Гомогенный и гетерогенный катализ

Исследование энергетического профиля каталитической реакции. Особенности активности ферментов катализа. Главный анализ влияния активаторов и ингибиторов. Изучение кинетики ферментативных воздействий. Характер использования уравнения Михаэлиса-Ментен.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 28.11.2016
Размер файла 95,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственное бюджетное образовательное учреждение высшего профессионального образования

"Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого"

Министерства здравоохранения Российской Федерации

Реферат

на тему: «Катализ. Гомогенный и гетерогенный катализ»

Выполнила:

Студент

Терешина Е.Н.

Научный руководитель:

Талдыкина Д.С.

В 1835 году Берцелиус впервые использовал термин «катализатор» для обозначения «веществ, которые способны пробудить сродство, дремлющее при данной температуре, одним лишь своим присутствием, а не в силу своего собственного сродства». Он не мог определить природу «каталитической силы» и удовлетворился указанием на то, что она представляет собой особое проявление обычных электрохимических свойств вещества. В 1895 г. Оствальд определил катализаторы как «вещества, изменяющие скорость реакции, но не влияющие на ее энергетические характеристики». Позднее он дал ещё одно определение, в котором указание на кинетический аспект каталитического процесса прозвучало в более явном виде: «Катализатор есть вещество, которое изменяет скорость химической реакции, но не входит в состав конечного продукта реакции».

В каждом из этих качественных определений катализ связывается с такими понятиями, как скорость и стехиометрия, которые поддаются количественной оценке. Действительно, эти две очень важные характеристики химического превращения можно выразить математически. Простая некатализируемая реакция протекает в соответствии с уравнением:

Скорость некатализируемой реакции Vн определяется по формуле:

Где А - реагирующее вещество, [А] - концентрация реагирующего вещества, t - время, k - константа скорости реакции.

Согласно приведенным выше опеределениям катализа, при протекании той же самой реакции в присутствии катализатора C последний входит как в правую, так и в левую части уравнения ре акции.

Кроме того, поскольку катализатор увеличивает скорость реакции, выражение для скорости катализируемой реакции должно включать концентрацию катализатора.

Катализ - это изменение скорости химической реакции в присутсвии веществ, которые после завершения реакции в неизменном виде и количестве.

Ингибитор - вещества вызывающие отрицательный катализ

Гомогенный катализ - катализатор и реакционная смесь находятся в одной фазе. Скорость пропорциональна количеству катализатора(омыление сложных эфиров) H2О2 + I > H2О + IO; H2О2 + IO > H2О + О2 + I В гомогенном каталитических реакциях скорость пропорциональна числу катализатора , хотя его количество в системе невелико . Гомогенный катализ в растворах и биологических средах может вызываться ионами водорода (кислотный катализ) и гидроксида (основный катализ).

Гетерогенный катализ - катализатор обычно твердый, а реакция протекает на его поверхности. Скорость зависит от площади и состояния катализатора, т.к. реакция проходит на активных центрах(водный раствор пероксида водорода взаимодействует с оксидом марганца 4).При гетерогенном катализе скорость реакции сильно зависит от площади и состояния поверхности катализатора , так как реакция происходит не на всей поверхности , а только на ее активных центрах .

В гомогенных каталитических реакциях скорость пропорциональная кол-ву катализатора, хотя его кол-во в системе не велико.

При гетерогенном катализе скорость реакции зависит от площади и состоянии поверхности катализатора, т.к. реакция происходит не на всей поверхности, а только на её активных центрах

Энергетический профиль каталитической реакции - это зависимость координаты реакции (насколько прошла реакция) от времени (при постоянном количестве катализатора) или от количества катализатора.

Обычно энергетический профиль пути реакции ( координата реакции) строится для стандартной температуры ( 298 К), минимально сложного состава окружающей среды ( раствора) и в отсутствии посторонних электрических, магнитных и электромагнитных полей; реакция проводится в темновых условиях, а не на свету.

