Гравиметрический метод анализа

Изучение сущности гравиметрического анализа и классификации его методов. Синтез образования и растворения осадка в присутствии посторонних электролитов. Характер адсорбируемости ионов на поверхности оседания. Определение сульфат-иона в минеральной воде.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 20.05.2017
Размер файла 35,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Республики Казахстан

Карагандинский государственный технический университет

Кафедра: «Промышленная экология и химия»

КУРСОВАЯ РАБОТА

Дисциплина: Аналитическая Химия

Тема: Гравиметрический метод анализа. Определение сульфат-иона в минеральной воде

Выполнил:

Кириенко Алина

Принял:

Кабиева С.К.

Караганда 2015

Содержание

Введение

1. Сущность гравиметрического анализа и классификация его методов

2. Практическое применение

3. Общая оценка метода

4. Гравиметрические измерения

Заключение

Библиография

Введение

Аналитической химией называется наука, занимающаяся изучением методов и приемов определения состава веществ и их смесей. Свое название аналитическая химия получила потому, что основным путем ее исследований является анализ, т. е. разложение сложных веществ на составляющие их элементы, точнее, ионы.

Аналитическая химия объединяет теорию химического анализа, качественный анализ и количественный анализ.

Аналитическая химия в целом относится к прикладным наукам, т.е. к наукам, имеющим прикладное практическое значение. Практическое значение аналитической химии весьма разнообразно.

Определение количественного состава исследуемого вещества, т.е. содержания отдельных составных частей его, является задачей количественного анализа. Гравиметрический анализ является одним из методов количественного анализа.

В гравиметрии определяемое вещество осаждают в виде малорастворимого соединения определенной стехиометрии. После выделения и высушивания осадок взвешивают на аналитических весах и по его массе и известной стехиометрии находят количество определяемого компонента.

Используется уравнение химической реакции типа: aX + bR = XaRb для получения осадка XaRb

При выполнении весовых определений определяемый компонент смеси, или составную часть (элемент, ион) вещества количественно связывают в такое химическое соединение, в виде которого она может быть выделена и взвешена (так называемая гравиметрическая форма, ранее она именовалась «весовая форма»). Состав этого соединения должен быть строго определённым, то есть точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей.

Вершины своего развития весовой анализ достиг в 1950-е годы, когда ещё не было широкого применения спектральных и хроматографических методов.

В настоящее время он остаётся своеобразным эталоном, методической базой при разработке и аттестации других методов.

В гравиметрии есть три метода: отгонка, осаждение и выделение.

Гравиметрические методы применяют редко. Основное их достоинство -- исключается построение калибровочных графиков (построение графика при анализе многокомпонентных смесей затруднительно, из-за невозможности приготовления стандартной смеси, точно моделирующей пробу, не зная заранее состава пробы). Гравиметрические методы применяют в качестве арбитражных при определении магния, натрия, кремнекислоты, сульфат-ионов, суммарного содержания нефтепродуктов, жиров.Гравиметрические методы чрезвычайно точны, потому что на аналитических весах можно взвесить вещества с высокой степенью точности. Массу можно определить до пятой цифры после запятой.

1. Сущность гравиметрического анализа и классификация его методов

Гравиметрическим анализом называют метод количественного химического анализа, который базируется на точном измерении массы определяемого вещества или его составных частей, выделенных в химически чистом состоянии или в виде соответствующих соединений (точно известного постоянного состава).

Гравиметрический анализ (весовой) один из важнейших методов количественного анализа. Он сыграл большую роль при установлении законов постоянности состава, кратных отношений, периодического закона. Его применяют при определении химического состава разнообразных естественных и технических объектов, горных пород и руды, минералов, металлов, сплавов, силикатов и других неорганических и органических веществ.

Все многочисленные гравиметрические определения можно разделить на три большие группы:

1 Методы выделения;

2 Методы осаждения;

3 Методы отгонки.

Метод выделения. В методе выделения определяемый компонент количественно выделяют в свободном состоянии из анализируемой смеси и взвешивают на аналитических весах. Так, например, количественно определяют золото и медь в сплаве.

При растворении определенной навески сплава в царской водке получают раствор, который содержит ионы Au3+ и Cu2+. Добавлением к полученному раствору пероксида водорода, который восстанавливает ионы золота до элементного золота и не влияет на ионы Cu2+, все золото выделяют в элементном состоянии. Золото, которое выделилось, отфильтровывают, промывают разбавленным раствором хлоридной кислоты от посторонних примесей, помещают вместе с фильтром в предварительно взвешенный фарфоровый тигель, высушивают, прожаривают для удаления летучих примесей и после охлаждения взвешивают. По массе золота, которое выделилось, рассчитывают его содержание в анализируемом сплаве.

