Деаэрация питательной воды

Необходимость удаления газообразований из жидкости. Процесс удаления из воды растворенных газов. Деаэрация питательной воды в котельной установке. Способы деаэрации воды и конструктивное выполнение деаэраторов. Конструкция деаэрационной колонки.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 28.05.2016
Размер файла 398,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Деаэрация питательной воды тепловых сетей является обязательной для всех котельных. Деаэраторы предназначены для удаления из воды растворенных в ней неконденсирующихся газов. Присутствие в питательной воде кислорода и углекислоты приводят к коррозии питательных трубопроводов, кипятильных труб, барабанов котлов и сетевых трубопроводов, что может привести к тяжелой аварии. Наличие даже таких инертных газов, как азот, также крайне нежелательно, оно препятствует теплопередаче и снижает тепло производительность подогревателей.

Необходимость удаления газообразований из жидкости связана с тем, что растворенные в воде газы, такие, как кислород и углекислый газ, существенно ускоряют процесс коррозии элементов отопительной системы.

Наличие в воде кислорода ведет к коррозии, углекислый газ усиливает коррозионное действие кислорода и, помимо этого, углекислота обладает собственным коррозионным эффектом.

За счет удаления этих газов из воды достигается существенное повышение срока службы как отдельных узлов конструкции, так и всей отопительной системы в целом. Стоит учитывать, что для оснащения отопительной системы деаэратором необходима достаточно сложная подготовка проекта устройства и использование современного оборудования.

1. Деаэрация питательной воды

Процесс удаления из воды растворенных газов называется дегазацией, или деаэрацией. В настоящее время известно несколько способов деаэрации -- термический, химический, электромагнитный и др.

Наибольшее распространение получил термический способ деаэрации воды, основанный на том, что растворимость газов в воде с повышением ее температуры уменьшается, а при температуре ее кипения газы почти полностью удаляются из воды. Таким способом газы удаляются из воды в специальных устройствах-- термических деаэраторах. Существует несколько типов термических деаэраторов.

В паровых котельных применяют смешивающие деаэраторы атмосферного типа. Такой деаэратор состоит из горизонтального цилиндрического бака 1 и установленной на нем вертикальной колонки 2 диаметром 1--2 м и высотой 1,5-- 2 м. Деаэраторный бак, который часто называют баком-аккумулятором, предназначен для сбора и хранения дегазированной воды и обычно является питательным баком.

Принцип работы деаэратора заключается в следующем.

Вода, подлежащая дегазации, подается в верхнюю часть колонки. Греющий пар поступает в колонку снизу и, поднимаясь, соприкасается с водой, движущейся ему навстречу. При движении вниз вода проходит через систему специально установленных в колонке дырчатых листов (тарелок), разбиваясь на мелкие струйки. В результате непосредственного контакта с паром вода нагревается до кипения.

Растворенные газы выделяются из нее и вместе с небольшим количеством несконденсировавшегося пара (выпар) отводятся через верхний штуцер колонки, а деаэрированная вода собирается внизу в баке. Давление в колонке атмосферного деаэратора поддерживается в пределах 105--120 кПа, а температура воды -- 102--104°С.

Для повышения эффекта деаэрации применяют продувку (барботирование) воды в баке паром. Для этого в нем размещают барботажное устройство -- дырчатые трубы или коробку с дырчатыми листами, через которые подается пар с давлением выше давления пара, поступающего в колонку.

Для обеспечения нормальной работы деаэратор оборудуется различными запорно-регулирующими устройствами, водоуказательными стеклами, манометром и другими приборами.

Кроме деаэраторов атмосферного типа применяют деаэраторы повышенного давления (0,6--0,7 МПа) на тепловых электростанциях и вакуумные с давлением ниже атмосферного (в котельных с водогрейными котлами). Так как в водогрейной котельной отсутствует пар, дегазация осуществляется за счет вакуума, создаваемого водоструйным эжектором.

Вакуумный деаэратор, как и атмосферный, состоит из бака - аккумулятора и колонки.

Схема вакуум-деаэраторной установки показана на рис.