Каталитическая активность ферментов - это способность ферментов увеличивать вероятность реакции, которую они обеспечивают.

Данная тема актуальна и интересна, так как связана с процессами, происходящими в человеческом организме.

Катализ.

Явление катализа - это изменение скорости реакции под действием некоторых веществ, которые к концу реакции остаются в химически неизменном виде.

Разновидности катализа:

1. положительный - под действием некоторых веществ скорость реакции увеличивается;

2. отрицательный: под действием некоторых веществ скорость реакции уменьшается, такие вещества называются ингибиторами;

3. автокатализ: катализатором являются продукты реакции;

4. гомогенный: катализатор и реагенты находятся в одной фазе (газ или раствор);

5. гетерогенный: катализатор и реагенты находятся в разных фазах;

6. ферментативный: катализатором является биологический фермент.

Принципы катализа:

1. катализатор принимает участие в химической реакции, образуя промежуточные продукты, но в конце реакции выделяется в химически неизменном виде. Физическое состояние катализатора, входящего в активный комплекс, может существенно изменяться, например, уменьшатся размеры зерен твердого катализатора, изменится структура поверхностных слоев;

2. катализатор не смещает положение равновесия, а лишь увеличивает скорость прямой и обратной реакции в равной степени;

3. действие катализатора является специфичным (селективным);

4. катализатор увеличивает скорость реакции за счет уменьшения Еакт, ведет реакцию по пути с меньшим энергетическим барьером.

Гомогенный катализ

Среди многочисленных каталитических реакций особое место занимает катализ в цепных реакциях.

«Цепными реакциями, как известно, называются такие химические и физические процессы, в которых образование в веществе или в смеси веществ некоторых активных частиц (активных центров) приводит к тому, что каждая из активных частиц вызывает целый ряд (цепь) последовательных превращений вещества» (Эмануэль, 1957).

Такой механизм развития процесса возможен благодаря тому, что активная частица взаимодействует с веществом, образуя не только продукты реакции, но и новую активную частицу (одну, две или более), способную к новой реакции превращения вещества, и т. д. Возникающая при этом цепь превращений вещества продолжается до тех пор, пока активная частица не исчезает из системы (происходит «гибель» активной частицы и обрыв цепи). Наиболее трудная стадия при этом - зарождение активных частиц (например, свободных радикалов), после же зарождения цепь превращений осуществляется легко.

Цепные реакции широко распространены в природе. Полимеризация, хлорирование, окисление и многие другие химические процессы идут по цепному, а точнее - по радикально-цепному (с участием радикалов) механизму.

Механизм окисления органических соединений (на ранних стадрях) в настоящее время установлен достаточно тщательно. Если обозначить окисляющееся вещество R-H (где Н - атом водорода, имеющий наименьшую прочность связи с остальной молекулой R), то этот механизм можно записать в следующем виде:

Катализаторы, например соединения металлов переменной валентности, могут оказывать влияние на любую из рассмотренных стадий процесса.Остановимся теперь на роли катализаторов в процессах вырожденного разветвления цепей. Взаимодействие гидроперекиси с металлом может приводить как к ускорению так и к торможению реакции окисления органических веществ соединениями металлов переменной валентности в зависимости от характера продуктов, образующихся при распаде гидроперекиси. Соединения металлов образуют с гидроперекисями комплекс, который распадается в «клетке» растворителя среды, если образующиеся при распаде комплекса радикалы успеют выйти из клетки, то они инициируют процесс (положительный катализ). Если же эти радикалы не успеют выйти и рекомбинируют в клетке в молекулярные неактивные продукты, то это приведет к замедлению радикально-цепного процесса (отрицательный катализ), поскольку в этом случае гидроперекись - потенциальный поставщик новых радикалов- расходуется вхолостую.

До сих пор мы рассматривали лишь неглубокие стадии процессов окисления; на более глубоких стадиях например в случае окисления углеводородов, образуются кислоты, спирты, кетоны, альдегиды, которые также могут реагировать с катализатором и служить дополнительным источником свободных радикалов в реакции, т. е. в этом случае будет налицо дополнительное вырожденное разветвление цепей.