Если через промывные воды и фильтр, который остался после отделения золота, пропустить при определенных условиях постоянный электрический ток, то на предварительно взвешенном инертном по отношению к раствору платиновом катоде количественно выделится металлическая медь. По увеличению массы катода рассчитывают массу меди и ее содержание в сплаве.

Описанный метод определения золота в сплаве называют гравиметрическим, а меди - электрогравиметрическим.

Другим примером подобного определения есть определение массовой доли золы в твердом топливе, которое базируется на сжигании и прожаривании до постоянной массы навески топлива в предварительно взвешенном тигле. Золу, которая остается в тигле, взвешивают. По массе золы рассчитывают ее массовую долю в данном образце твердого топлива.

Методы осаждения. В методах осаждения определяемый компонент количественно осаждают химическими способами в виде малорастворимого химического соединения строго определенного состава. Осадок, который выделяется, промывают, высушивают или прожаривают. При этом осадок в большинстве случаев превращается в новое вещество точно известного состава, которое и взвешивают на аналитических весах. В анализе различают: осаждаемую форму, то есть форму, в виде которой осаждают определяемое вещество, и весовую форму, то есть форму, в виде которой определяемое вещество взвешивают. Весовая форма (гравиметрическая) может иметь ту же формулу, что и осаждаемая форма. Например, при определении сульфат - ионов гравиметрическим методом, путем осаждения их ионами бария, формула осаждаемой формы (осадка) и формула весовой формы при соблюдении всех необходимых условий анализа одна и та же.

Схема такого определения представляется следующим чином:

Ba2+ t?

SO42- > BaSO4v > BaSO4

Определяемое осаждаемая весовая (гравиметрическая) вещество форма форма

В некоторых гравиметрических методах определения путем осаждения формула весовой формы отличается от формулы осадка. Например, при определении ионов ферума (ІІІ), которые осаждаются в виде гидроксида, схема определения:

2Fe3+ > 2Fe(OH)3v > Fe2O3

Определяемое осаждаемая весовая (гравиметрическая) вещество форма форма

В отдельных случаях гравиметрических определений возможно получение такой осаждаемой формы, которая может быть одновременно и весовой формой, но и может быть легко переведена в другую гравиметрическую форму. Например, никель (ІІ) из раствора осаждают в аммиачной среде спиртовым растворомдиметилглиоксима в форме легкого кристаллического осадка:

Если осадок диметилглиоксимата никеля (ІІ) профильтровать через стеклянный фильтр, высушить при 110-120 ?С и взвесить, то можно рассчитать содержание Никеля в исследуемом образце. Но возможно получение и гравиметрической формы NiО. При этом осадок фильтруют через бумажный фильтр. После его озоления диметилглиоксимат никеля прожаривают при хорошем доступе воздуха и высокой температуре. Недостатком является частичная возгонка никелядиметилглиоксимата при 250 ?С.

Механизм реакции осаждения

В процессе образования осадка различают три основных параллельно протекающих процесса: 1) образование зародышей кристаллов; 2) рост кристаллов; 3) объединение хаотично ориентированных мелких кристаллов.

В начальный момент смешивания реагирующих компонентов раствор, содержащий эти компоненты, пересыщается и образуются мельчайшие частицы осадка - зародыши. Зародыш кристалла - наименьший агрегат атомов, молекул или ионов, который образуется в виде твердой фазы при осаждении и способен к самопроизвольному росту. Образование зародышей в пересыщенном растворе может происходить как самопроизвольно, так и при введении в раствор твердых частиц осадка, которые могут служить центром образования зародышей. Нерастворимые частицы, содержащиеся в реактивах и растворителе, также являются центром образования зародышей. Время с момента смешивания растворов реагирующих веществ до появления зародышей называют индукционным периодом, продолжительность его зависит от концентрации реагирующих веществ, а также от природы осадка. Так, при осаждении творожистого осадка AgCl индукционный период незначителен, а при осаждении кристаллических осадков - достаточно велик.

Рост кристаллов происходит за счет диффузии ионов к поверхности растущего кристалла и осаждения этих ионов на его поверхности и определяется не только диффузионными процессами, но и структурой растущих кристаллов, дефектами кристаллической решетки, внедрением в нее различных ионов и т. д.

Число и размер частиц осадка зависят от соотношения скорости образования зародышей кристаллов и скорости роста кристаллов. Если скорость образования зародышей кристаллов мала по сравнению со скоростью роста кристаллов, образуется небольшое число крупных частиц - осадок крупнокристаллический, при обратном соотношении скоростей получается мелкодисперсный осадок, состоящий из большого числа мелких частиц. Скорости обоих процессов зависят от относительного пересыщения раствора.