Вода после химической водоподготовки проходит через охладитель выпара поступает в колонку деаэратора. Из колонки вода стекает в бак-аккумулятор, где она подогревается до кипения горячей сетевой водой, циркулирующей в змеевике, который установлен внутри бака-аккумулятора.

Такие деаэраторы работают при давлении в среднем 20-- 30 кПа, чему соответствует температура кипения воды около 60--70 °С. Из деаэрационного бака-аккумулятора вода подается подпиточными насосами во всасывающую магистраль сетевых насосов и частично отводится к эжектору, с помощью которого создается вакуум в деаэраторе. Вода в деаэратор подается за счет атмосферного давления (поскольку в деаэраторе разрежение), а в некоторых случаях специальным насосом.

Рисунок 1 Схема вакуумной дегазации для водогрейной котельной 1 -- расходный бак; 2 -- дегазаторный бак; 3 --эжектор; 4 -- охладитель выпара; 5 -- вода после химводоочистки; 6--горячая вода

2. Деаэрация питательной воды в котельной установке

Деаэрацией питательной воды в котельной называется освобождение питательной воды от растворенного в ней воздуха, в состав которого входят кислород и двуокись углерода. Будучи растворенными в воде, кислород и двуокись углерода вызывают коррозию питательных трубопроводов и поверхностей нагрева котла, вследствие чего оборудование котла выходит из строя.

Существует ряд различных устройств для деаэрации питательной воды. Наибольшее распространение получили термические деаэраторы атмосферного типа низкого давления (0,02-0,025 МПа) и повышенного давления (0,6 МПа), а также вакуумные с давлением ниже атмосферного. Последние применяют в котельных с водогрейными котлами, так как в этих котельных отсутствует пар и дегазация питательной воды осуществляется за счет вакуума, создаваемого водоструйными эжекторами.

Рисунок 2 Атмосферный Деаэратор смешивающего типа с Охладителем выпара 1 -- бак (аккумулятор), 2 -- выпуск питательной воды из бака, 5 -- водоуказательное стекло, 4 -- манометр, 5, 6 и 12 -- тарелки, 7 -- спуск воды в дренаж, 8 -- автоматический регулятор подачи химически очищенной воды, 9 -- охладитель пара, 10 -- выпуск пара в атмосферу, 11 я 15 -- трубы, 13 -- деаэраторная колонка, 14 -- парораспределитель, 16 -- впуск воды в гидравлический затвор, 17 -- гидравлический затвор, 18 -- выпуск лишней воды из гидравлического затвора

Термический деаэратор служит для удаления из питательной воды растворенного в ней кислорода и двуокиси углерода путем нагрева ее до температуры кипения. На рис. 2 показана схема работы атмосферного деаэратора смешивающего типа. Деаэратор состоит из бака 1 и колонки 13, внутри которой установлен ряд распределительных тарелок 5, 6 и 12. Питательная вода (конденсат) от насосов поступает в верхнюю часть деаэратора на распределительную тарелку 12; по другому трубопроводу через регулятор 8 на тарелку 12 подводится в качестве добавки химически очищенная вода; с тарелки питательная вода отдельными и равномерными струйками распределяется по всей окружности деаэраторной колонки и стекает вниз последовательно через ряд расположенных одна под другой промежуточных тарелок 5 и 6 с мелкими отверстиями.

Пар для подогрева воды вводится в деаэратор по трубе 15 к парораспределитель 14 снизу под водяную завесу, образующуюся при стекании воды с тарелки на тарелку, и, расходясь во все стороны, поднимается вверх, навстречу питательной воде, нагревая ее до 104 -- 106°С, что соответствует избыточному давлению в деаэраторе 0,02 - 0,025 МПа (0,20 - 0,25 кгс/см2).

При этой температуре воздух выделяется из воды и вместе с остатком несконденсировавшегося пара уходит через вестовую трубу 11, расположенную в верхней части деаэрационной головки, непосредственно в атмосферу или охладитель пара 9.

Освобожденная от кислорода и подогретая вода выливается в сборный бак 1, расположенный под колонкой деаэратора, откуда расходуется для питания котлов.