Гетерогенный катализ

Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

1. Диффузия реагирующих веществ к поверхности твердого вещества.

2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их.

3. Химическая реакция между реагирующими молекулами.

4. Десорбция продуктов с поверхности катализатора.

5. Диффузия продукта с поверхности катализатора в общий поток.

Примером гетерогенного катализа является окисление SO в SO на катализаторе V O при производстве серной кислоты (контактный метод).

К сожалению, до сих пор, несмотря на достаточно большое число теорий и гипотез в области катализа, многие основополагающие открытия были сделаны случайно или в результате простого эмпирического подхода. Как известно, случайно был найден ртутный катализатор сульфирования ароматических углеводородов М. А. Ильинским, который нечаянно разбил ртутный термометр: ртуть попала в реактор, и реакция пошла. Аналогичным образом были обнаружены теперь всем хорошо известные, а в свое время открывшие новую эру в процессе полимеризации катализаторы стереоспецифической полимеризации Циглера.

Естественно, что такой путь развития учения о катализе не соответствует современному уровню науки, и именно этим объясняется повышенный интерес к изучению элементарных стадий процессов в гетерогенно-каталитических реакциях. Эти исследования - прелюдия для создания строго научных основ подбора высокоэффективных катализаторов.

Во многих случаях роль гетерогенных катализаторов в процессе окисления сводится к адсорбции органического соединения и кислорода с образованием на поверхности катализатора адсорбированного комплекса этих веществ. Такой комплекс разрыхляет связи компонентов и делает их более реакционноспособными. В некоторых случаях катализатор адсорбирует лишь один компонент, который диссоциирует на радикалы. Например, пропилен на закиси меди диссоциирует с образованием аллильного радикала , легко вступающего затем в реакцию с кислородом.

Выяснилось, что каталитическая активность металлов переменной валентности в значительной мере зависит от заполнения d-орбиталей в катионах окислов металлов.

По каталитической- активности в реакции разложения многих гидроперекисей соединения металлов располагаются следующим ря-

Мы рассмотрели один из возмжных путей инициирования процесса - взаимодействие гидроперекиси с катализатором. Однако в случае окисления реакция гетерогенного инциирования цепей может протекать как путем распада на радикалы гидроперекиси, так и путем взаимодействия углеводорода с кислородом, активированным поверхностью катализатора. Инициирование цепей может быть обусловлено участием заряженной формы органического соединения RH+, образующегося при взаимодействии RH с катализатором. Так обстоит дело с катализом в реакциях инициирования (зарождения и разветвления) цепей. Роль гетерогенных катализаторов в реакциях продолжения цепи особенно четко подчеркивается изменением скорости и направления изомеризации перекисных радикалов.

Энергетический профиль каталитической реакции.

Энергетический профиль реакции - это кривая, которая показывает зависимость координаты реакции (насколько прошла реакция) от времени (при постоянном количестве катализатора) или от количества катализатора.

В присутствии катализатора реакция протекает в несколько стадий:

1.

2.

3.

При условии k3>>k1скорость образования продуктов можно выразить через концентрации реагентов и катализатора:

Особенности каталитической активности ферментов.

Практически все биохимические реакции как у простейших одноклеточных, так и у растений и животных носят каталитический характер. В качестве катализаторов биохимических реакций выступают ферменты. каталитический фермент активатор ингибитор

Ферменты (энзимы) - это белковые молекулы, которые катализируют химические реакции в живых системах.

Каталитической активностью обладает не вся молекула фермента, а лишь определенный ее участок, называемый активным центром. Субстрат, попадая в активный центр, активируется и претерпевает строго определенные химические превращения. Наряду с активным центром в структуре фермента имеется аллостерический центр, назначение которого узнавать субстрат и способствовать его размещению в активном центре.