Осаждаемая и гравиметрическая формы

При осаждении может быть различной в зависимости от условий, в которых оно проводится. Важно подобрать такие условия, при которых не происходит потери вещества .Поэтому осаждение считают важнейшей операцией гравиметрического анализа. При его выполнении необходимо правильно выбрать осадитель, рассчитать его количество, соблюсти определенные условия осаждения, убедиться в полноте осаждения иона из раствора.

Осадок в процессе анализа приходится доводить до постоянной массы. Поэтому в гравиметрическом анализе различают две формы: осаждаемую и гравиметрическую.

Осаждаемая форма - тот осадок, который получается в результате химической реакции между осаждаемым ионом и осадителем.

Например: Ba2++ SO42- > BaSO4

К осаждаемой форме предъявляются следующие требования:

малая величина растворимости, около 1*10-6 моль/л,

осадок должен быть крупнокристаллическим,

осаждаемая форма должна легко и полно превращаться в гравиметрическую форму.

Гравиметрическая форма - то вещество, которое получается после прокаливания осаждаемой формы.

В некоторых случаях осаждаемая и гравиметрическая формы одинаковы (например, BaSO4). В других случаях их состав отличается друг от друга:

Осаждаемая форма Гравиметрическая форма

Требования, предъявляемые к гравиметрической форме:

· Состав гравиметрической формы должен точно соответствовать определенной стехиометрической формуле.

· Она не должна менять своей массы на воздухе из-за поглощения паров H2O и CO2 или частичного разложения.

· Содержание определяемого элемента в гравиметрической форме должно быть как можно меньше, т. к. в таком случае погрешности взвешивания в меньшей степени сказываются на результате.

Перечисленные требования к осадкам в свою очередь определяют требования к осадителям:

1 Осадитель должен образовывать с исследуемым компонентом осадок, обладающий наименьшей растворимостью.

2 Осадитель должен быть летуч, чтобы примеси его можно было удалить при прокаливании.

3 Осадитель должен быть специфичным, т. е. осаждать избирательно.

Растворимость осадков

Влияние ионной силы раствора. В аналитической практике образование и растворение осадка всегда происходит в присутствии посторонних электролитов. Так, при взаимодействии, например, растворов, содержащих стехиометрические количества BaCl2 и Na2SO4, в системе наряду с образовавшимся BaSO4 и одноименными с осадком ионами Ba2+ и SO4 2- будут находиться разноименные с осадком ионы Na+ и Cl-. Нахождение в растворе электролита, содержащего разноименные с осадком ионы, увеличивает ионную силу раствора .При этом существенное влияние оказывают как концентрация ионов, находящихся в растворе. Таким образом, введение в насыщенный раствор малорастворимого вещества раствора электролита, не содержащего одноименных с малорастворимым веществом ионов, вызывает увеличение растворимости малорастворимого вещества.

Влияние одноименных ионов. Введение в раствор одноименных с осадком ионов приводит к сдвигу равновесия и, соответственно, к уменьшению растворимости осадка.

Следует отметить, что в некоторых случаях при введении в раствор избыточного количества ионов, одноименных с осадком, растворимость осадка может увеличиваться вследствие образования растворимых комплексов. гравиметрический осадок адсорбируемость ион

Влияние pH среды. Если осадок представляет собой соль слабой кислоты, то при добавлении более сильной кислоты анионы осадка ,находящиеся в растворе, будут взаимодействовать с ионами водорода с образованием слабой кислоты. При этом равновесие сдвигается вправо за счет протекания реакций и растворимость осадка увеличивается.

Влияние комплексообразующих реагентов. При введении в систему раствор - осадок соединений, образующих устойчивые комплексы с катионами малорастворимого электролита, растворимость осадка увеличивается.

Следует отметить, что на растворимость осадков помимо перечисленных выше факторов также оказывают влияние: 1 температура; 2 применяемый растворитель; 3конкурирующие окислительно-восстановительные реакции.

Таким образом, для удовлетворения основного требования, предъявляемого к осадку в гравиметрическом анализе, - его малой растворимости - необходимо вести осаждение в присутствии одноименных ионов, при строго определенном pH среды, в отсутствие мешающих комплексообразующих реагентов, окислителей или восстановителей, необходимо контролировать температуру, при которой проводится осаждение.

Загрязнение осадков .Основной причиной загрязнения осадка является соосаждение. Соосаждением называют одновременное осаждение растворимого компонента с макрокомпонентом из одного и того же раствора путем адсорбции, окклюзии, образования смешанных кристаллов или механического захвата частиц других фаз. Осадки при этом загрязнены веществами, произведение растворимости для которых не достигается.