Во избежание значительного повышения давления в деаэраторе на нем устанавливают два гидрозатвора, а также гидравлический затвор 17 на случай образования в нем разрежения. При превышении давления может произойти взрыв деаэратора, а при разрежении атмосферное давление может смять его.

Деаэратор снабжают водоуказательным стеклом 3 с тремя кранами -- паровым, водяным и продувочным, регулятором уровня воды в баке, регулятором давления и необходимой измерительной аппаратурой. Для надежной работы питательных насосов деаэратор устанавливают на высоте не менее 7 м над насосом.

Воду обескислороживают также фильтрованием ее через слой обыкновенных стальных стружек, которые окисляются из-за растворенного в воде кислорода.

2.1 Назначение деаэраторной установки

Назначение большинства элементов, тепловой схемы установки в общих чертах становится понятным после знакомства с паросиловым циклами. Деаэратор по своему назначению несколько отличается от остальных элементов схемы. С одной стороны его можно рассматривать, как промежуточный подогреватель смешивающегося типа, поскольку в него поступает горячий пар из второго отбора турбины и дренаж промежуточного пароперегревателя, а температура основного конденсата после прохождения через деаэратор увеличивается. Однако основное назначение деаэратора - удаление газообразных примесей из теплоносителя.

В воде конденсатно-питательного тракта могут присутствовать различные примеси: газообразные (кислород, углекислота, азот, аммиак,), твердые (продукты коррозии конструкционных материалов), естественные (хлориды, кремнекислоты и другие).

Рассмотрим пути поступления примесей в цикл. Газообразные примеси поступают в основном за счет присосов воздуха в конденсаторе и в первых ПНД (подогреватели низкого давления), работающих при давлениях ниже атмосферного. Продукты коррозии поступают в воду в результате взаимодействия конструкционных материалов с водной средой, образования окислов металлов и перехода их в воду. Поступление естественных примесей происходит в основном в конденсаторе за счет присосов охлаждающей воды в неплотностях теплообменной поверхности.

Давление охлаждающей воды всегда выше давления конденсирующего пара в конденсаторе, и при наличии неплотностей происходит перетек охлаждающей воды в конденсат. Практически присосы охлаждающей воды всегда имеют место, если даже с завода конденсатор поставлен достаточно плотным. В процессе эксплуатации в результате протекания коррозионных, эрозионных и других процессов происходит нарушение плотности, и присосы охлаждающей воды увеличиваются. Охлаждающая вода расходуется в больших количествах (для этой цели и создано водохранилище) и никакой предварительной обработке не подвергается. Поэтому даже незначительные присосы охлаждающей воды привносят значительные количества примесей.

Продукты коррозии, а также некоторые естественные примеси (например, кальций и магний) выпадают в отложения на теплопередающих поверхностях, что приводит к уменьшению коэффициента теплопередачи и возникновению под отложениями местных, наиболее опасных видов коррозионных повреждений. Из газовых примесей наибольшую опасность представляют кислород и углекислота.

Поступление углекислоты с присосами воздуха незначительно. Она образуется в конденсатно-питательном тракте за счет термического разложения бикарбонатов, поступающих с присосами технической воды, и последующего гидролиза карбонатов.

Пример химической реакции:

разложение:

гидролиз:

Кислород и углекислота являются коррозионно-агрессивнымиагентами.

Для уменьшения коррозионных процессов, поверхности нагрева ПНД часто приходится выполняются из коррозионно-стойких материалов - латунных сплавов, нержавеющих аустенитных сталей и высоконикелевых сплавов.

Для того чтобы иметь возможность выполнять ПНД из более дешевых углеродистых сталей, необходимо удалить из воды коррозионно-агрессивные газы и, в первую очередь, кислород и углекислоту. Для этих целей применяют деаэраторная установку, делящую весь тракт от конденсатора до барабана сепаратора, на конденсатный и питательный тракты.