Ферменты по химическому строению могут быть разделены на простые и сложные. У простых ферментов активный центр сформирован только белковой молекулой, а у сложных активный центр содержит небелковую составляющую, обеспечивающую каталитическую активность фермента. В сложных ферментах металло-протеинах (цитохромы, карбоангидраза, нитрогеназа, гемоглобин и др.) небелковая составляющая называется кофактором. Кофактор содержит катионы d-металлов, прочно (ковалентно) связанные с белком. В тех сложных ферментах, в которых небелковый фрагмент удерживается белком в основном за счет межмолекулярных взаимодействий и поэтому обычно слабо связан, он называется коферментом. Коферментами являются сложные органические соединения: НАД, ФАД, KoQ (разд. 9.3.3) и кофермент А(разд. 19.2.3).

В ряде случаев молекулы ферментов, катализирующие одну и ту же реакцию, но в разных тканях, имеют отличия в составе белкового компонента, тогда их называют изоферментами (изоэнзимами). Например, лактатдегидрогеназа, окисляющая молочную кислоту, состоит из 5 изоферментов. Изменение соотношения изо-ферментов в отдельных тканях и органах является одним из способов регуляции действия ферментов в организме.

Ферменты и их каталитическая активность характеризуются следующими специфическими свойствами.

Высокая каталитическая эффективность. Отличительной особенностью любого фермента является его чрезвычайно высокая каталитическая эффективность. Так, время полупревращения для реакции разложения мочевины при температуре 25 °С составляет 109 с, а в присутствии фермента уреазы оно снижается до 10~4 с, т. е. уменьшается в 1013 раз. Каталитическая активность ферментов во много раз превосходит активность обычных катализаторов.

Высокая специфичность. Каждый фермент катализирует только определенную химическую реакцию. При этом некоторые ферменты практически полностью специфичны только для определенного субстрата и не оказывают каталитического действия на вещества, молекулы которых очень близки по строению молекуле субстрата. Например, фермент уреаза чрезвычайно эффективно катализирует гидролиз мочевины, но не катализирует гидролиз замещенных мочевин (например, N-метилмочевины). Для объяснения такой высокой специфичности используется теория ключ в замке. Согласно этой теории структура активного центра фермента является точным шаблоном структуры молекулы субстрата (табл. 5.1), который в результате взаимодействия с ферментом превращается в продукты реакции.

Другой случай представляют собой ферменты со сравнительно широкой специфичностью в отношении субстрата. Так, ферменты фосфатазы способны катализировать дефосфорилирование (отделение остатков фосфорной кислоты) широкого спектра фосфатов вне зависимости от их состава. Это объясняется теорией индуцированной приспособляемости фермента и субстрата. Согласно этой теории субстрат, взаимодействуя с аллостерическим центром фермента, вызывает изменение конформации фермента, и в то же время в молекуле субстрата также происходят некоторые необходимые изменения. В результате индуцированной приспособляемости фермента и субстрата формируется переходный комплекс фермент - субстрат, который в дальнейшем распадается на фермент и продукты реакции (табл. 5.1).

Вследствие высокой специфичности ферментов в обратимых процессах при определенных условиях они обычно увеличивают скорость только реакции, идущей в нужном направлении. В этом заключается одно из отличий ферментативного катализа от простого катализа.

Необходимость строго определенных условий. Ферменты проявляют наивысшую каталитическую эффективность при определенной температуре (36-38 °С) (табл. 5.1) и при определенном значении показателя кислотности среды рН (разд. 7.5). При температуре выше оптимальной начинается инактивация белковой молекулы вследствие изменения ее конформации, т. е. пространственной организации молекулы. При более низкой температуре протекание ферментативной реакции может затрудняться, например, из-за увеличения вязкости клеточных и межклеточных жидкостей.

Для каждой ферментативной реакции существует оптимальное значение рН среды, причем отклонение рН в любую сторону от этого значения приводит к резкому снижению активности. Зависимость ферментативной реакции от рН определяется кислотно-основными свойствами белковой молекулы, а также изменением ее конформации вследствие изменений в ионизации отдельных групп вблизи активного центра.