Адсорбция - увеличение поверхностной концентрации растворенных веществ на границе раздела фаз. В соответствии с правилом адсорбции на поверхности осадка в первую очередь адсорбируются ионы, входящие в состав кристаллической решетки осадка и находящиеся в избытке. Под действием заряда к поверхности осадка притягиваются противоионы, которые удерживаются слабее первично адсорбированных ионов.

Адсорбируемость ионов на поверхности осадка зависит также от концентрации ионов, находящихся в растворе, от заряда ионов и от их размера. Количество адсорбированных на поверхности осадка ионов тем больше, чем больше его поверхность, поэтому к адсорбции более склонны осадки с развитой поверхностью, т. е. аморфные. Для предотвращения явления адсорбции осаждение как аморфных, так и кристаллических осадков проводят в условиях, позволяющих получить осадки с наименьшей поверхностью; повышение температуры также способствует уменьшению адсорбции, так как адсорбция -экзотермический процесс. Количество адсорбированных примесей можно уменьшить при промывании осадков на фильтре водой или промывной жидкостью, а также в случае кристаллических осадков в процессе их старения.

Окклюзия - процесс включения посторонних веществ внутрь осадков в ходе их образования. Окклюзия характерна для кристаллических осадков и наблюдается при быстром росте кристаллов, когда часть противоионов, адсорбированных на поверхности растущего кристалла, остается внутри его. Окклюдированные примеси не удаляются промыванием, но окклюзию можно уменьшить путем переосаждения осадка, а также в процессе его старения. Степень окклюзии в процессе осаждения можно уменьшить медленным добавлением осадителя по каплям, при перемешивании.

Смешанные кристаллы -кристаллы, содержащие второй компонент, внедряющийся в решетку основного кристалла и распределенный в этой решетке. Механический захват - процесс случайного включения относительно малых количеств других фаз внутрь осадка входе его образования. Механический захват обусловлен несовершенством кристаллической решетки осадка, наличием в ней пустот и трещин при быстром росте кристаллов. Для уменьшения механического захвата необходимо осаждать кристаллические осадки из разбавленных растворов, добавляя осадитель медленнопо каплям, при перемешивании. Переосаждение, а также старение кристаллических осадков тоже способствует устранению механического захвата примесей.

Причиной загрязнения осадков может служить также последующее осаждение, в ходе которого на поверхности ранее выделенного осадка осаждается химически отличающаяся от него форма соединения, содержащего ион, одноименный с осадком.

Методы отгонки. В методах отгонки определяемый компонент количественно отгоняют в виде летучего соединения. Определяемую часть отгоняют путем нагревания анализируемого вещества или действием соответствующих реагентов, которое сопровождается выделением летучих продуктов. Методы отгонки бывают прямые и косвенные.

Прямые методы отгонки. Определяемый летучий компонент поглощают специфическим поглотителем и по увеличению массы последнего рассчитывают массу определяемого компонента.

Примером прямого гравиметрического определения летучего вещества является определение СО2 в карбонатных породах, которое базируется на разложении карбонатов кислотами:

CaCO3 + 2H+ > CO2 + Ca2+ + H2O;

CO2 + 2NaOH > Na2CO3 + H2O.

Образец карбоната раскладывают в специальных приборах, которые разрешают уловить CO2, который выделяется. Содержание CO2 рассчитывают по увеличению массы трубки, которая применяется для поглощения CO2 (она содержит натронную известь CaО+NaOH).

Косвенные методы отгонки. В косвенных методах определяют массу остатка вещества после полного удаление определяемого вещества. Разность массы до и после отгонки определяемого вещества дает возможность рассчитать количество определяемого компонента. Схема этого определения:

BaCl2• 2H2O > BaCl2 + 2H2O.

2. Практическое применение

Гравиметрический анализ -- один из наиболее универсальных методов. Он применяется для определения почти любого элемента. В большей части гравиметрических методик используется прямое определение, когда из анализируемой смеси выделяется интересующий компонент, который взвешивается в виде индивидуального соединения. Часть элементов периодической системы (например, соединения щелочных металлов и некоторые другие) нередко анализируется по косвенным методикам. В этом случае сначала выделяют два определенных компонента, переводят их в гравиметрическую форму и взвешивают. Затем одно из соединений или оба переводят в другую гравиметрическую форму и снова взвешивают. Содержание каждого компонента определяют путем несложных расчетов.

Определение воды. Знание влажности пробы необходимо для точного расчета результатов анализа и содержания других компонентов. Помимо этого, вода входит в состав многих соединений в определенных стехиометрических отношениях (в кристаллогидратах). Для определения воды разработаны прямые и косвенные методы.

В косвенных методах воду определяют по уменьшению массы пробы при обезвоживании нагреванием или путем выдерживания в эксикаторе с энергичным водоотнимающим веществом (Р2О5, концентрированная H2SO4 и др.). Метод дает правильные результаты, если при этом в пробе не происходит никаких других процессов, кроме удаления воды, т. е. проба не содержит других летучих веществ.