2.2 Способы деаэрации воды и конструктивное выполнение деаэраторов

Для удаления газов из воды могут быть использованы химические и термические методы. Химические методы основаны на избирательном взаимодействии удаляемых газов с дозируемыми реагентами. Практически химический метод применим только для удаления кислорода. Для этого используют гидразин, и то не как самостоятельный метод, а для удаления микро количеств кислорода. Вместе с гидразином в воду могут поступать другие примеси. Кроме того, гидразин является токсичным веществом. На паротурбинных электростанциях применяют в основном термическую деаэрацию. Термические деаэраторы позволяют удалять из воды любые растворенные в воде газы и не вносят никаких дополнительных примесей в воду.

Рассмотрим принцип работы термического деаэратора:

В соответствии с законом Генри количество растворенного в воде газа, например кислорода - Go2, пропорционально парциальному давлению этого газа над жидкостью.

(1)

где: Go2 - количество растворенного в воде кислорода; 2 - коэффициент абсорбции кислорода жидкостью или коэффициент растворимости кислорода, зависящий от температуры; 2 - парциальное давление кислорода над жидкостью.

Суммарное давление над уровнем воды:

(2)

где:

Рн2о - парциальное давление водяных паров; Рг - сумма парциальных давлений других, кроме кислорода, газов, растворенных в воде.

С учетом (2) уравнение (1) можно записать в виде:

(3)

Нагревом воды можно уменьшать содержания кислорода, поскольку коэффициент растворимости (ko2) уменьшается с ростом температуры. Несмотря на уменьшение количества кислорода в воде с повышением температуры, оставшаяся его часть значительна. Так, при изменении температуры воды от 20 до 50 °С количество растворенного в воде кислорода уменьшается с 9 до 5 мг/кг. Оставшаяся часть кислорода (5 мг/кг) в сотни раз превышает допустимые уровни.

Из уравнения (3) следует, что для сведения к нулю содержания кислорода в воде необходимо выполнение условия:

(4)

Это условие выполняется при повышении температуры воды до температуры насыщения, т. е. до кипения. При температуре кипения давление над водой определяется давлением насыщенных паров воды, а количество растворенного в воде кислорода равно нулю. Устройство, где происходит прогрев воды до температуры кипения с целью удаления газов, называется деаэратором. Подогрев воды в деаэраторе осуществляется за счет отборного пара из турбины.

Для надежного удаления из воды газов необходимо прогревать всю массу воды до температуры насыщения. Недогрев воды на 1-3°С увеличивает остаточное содержание газов в воде. (см. рис.3).

Для выполнения условия (4) необходимо постоянно удалять выделившиеся из воды газы. Отводимая из деаэратора парогазовая смесь называется выпаром. Чем больше выпар, тем эффективнее будет работать деаэратор.

Рисунок 3 Зависимость остаточного содержания кислорода от температуры деаэрации и недогрева воды

Термические деаэраторы подразделятся по назначению на: 1) деаэраторы питательной воды паровых котлов; 2) деаэраторы добавочной воды и обратного конденсата внешних потребителей; 3) деаэраторы подпиточной воды тепловых сетей.

Наибольшее значение для работы электростанции имеют деаэраторы питательной воды паровых котлов (ДПВ).

Деаэраторы могут быть смешивающие, поверхностные и перегретой воды. Наибольшее распространение получили смешивающие деаэраторы. В контуре реакторной установки РБМК используются смешивающие деаэраторы. Поверхностные деаэраторы используются в том случае, еслигреющий пар изменяет материальный баланс установки. Так, например поверхностные деаэраторы устанавливаются на линии подпитки первого контура АЭС с ВВЭР-1000. В деаэраторах перегретой воды подаваемая на деаэрацию вода подогревается в теплообменнике до температуры, превышающей температуру насыщения в деаэраторе. Избыточная теплота этой воды расходуется на парообразование. Недостатком деаэратора перегретой воды является сложность осуществления одновременной деаэрации потоков воды с разными энтальпиями, поэтому они не получили практического применения.

Деаэраторы подразделяются по давлению на вакуумные (работающие при давлении ниже атмосферного7,5-50кПа), атмосферные (работающие при давлении0, 12МПа), повышенного давления (работающие при давлении 0, 6- 0, 8МПа, а на АЭС-до1, 25МПа). Вакуумные деаэраторы устанавливаются на подпитке теплосети, атмосферные - на линии подачи добавочной воды и деаэраторы повышенного давления - на основном потоке конденсата.