Влияние активаторов и ингибиторов. В организме для регуляции ферментативных процессов используются активаторы и ингибиторы. Активаторами ферментов часто бывают катионы металлов: Mg2+, Mn2+, Zn2+, Со2+, К+, а иногда - анион С1 , которые, реагируя с ионизированными группами фермента, облегчают образование фермент-субстратного комплекса.

Важную роль в действии фермента играет аллостерическая регуляция его активности. В основе ее лежит взаимодействие фермента с молекулой определенного вещества, в результате изменяется структура фермента, что приводит к увеличению либо снижению каталитической активности фермента.

Ингибиторы тормозят действие ферментов, при этом следует различать обратимое и необратимое ингибирование фермента. Обратимое ингибирование ферментов наблюдается при взаимодействии с катионами металлов-токсикантов: Hg2+ , Pb2+ , Cd2+ , As3+ (разд. 10.5) или с ингибиторами белковой природы, которые за счет белок-белковых взаимодействий закрывают или инактивируют активный центр ферментов. При обратимом ингибировании ингибитор находится в равновесии с ферментом и его действие можно устранить с помощью антидотов или избытка субстрата.

При необратимом торможении ингибитор, обладающий структурным сходством с субстратом, блокирует активный центр фермента, надолго выводя его из строя. К таким веществам относятся многие инсектициды и отравляющие вещества.

В организме вместо инактивированных молекул фермента синтезируются новые молекулы. За счет этого организм реализует еще одну возможность регулирования хода ферментативных процессов. Особенности кинетики ферментативных реакции. Для каждой ферментативной реакции промежуточной стадией является присоединение к активному центру фермента (Е) молекулы субстрата (St) с возникновением фермент-субстратного комплекса ([ESt]), который в дальнейшем распадается на продукты реакции (Р) и молекулу фермента.

Уравнение Михаэлиса-Ментен и его анализ

Уравнемние Михаэмлиса -- Мемнтен -- основное уравнение ферментативной кинетики, описывает зависимость скорости реакции, катализируемой ферментом, от концентрации субстрата.

Уравнение названо в честь физикохимиков Леонора Михаэлиса и Мод Леоноры Ментен, опубликовавших в в 1913 году статью, в которой они провели математический анализ ферментативной кинетики.

Уравнение имеет вид:

Vmax - максимальная скорость реакции

KM - константа Михаэлиса.

[S] - концентрация субстрата.

Наиболее прост для анализа тот случай, когда носитель не накладывает ограничения на диффузию субстрата и характер ингибирования целиком определяется распределением субстрата и ингибитора между матрицей и раствором. Если ингибитор и полимерный носитель одноименно заряжены, то степень ингибирования снижается (по сравнению с ситуацией в гомогенном растворе), а если они несут на себе заряды противоположного знака, то степень ингибирования возрастает. Если в последнем случае субстрат имеет одинаковый заряд с носителем, то степень ингибирования еще более увеличивается. В данном изложении не будут рассмотрены конкретные примеры случаи конкурентного и неконкурентного ингибирования, ингибирования продуктом реакции и т. п. Читатель может это проделать сам в качестве упражнения и вывести соответствующие математические выражения. Анализ этих систем показывает, что во всех случаях кинетика действия иммобилизованных ферментов, осложненная ингибированием, описывается уравнением Михаэлиса -- Ментен.?[c.113]

Теперь обратимся к константе Михаэлиса К . Она влияет прежде всего на диапазон линейности сигнала. В идеальном случае связь между выходным сигналом и концентрацией определяемого вещества должна быть линейной. В общем виде связь отражается в величине (или кажущейся К ) фермента. Анализ уравнения Михаэлиса-Ментен показывает, что линейность сохраняется вплоть до концентраций более. 0,2 К , хотя важное значение имеют другие факторы, такие как иммобилизация фермента или наличие мембраны. Отношение двух величин есть константа?[c.100]