Для определения влажности пробу обычно выдерживают при температуре 105°С или 110°С до постоянной массы. Стехиометрическая или кристаллизационная вода при этом удаляется не всегда, а обезвоживание некоторых веществ, например гидроксидов железа, алюминия и др., требует уже значительно более высокой температуры (700--800°С и выше). При определении влажности органических веществ часто используется нагревание в вакууме при температуре ниже 100 °С.

В прямых методах определения воды водяные пары поглощаются осушителем -- специальным веществом, энергично поглощающим влагу (СаСl2, Mg(Cl04) 2 и др.). Содержание воды определяется по увеличению массы осушителя, конечно, если он не поглощает других веществ, кроме воды.

Определение кремниевой кислоты. Кремниевая кислота или ее соли входят в состав многих горных пород, руд и других объектов. При обработке горных пород или минералов кислотой в осадке остается кремниевая кислота с переменным содержанием воды. Если анализ начинается со сплавления пробы, гидратированная кремниевая кислота образуется при кислотном выщелачивании плава. Большинство элементов при такой обработке образуют растворимые соединения и легко отделяются от осадка фильтрованием. Однако разделение может быть неполным, так как гидратированная кремниевая кислота может частично проходить через фильтр в виде коллоидного раствора. Поэтому перед фильтрованием осадок кремниевой кислоты стремятся полностью дегидратировать выпариванием с хлороводородной кислотой. При прокаливании кремниевая кислота переходит в безводный SiO2, который является гравиметрической формой. По его массе часто рассчитывают результат анализа. Гидратированный диоксид кремния SiO2 * nH2О является отличным адсорбентом, поэтому осадок SiO2 оказывается загрязненным адсорбированными примесями. Истинное содержание диоксида кремния определяют путем обработки прокаленного осадка фтороводородной кислотой при нагревании, в результате чего образуется летучий SiF4:

SiO2 +4HF > SiF4 + 2Н2О

Убыль в массе после обработки осадка фтороводородной кислотой равна содержанию SiO2 в пробе.

Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравиметрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе проводят осаждение сульфидов (меди и других элементов) и в фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды Fe2O3, A12O3, TiO2, MnO2. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения сплава определяют в растворе отдельные компоненты -- железо титриметрическим или гравиметрическим методом, титан и марганец -- фотометрическим и фосфор -- гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески).

Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение железа в сумме полуторных оксидов основано на восстановлении Fe(III) сероводородом до Fe(II) и осаждении FeS в аммиачной среде в присутствии винной кислоты как маскирующего агента. Осадок FeS растворяют в НС1, окисляют при нагревании азотной кислотой и осаждают гидроксид железа(III) аммиаком. Анализ заканчивают взвешиванием прокаленного Fe2O3.

Определение калия и натрия. Гравиметрическое определение щелочных металлов относится к сравнительно сложным анализам главным образом из-за большой растворимости солей этих металлов. Калий и натрий могут быть определены один в присутствии другого, но нередко применяется и косвенный анализ: определяют сумму хлоридов или сульфатов этих металлов, затем содержание одного из них устанавливают экспериментально, а содержание другого рассчитывают по разности. Иногда используют метод определения суммарной массы хлоридов калия и натрия, а затем после обработки H2SO4 -- суммарной массы их сульфатов.

Калий в присутствии натрия может быть осажден в виде K2PtCl6 или КСlO4. В настоящее время соединения платины для этой цели почти не применяют в связи с их большой стоимостью. Растворимость перхлората калия в воде резко уменьшается в присутствии органических жидкостей. На практике часто используют осаждение КСlO4 в присутствии смеси равных частей бутилового спирта и этилацетата. Гравиметрической формой является КСlO4 , высушенный при 350 °С. Натрий в присутствии калия осаждается цинкуранилацетатом как тройной ацетат состава CH3COONa * (CH3COO)2Zn * 3(CH3COO)2 UO2 , и это же соединение в виде воздушно-сухого осадка является гравиметрической формой.

Определение органических соединений. В гравиметрическом анализе органических соединений используется способность некоторых реагентов вступать во взаимодействие с функциональными группами (карбонильной, азо-, сульфо- и т. д.). Таким образом, становится возможным анализировать целый класс веществ, имеющих данную атомную группу. Например, соединения, содержащие метоксигруппу, определяются по схеме:

ROCH3 + HI > ROH + CH3I

CH3I + Ag+ + H2O >AgI + CH3OH + H+

Результат анализа рассчитывается по массе гравиметрической формы AgI.

Осадок тетраиодфениленхинона высушивают и взвешивают.