Само деаэраторная установка представляет из себя деаэрационную колонку, в которой подогреваемая вода стекает сверху вниз, а навстречу ей снизу подается греющий пар. Деаэрационная колонка устанавливается на бак- аккумулятор питательной воды, куда стекает продеаэрированная вода. В эксплуатации под деаэратором понимают совокупность деаэрационных колонн и деаэраторного бака, на который они устанавливаются. Для улучшения процесса деаэрации в деаэраторах смешивающего типа необходимо обеспечить большую поверхность контакта подогреваемой среды с паром. Поэтому конструкции термических деаэраторов подразделяются, в первую очередь, по способу дробления воды. Различают деаэраторы: сопловые, с насадками, пленочные, струйные и барботажные. В сопловых деаэраторах распыление воды идет с помощью сопел. Сопловые, с насадкамии пленочные деаэраторы широкого распространения не получили, так как сопловые малоэффективны, а с насадками (установка большого количества металлических насадок) и пленочные (вода стекает в виде пленки по концентрическим стальным кольцам) дают дополнительное количество продуктов коррозии в воду. Широкое распространение получили струйные деаэраторы. Для увеличения времени контакта пара с водой и глубины разложения бикарбонатов струйную деаэрацию можно дополнить барботажной, подавая часть пара под уровень воды в деаэраторном баке. Пар, барботируя через воду, способствует более полному удалению газов.

2.3 Конструкция деаэрационной колонки

деаэраторный газ жидкость вода

Деаэрационная колонка (см. рис. 4) состоит из корпуса, кольцевого приемного короба, смесительного устройства, верхнего и нижнего блоков, коллекторов подвода греющего пара и горячих потоков дренажей.

Корпус представляет собой стальной цилиндр сварной конструкции с внутренним диаметром 2408 мм, изготовленный из листовой стали толщиной 12 мм, к которому приварена сферическая крышка. Корпус колонки приварен к деаэраторному баку (14).

В верхней части корпуса расположен кольцевой приемный короб (2) для приёма холодных потоков конденсата. Внутренняя обечайка короба в нижней части имеет прямоугольные окна, через которые конденсат поступает в смесительное устройство.

Смесительное устройство (3) предназначено для смешения холодных потоков конденсата, равномерного распределения их по периметру колонки и представляет собой короб, образованный внутренней обечайкой приемного короба и обечайкой смесительного устройства в верхней части, в которой имеются прямоугольные вырезы расположенные по всему периметру.

Верхний блок состоит из внутренней и наружных обечаек и перфорированного днища (4) (дырчатый щит), приваренного с низу. Для обеспечения жесткости конструкции равномерного распределения конденсата по всей поверхности дырчатого щита между обечайками приварены шесть перегородок с тремя полу отверстиями в нижней части каждой перегородки. В центральной части верхнего блока имеется съемный люк, который крепится болтами к кольцевому выступу дырчатого щита. Верхний блок прикреплен к корпусу колоны шестью косынками расположенными таким образом, что имеется возможность для свободного прохода пара по периферии. Нижний блок состоит из переливного листа (5) и барботажного устройства. С одной стороны переливной лист имеет вырез для слива воды в барботажное устройство, а в центре горловину (6) для прохода пара. В колонне переливной лист закреплен с помощью удерживающего каркаса.

Барботажное устройство состоит из перфорированного листа (7), четырех сливных труб (8) приваренных со стороны противоположной сегментному вырезу переливного листа, выступающего над ним на 100 мм паро-перепускного патрубка (9), поддона (10) и двух водо-перепускных труб (11) соединяющих барботажный лист и поддон. Нижний конец паро- перепускного патрубка опущен в поддон и при заполнение водой последнего образуется гидрозатвор. Заполнение гидрозатвора обеспечивается автоматически, при изменении расхода, подачей воды через водо- перепускные трубки с барботажного листа в поддон.

Под нижним блоком расположены коллектор подвода греющего пара (13) и коллекторы горячих потоков дренажей.