В отдельных случаях кинетические исследования ферментативных реакций удобно проводить в условиях избытка фермента по сравнению с субстратом (например, при малой растворимости субстрата в воде, или при высоком молекулярном весе субстрата). Детальный кинетический анализ подобного рода систем проводится в главе 9. Здесь отметим только, что уравнение скорости ферментативной реакции, протекающей в режиме установившегося равновесия в условиях [Е]о > [SJo, является симметричным классическому уравнению Михаэлиса -- Ментен относительно концентраций реагентов. Так, при избытке фермента скорость реакции имеет первы.й порядок по концентрации субстрата, и смешанный -- по концентрации фермента

Использованная литература

1) М.Бендер, Р. Бергерон, М. Комияма. «Биоорганическая химия ферментативного катализа».

2) Крылов О.В. Гетерогенный катализ

3) Габриелян О.С, Настольная книга учителя химии: 10 кл., М., 2001;

Размещено на Allbest.ru


Подобные документы

  • Общие теории гомогенного катализа. Стадии процесса катализа и скорость реакции. Кинетика каталитической реакции диспропорционирования пероксида водорода в присутствии различных количеств катализатора Fe2+, влияние pH на скорость протекания реакции.

    контрольная работа [1,6 M], добавлен 18.09.2012

  • Общие положения и закономерности катализа. Особенности и значение гомогенного, кислотного и основного катализа. Гомогенно-каталитические реакции, катализируемые комплексными соединениями. Специфика применения ферментативного и гетерогенного катализа.

    реферат [51,3 K], добавлен 08.06.2011

  • Видные деятели химии о катализе. Немного о промышленном катализе. Роль катализа в экологии. Энергетический барьер. Прохождение через энергетический барьер. Гомогенный катализ. Гетерогенный катализ. Катализ в биохимии.

    курсовая работа [35,3 K], добавлен 26.01.2005

  • Правило Вант-Гоффа. Уравнение Аррениуса и его применение. Теория активных столкновений реагирующих молекул. Основы теории переходного состояния. Кинетика гетерогенных реакций. Особенности гетерогенных процессов. Гомогенный и гетерогенный катализ.

    лекция [182,9 K], добавлен 28.02.2009

  • Скорость химической реакции. Классификация каталитических процессов. Гомогенный катализ. Кислотный катализ в растворе. Энергетические профили некаталитического и каталитического маршрутов химической реакции. Активированный комплекс типа Аррениуса.

    реферат [151,6 K], добавлен 30.01.2009

  • Катализаторы-металлы, смешанные и полифункциональные катализаторы гетерогенного катализа. Требования к катализатору. Теории гетерогенного катализа. Мультиплексная и электронная теории. Теория активных ансамблей. Катализ в переработке природного газа.

    курсовая работа [637,0 K], добавлен 06.05.2014

  • Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.

    презентация [2,2 M], добавлен 19.10.2014

  • Природа и внутреннее строение ферментов. Рассмотрение кинетических закономерностей односубстратных ферментативных реакций, осложненных ингибированием. Исследование кинетики реакции окисления сукцината натрия в фумарат натрия под действием сукционимидазы.

    курсовая работа [407,3 K], добавлен 13.10.2011

  • Понятие биологических катализаторов, действие ферментов в живых системах и их классификация. Факторы, влияющие на активность биологических катализаторов. Вещества, называющиеся коферментами. Кинетика ферментативного катализа, уравнение Михаэлиса-Ментена.

    презентация [943,7 K], добавлен 03.04.2014

  • Функционалы нелинейных кинетических моделей. Схема Михаэлиса-Ментен и случай глобальной неидентифицируемости. Каталитический крекинг в нефтепереработке, аморфные и кристаллические (цеолиты) алюмосиликаты. Скелетная изомеризация парафинов, алкилирование.

    реферат [74,7 K], добавлен 28.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.