В последнее время успешно развивается гравиметрический анализ органических соединений.

3. Общая оценка метода

Наиболее существенным достоинством гравиметрического метода является высокая точность анализа. Обычная погрешность гравиметрического определения составляет 0,1--0,2%. При анализе пробы сложного состава погрешность возрастает до нескольких процентов за счет несовершенства методов разделения и выделения анализируемого компонента. К числу достоинств гравиметрического метода относится также отсутствие каких-либо стандартизации или градуировок по стандартным образцам, необходимых почти в любом другом аналитическом методе. Для расчета результатов гравиметрического анализа требуется знание лишь молярных масс и стехиометрических соотношений.

Селективность гравиметрического анализа невысока в связи с отсутствием соответствующих реагентов на большинство ионов. Одним из наиболее селективных является гравиметрическое определение никеля в виде диметилглиоксима, но такие примеры единичны и гравиметрические методы, как правило, требуют предварительного химического разделения с целью выделения анализируемого компонента.

Существенным недостатком гравиметрического метода является длительность определений. Это практически исключает применение гравиметрического анализа, например, для текущего технологического контроля производства и там, где быстрота выполнения анализа имеет решающее значение.

Чаще всего гравиметрический метод применяют для определения основных компонентов пробы, когда на выполнение анализа отводится несколько часов или десятков часов, для анализа эталонов, используемых в других методах, в арбитражном анализе, для установления состава минералов, различных веществ, включая синтезированные, состава различных композиций и т. д. Практическое применение гравиметрического метода остается очень широким.

4. Гравиметрические измерения

Схема гравиметрического анализа по методу осаждения предусматривает последовательное выполнение следующих основных операций: 1) отбор пробы и подготовка ее к анализу; 2)взятие навески; 3) переведение навески вещества в раствор; 4) получение осаждаемой формы; 5) фильтрование; 6) промывание осадка; 7) высушивание осадка;8) получение гравиметрической формы.

Оборудование

Стаканы. В гравиметрическом методе анализа применяют химические стаканы различной вместимости. Для осаждения кристаллических осадков обычно применяют стаканы с носиком вместимостью 200-250мл, для осаждения аморфных осадков - стаканы вместимостью 100-150 мл. При одинаковой вместимости стаканы могут быть различной высоты, лучше применять более низкие стаканы, т. к. их дно легче очищать от осадка.

Воронки, применяемые для фильтрования, могут быть различного диаметра, в зависимости от количества отделяемого осадка: они должны иметь наклон стенок 60° и удлиненный косо срезанный конец, внутренний диаметр которого в верхней части меньше, чем в нижней, благодаря этому увеличивается скорость фильтрования и промывания осадка.

Тигли. Фарфоровые тигли применяют для высокотемпературного прокаливания осадков. Фарфоровые тигли можно нагревать до температур не выше 1200°C.Кроме фарфоровых тиглей в гравиметрическом анализе для и прокаливания металлические, кварцевые и другие тигли. До окончания всех операций тигли нельзя брать руками, а только при помощи металлических щипцов.

Стеклянные фильтрующие тигли представляют собой стеклянные тигли с вплавленными фильтрующими пластинками из прессованного пористого стекла. Их применяют для фильтрования с последующим высушиванием в сушильном шкафу осадков, которые разлагаются при высоких температурах.

Эксикаторы применяют для охлаждения тиглей при доведении их массы до постоянного значения, а также для хранения прокаленных тиглей и высушивания. В качестве осушителя в эксикаторах чаще всего применяют безводный хлорид кальция, реже - концентрированную H2SO4, P2O5 и др. При работе с эксикатором необходимо соблюдать следующие правила: 1) необходимо следить, чтобы притертые части всегда были смазаны; 2) перенося эксикатор, обязательно следует придерживать его крышку; 3) поместив горячий тигель в эксикатор, крышку эксикатора оставляют приоткрытой в течение 3-5минут, пока воздух внутри эксикатора не прогреется; 4) нельзя оставлять эксикатор открытым; 5) открывая и закрывая эксикатор, крышку следует сдвигать в сторону, а не поднимать.

Кроме перечисленной посуды применяют также стеклянные палочки обычные и с резиновыми насадками, часовые стекла для накрывания стаканов с осадками, промывалки, мерные цилиндры и др.

Определение содержания сульфат-иона в минеральной воде

Последовательность выполнения работы:

· Подготовка пробы к осаждению:

1 Полученную для анализа пробу пропускают через бумажный фильтр для удаление ненужных осадков .

2 Затем отбирают пробу 20-25 мл и подкисляют 1-2 мл 2 н. раствора HCl. Пробу помещают в отдельный стакан емкостью 150-200 мл.

· Подготовка осадителя:

Мерным цилиндром отмеряют5 мл 10% раствора BaCl2,разбавляют водой до 30 мл и переливают в чистый стакан.

