических и физико-химических свойств, диоксид хлора готовится только в форме водных растворов в месте использования с применением специального аппаратурного оформления. Диоксид хлора производится из хлорита натрия (NaClO2) и хлора (Cl2) или из хлорита натрия и кислоты, преимущественно соляной.
Максимальный показатель остаточного количества дезинфектанта в обработанной воде составляет по российским нормативам для хлорита 0,2 мг/л [19] и 0,8 мг/л - для диоксида хлора по нормативам США [9].
1. Изучение трансформации ТГМ в водопроводной воде Багдада показало, что до 38 % от общего содержания ТГМ образуется в процессе транспортировки воды по водопроводным трубам. Для двух водоочистных станций наблюдалась приблизительно одинаковая картина образования ТГМ4, причем летом скорость роста ТГМ4 в водопроводной сети была в 1,3 - 1,4 раза выше чем зимой, а концентрация - на треть больше. Концентрация ТГМ4 увеличивается по мере удаления от начальной точки распределения воды и имеет выраженную взаимосвязь с количеством остаточного свободного хлора.
2. Летом общая концентрация ТГМ4 в водопроводной сети превышала предел в 40 мкг/л, указанный в этапе II Правил, установленных Управлением по охране окружающей среды США.
3. Наибольший процент от общего содержания ТГМ составили соединения брома (73 - 80 %), что может быть связано с содержанием бромидов в источнике.
4. Одним из эффективных путей решения проблемы образования ТГМ является замена дезинфицирующего агента на диоксид хлора. При небольших дозах диоксида хлора (до 0,4 мг/л) концентрация образующихся хлорорганических соединений снижается более чем на порядок по сравнению с применением гипохлоритов.
Список литературы
1. Гончарук В.В., Потапченко Н.Г. Современное состояние проблемы обеззараживания воды [Текст] // Химия и технология воды, 1998. - Т. 20, № 2. - С. 119-217.
2. Baxter G. Chlorine disinfection: The industry standard [Текст] // J. Water Supply, 1995. - Vol. 13, No. 2. - Р. 183-193.
3. Известкова, Т.В. Хлорорганические поллютанты в природном источнике водоснабжения и питьевой воды г. Иванова [Текст] / Т.В. Известкова, В.И. Гриневич, В.В. Костров // Инженерная геология, 2003. - № 3. - С. 49-54.
4. Symons, J.M. Factors affecting disinfection by-product formation during chloramination [Текст] / J.M. Symons, R. Xia, G.E.Jr. Speitel, A.C. Diehl, C.J. Hwang, S.W. Krasner, S.E. Barrett. Report No. 90728 - American Water Works Association Research Foundation, Denver, CO, 1998.
5. Brett R.W., Ridgeway J.W. Experiences with chlorine dioxide in southern water authority and water research center [Текст] // J. IWES, 1981. - Vol. 5, No.2. - Р. 23-32.
6. Прокопов Э.Д., Мактаз Г.В. Влияние отдельных факторов на образование тригалогенметанов в хлорированной воде [Текст] // Химия и технология воды, 1993. - Т. 15, № 9. - С. 633-640.
7. Singer P.C. Control of disinfection by-products in drinking water [Текст] // J. of Environmental Engineering, 1994. - V. 120, No. 4. - P. 727-744.
8. Garcia-Villanova, J. Formation, evaluation and modeling of trihalomethanes in the drinking water of a town: II. In the distribution system [Текст] / J. Garcia-Villanova, C. Garcia, J.A. Gomea, M.P. Garcia, R. Ardanuy // J. Water Research, 1997. - Vol. 31, No. 6. - P. 1405-1413.
9. National Primary Drinking Water Regulations: Disinfectants and Disinfection Byproducts (Stage 1 Disinfectant and Disinfection Byproduct Rule). Environmental protection agency [Текст] // Federal Register, 1998. - Vol. 63, No. 241. - P. 69389-69476.
10. National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule. Environmental protection agency [Текст] // Federal Register, 2006. - Vol. 71, No. 2. - P. 388-493.
11. Brett R.W., Calverley R.A. A one-year survey of trihalomethane concentration changes within a distribution system [Текст] // J. AWWA, 1979. - Vol. 71, No. 9. - P. 515-520.
12. Tokmak, B. Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey [Текст] / B. Tokmak, G. Cpar, F.B. Dilek, U. Yetis // J. Environmental Research, 2004. - Vol. 96, No. 11. - P. 345-352.
13. Коверга, А.В. Снижение содержания хлорорганических соединений на московских станциях водоподготовки [Текст] / А.В. Коверга, О.Е. Благова, Ю.В. Стрихар // Водоснабжение и сан. техника, 2009. - № 10, Ч. 1. - С. 39-42.