· Нагревание перед осаждением:

Стаканы с анализируемым раствором и осадителем ставят на плитку и нагревают до начала кипения.

· Осаждение BaSO4:

1 К нагретой пробе медленно, по каплям прибавляют приготовленный раствор хлорида бария. При этом протекает реакция:

BaCl2 + H2SO4 > BaSO4v + 2HCl

2Надо тщательно заботиться об укрупнении и чистоте осадка. Для этого раствор BaCl2 добавляют очень медленно (1-2 капли в сек) все время помешивая смесь стеклянной палочкой. Весь процесс осаждения должен длиться не менее 15 минут. Необходимо следить за тем, чтобы стеклянная палочка не касалась дна, т. к. иначе осадок плотно прилипнет к стеклу.

3 После того, как весь осадитель прилит, осадок осядет и жидкость посветлеет, делают пробу на полноту осаждения. В стакан с осадком (не взмучивая его) осторожно по стенке стакана приливают 1-2 капли горячего раствора хлорида бария. Если жидкость при добавлении раствора хлорида бария не помутнеет, то полнота осаждения достигнута. Если же при добавлении раствора хлорида бария образовалась муть, надо добавить еще 0,5-1,0 мл осадителя и снова сделать пробу на полноту осаждения.

4 Осадок оставляют для созревания.

· Созревание осадка:

1 Когда приливание осадителя закончено, палочку тщательно промывают струей воды из промывки; промывают и верхний край стакана от попавших частиц.

2 Для ускорения процесса созревания осадка стакан с осадком можно поставить на песчаную или водяную баню и выдерживают в течение 20-30 минут при 70-80°C. За этот период созревание осадка заканчивается, осадок получается крупнокристаллическим и легко фильтруется.

3 Важным условием укрупнения кристаллов и их чистоты является медленное прибавление осадителя. Кроме того, осаждение сульфата бария проводят в присутствии небольшого количества HCl, повышающей растворимость сульфата бария, что в свою очередь укрупняет кристаллы. Соляная кислота также препятствует соосаждению веществ, растворимых в кислой среде.

· Приготовление промывной жидкости:

Прежде чем приступить к фильтрованию, готовят промывную жидкость: 5 мл 2н. HCl растворяют в 100 мл воды.

· Фильтрование и промывание осадка:

1 Фильтрование производится через плотный фильтр. Прозрачную отстоявшуюся жидкость сливают на фильтр, затем декантацией промывают осадок в том же стакане 2-3 раза 25-30 мл промывной жидкости, после чего переносят осадок на фильтр и промывают окончательно на фильтре 1-2 раза горячей дистиллированной водой. Промывание продолжается до тех пор, пока собранная в пробирку стекающая с фильтра жидкость не перестанет давать муть хлорида серебра при действии нитрата серебра.

2 После этого фильтры с осадком в воронках высушивают при 70-80°C в сушильном шкафу (20-30 минут) и затем свертывают фильтр с осадком и переносят в доведенной до постоянной массы тигель.

· Прокаливание и взвешивание осадка:

1 Тигель переносят в муфельную печь и прокаливают осадок 20-25 минут, до момента, когда содержимое тигля побелеет и исчезнет углистый налет на стенках тигля. Температура прокаливания 600-800°С.

2 Затем тигель охлаждают в эксикаторе и взвешивают на аналитических весах.

3 Вновь прокаливают тигель 10-15 минут, охлаждают и взвешивают и т. д. до получения постоянной массы. Колебания в массе после вторичного прокаливания не должны превышать 0,0002-0,0004 г.

· Вычисление результатов анализа

Определение содержания сульфат- иона в минеральной воде.

Из этого раствора была взята проба 100 мл. После осаждения сульфат- иона раствором хлорида бария, фильтрования, промывания осадка было получено 25 г. BaSO4. Необходимо найти исходную концентрацию сульфат- иона из уравнения реакции определяют массу сульфат- иона в пробе:

в общем виде:

m2-масса исследуемого вещества в 100 мл раствора, M - концентрация исследуемого вещества в растворе, Mr (H2SO4) - относительная молекулярная масса исследуемого вещества, Mr (BaSO4) - относительная молекулярная масса осадка, 25 г.- масса осадка (BaSO4) в г, 100 - объем пробы, взятой для анализа, в мл.

Заключение

Гравиметрический анализ -один из наиболее универсальных методов. Он применяется для определения почти любого элемента. Гравиметрические методы чрезвычайно точны, потому что на аналитических весах можно взвесить вещества с высокой степенью точности. Массу можно определить до пятой цифры после запятой.

Гравиметрический анализ - важнейший метод количественного химического анализа, в котором взвешивание является не только начальной, но и определения. Гравиметрический анализ сыграл большую роль приустановлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др.

Чаще всего гравиметрический метод применяют для определения основных компонентов пробы, когда на выполнение анализа отводится несколько часов или десятков часов, для анализа эталонов, используемых в других методах, в арбитражном анализе, для установления состава минералов, различных веществ, включая синтезированные, состава различных композиций и т. д. Практическое применение гравиметрического метода остается очень широким. В последнее время успешно развивается гравиметрический анализ органических соединений.

Библиография

1. Аналитическая химия. Химические методы анализа/Под. ред. О.М. Петрухина. М.: Химия, 2012. 400 с. Ил.

2. Бончев П. Р. Введение в аналитическую химию. Л.: Химия,2008. 496 с.

3. Лурье Ю. Ю. Справочник по аналитической химии. М.: Химия,2009. 447 с.

4. Скуг Д., Уэст Д. Основы аналитической химии. М.: Мир,2009. Кн 1. 480 с.

5. Ушакова Н. Н., Николаева Е. Р., Моросанова С. А. Пособиепо аналитической химии. М.: МГУ, 2014. 150 с.

6. Фритц Д., Шенк Г. Количественный анализ. М.: Мир, 2008.557 с.

7. Янсон Э. Ю., Путнинь Я. К. Теоретические основыаналитической химии. М.: Высшая школа, 2010. 263

8. Васильев В.П., Аналитическая химия, ч.I. Гравиметрический и титриметрический методы анализа. - М., В.Ш. 2009.

Размещено на Allbest.ru


Подобные документы

  • Изучение электрохимических процессов с помощью техники обновления поверхности металла в растворе. Условия, от которых зависят значения тока растворения золота в присутствии сульфидсодержащей добавки. Адсорбция сульфид-ионов на поверхности золота.

    реферат [29,3 K], добавлен 30.09.2009

  • Сущность гравиметрического анализа. Метод отгонки, осаждения. Расчеты в гравиметрическом анализе. Относительная погрешность определения массы. Практическое применение. Определение воды. Определение кремниевой кислоты. Определение железа и алюминия.

    реферат [13,4 K], добавлен 24.07.2008

  • Химическая посуда и оборудование в гравиметрическом анализе: воронки; стеклянные палочки; часовые стекла; фарфоровые тигли. Аналитические весы, правила обращения. Операции гравиметрического анализа. Вычисление результатов гравиметрического определения.

    контрольная работа [1,3 M], добавлен 23.02.2011

  • Определение ионов Ва2+ с диметилсульфоназо-ДАЛ, с арсеназо III. Определение содержания ионов бария косвенным фотометрическим методом. Определение сульфатов кинетическим турбидиметрическим методом. Расчёт содержания ионов бария и сульфат-ионов в растворе.

    контрольная работа [21,4 K], добавлен 01.06.2015

  • Общие сведения о сульфатных соединениях. Получение водного раствора сульфатов. Опрессование, центрифугирование, вытеснение, вакуум-фильтрационный и лизиметрический метод. Методики количественного и качественного анализа наличия сульфата в растворе.

    реферат [19,2 K], добавлен 27.11.2002

  • Обзор методов качественного и количественного определения нитрит-ионов. Характеристика и особенности разнообразия методов определения нитрит-ионов. Метрологические особенности и погрешности тест-методов. Тестовое хемосорбционное определение нитрит-иона.

    курсовая работа [91,9 K], добавлен 30.10.2009

  • Сущность фотометрического метода анализа. Особенности применения фотоэлектроколориметра КФК-2 для определения нитрат-иона в воде, технология анализа. Организация его проведения, расчет необходимых затрат. Экономическое обоснование работы лаборатории.

    контрольная работа [1,6 M], добавлен 12.12.2010

  • Сущность гравиметрического анализа. Механизм реакции осаждения. Пути получения осаждаемой и гравиметрической форм химического вещества. Факторы влияния на растворимость кристаллических и аморфных осадков. Их загрязнение, фильтрование и промывание.

    курсовая работа [132,2 K], добавлен 24.11.2010

  • Элементы и их соединения в современной неорганической химии. Синтез сульфата кальция, его химические свойства. Проведение качественного анализа на ионы. Расчёт исходных реагентов и определение условий проведения синтеза, выбор приборов и оборудования.

    курсовая работа [31,4 K], добавлен 12.12.2009

  • Принципы отбора проб. Источники поступления загрязнений. Азот и его соединения. Кальций, магний, хлор, сульфат-ион. Определение ионов: водорода, аммония, нитрит-ионов, хлорид-ионов, Ca2+. Результаты химического анализа снежного покрова в г. Рязань.

    курсовая работа [224,5 K], добавлен 15.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.