14. Symons, J.M. The influence of bromide ion on organic bromine formation during free chlorination [Текст] / J.M. Symons, P.L.K. Fu, R.C. Dressman, A.A. Stevens // J. AWWA, 1987. - Vol. 79, No. 9. - P. 114-118.
15. Серпокрылов, Н.С. Очистка сточных вод бассейнов для содержания ластоногих до норм оборотного водоснабжения [Электронный ресурс] / Н.С. Серпокрылов, С.В. Кожин, Е.А. Тайвер // «Инженерный вестник Дона», 2011, №1. - Режим доступа: http://ivdon.ru/magazine/archive/n1y2011/380 (доступ свободный) - Загл. с экрана. - Яз. рус.
16. Фиговский Олег. Что день грядущий нам готовит? [Электронный ресурс] // «Инженерный вестник Дона», 2011, №1. - Режим доступа: http://ivdon.ru/magazine/archive/n1y2011/396 (доступ свободный) - Загл. с экрана. - Яз. рус.
17. Воинцева И.И. Полигексаметиленгуанидин гидрохлорид для очистки и обеззараживания воды как альтернатива реагентам-окислителям Часть 1 // Вода: химия и экология, 2011. - № 7. - С. 39-45.
18. Arora, H. DBP occurrence survey [Текст] / H. Arora, M.W. LeChevallier, L. Kelvin // J. AWWA, 1997. - Vol. 89, No. 6. - P. 60-68.
19. СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Санитарные правила и нормы [Текст]. - взамен СанПиН 2.1.4.559-96; введ. 2002-01-01 - М.: Технорматив, 2010. - 75 с.
Размещено на Allbest.ru
Подобные документы
Исследование требований, предъявляемых к питьевой воде, органолептических и токсикологических показателей. Анализ методики определения жесткости воды, содержания сухого остатка и хлоридов. Описания техники безопасности при работе с кислотами и щелочами.
курсовая работа [513,4 K], добавлен 15.06.2011Характеристика воды как важнейшей составляющей среды нашего обитания. Исследование ее общей карбонатной жесткости и окисляемости методами нейтрализации и перманганатометрии. Применение метода йодометрии для определения содержания остаточного хлора в воде.
курсовая работа [60,3 K], добавлен 05.02.2012Свойства воды как наиболее распространенного химического соединения. Структура молекулы воды и атома водорода. Анализ изменения свойств воды под воздействием различных факторов. Схема модели гидроксила, иона гидроксония и молекул перекиси водорода.
реферат [347,0 K], добавлен 06.10.2010Условные показатели качества питьевой воды. Определение органических веществ в воде, ионов меди и свинца. Методы устранения жёсткости воды. Способы очистки воды. Приготовление рабочего раствора сернокислого калия. Очистка воды частичным замораживанием.
практическая работа [36,6 K], добавлен 03.12.2010Органолептические методы анализа вкуса и запаха питьевой воды. Расчет массы сухого остатка и водородного показателя. Изучение концентрации нитратов, фторидов, хлоридов. Определение цветности, содержания железа, щелочности, жесткости и окисляемости воды.
курсовая работа [93,0 K], добавлен 26.01.2013История развития черной металлургии в Российской Федерации, Белгородской области. Структура и организация аналитического контроля производства. Фотометрические методы анализа качества питьевой воды, применяемые в лаборатории. Отбор и подготовка проб.
дипломная работа [1,1 M], добавлен 06.07.2014Принципы обеззараживания воды хлорированием на водоочистных комплексах: эффект подавления бактериальной жизни и проведение технологического анализа для установления необходимой дозы хлора. Применение вакуумных газодозаторов системы ЛОНИИ-100 и Кульского.
реферат [1,0 M], добавлен 09.03.2011Безвредность питьевой воды по химическому составу, определяемая ее соответствием нормативам по обобщенным показателям и содержанию вредных химических веществ, наиболее часто встречающихся в природных водах. Определение температуры и прозрачности воды.
презентация [573,6 K], добавлен 12.11.2016Санитарно-гигиеническая оценка качества питьевой воды. Нормативное регулирование централизованного хозяйственно-питьевого водоснабжения. Мониторинг физико-химических показателей воды центрального водоснабжения. Оценка цветности, мутности и запаха воды.
дипломная работа [1,5 M], добавлен 16.02.2022Необходимость хлорирования воды. Озонирование как метод дезинфекции питьевой воды. Международный стандарт по содержанию хлора и хлорпроизводных в воде. Методы анализа остаточного активного хлора, используемые в автоматических приборах контроля.
курсовая работа [67,4 K], добавлен 25.12.2013