Коллектор греющего пара представляет собой перфорированную трубу Ш325Ч10 мм. Отверстия расположены семью рядами на нижней частиколлектора, что обеспечивает равномерное распределение пара по всему пространству колонки.

Коллекторы подвода дренажей представляют собой перфорированные трубы Ш108Ч6мм, вводы которых в колонку выполнены на одном уровне с коллектором греющего пара

Рисунок 4 Схема деаэрационной колонки

2.4 Описание процесса деаэрации

Холодные потоки конденсата через штуцера ввода (1) поступают в кольцевой приемный короб (2) и далее через прямоугольные окна на внутренней обечайке в смесительное устройство (3).

Из смесительного устройства при достижении определенного уровня, конденсат равномерным потоком по всему периметру поступает на перфорированное днище (4) верхнего блока.

Из верхнего блока конденсат пройдя через отверстия перфорированного днища, дробится на тонкие струи. Проходит через струйный отсек конденсат нагревается до температуры близкой к температуре насыщения и попадает на нижний блок. Сначала на переливной лист (5), затем через сегментный вырез переливного листа поступает на перфорированный лист (7) барботажного устройства. По барботажному листу вода движется слева направо и обрабатывается паром, проходящим через отверстия щита. Происходит нагрев до температуры насыщения и окончательное удаление растворенных газов. В конце барботажного листа вода через четыре сливные трубки (8), верхние концы которых, для обеспечения постоянного слоя воды, выступают на 100 мм над листом, поступает в нижнюю часть колонны и далее через сливную горловину (15) сливаются в деаэраторный бак (14).

Сливная горловина обеспечивает постоянный уровень воды в нижней части колонны перед поступлением ее в деаэраторный бак. Слив воды из сливных трубок происходит под этот уровень, что препятствует прохождению пара через сливные трубы в обход барботажного устройства.

Греющий пар из префорированного коллектора (12) подается под барботажный лист. Степень перфорации листа выбрана такой, что при минимальной нагрузке под листом создается устойчивая паровая подушка, исключающая провал воды через отверстия листа. На барботажном листе происходит интенсивная паровая обработка слоя воды, движущейся в сторону сливных труб и глубокая и стабильная дегазация.

Не сконденсировавшийся пар и выделившиеся из воды газы поднимаются вверх и через горловину (6) переливного листа поступают в струйный отсек. С увеличением производительности и расхода пара давление в паровой подушке возрастает, и пар в обход барботажного листа через паро- перепускной патрубок (9) гидрозатвора поступает в струйный отсек.

В струйном отсеке пар, двигаясь вверх, пересекает и омывает падающие вниз, с перфорированного днища струи воды. При этом происходит перемешивание воды с паром, подогрев ее до температуры, близкой ктемпературе насыщения при данном давлении в колонки и предварительная дегазация воды.

Конденсат греющего пара присоединяется к струям воды, а несконденсированный греющий пар и выделившейся из воды газ по периферии, через кольцевой зазор между корпусом и верхним блоком, проходят в верхнюю часть колонки, обеспечивая ее вентиляцию и подогрев встречных потоков воды, поступающих из смесительного устройства (3), и далее через штуцер выпара отводятся из колонки.

2.5 Общие требования, предъявляемые к деаэраторам

Емкость деаэраторных баков выбирается из расчета трехминутной работы питательных насосов после прекращения подачи воды в деаэратор. Уровень воды в деаэраторе должен быть определенным и контролироваться с помощью водомерного стекла. При достижении предельно допустимого уровня, избыток воды сливается через переливное устройство. Повышение уровня свыше максимально допустимого ухудшает работу деаэрационной колонки. Давление в деаэраторе необходимо поддерживать постоянным. Это связано с тем, что после деаэратора вода, нагретая до температуры насыщения, питательным насосом подается в питательную магистраль и далее в барабан сепаратор. При резком изменении давления в деаэраторе может произойти вскипание воды, и работа насоса нарушается. При изменении нагрузки на турбину давление пара в отборах изменится, изменится давление и в деаэраторе. Если турбина имеет регулируемые отборы пара, то деаэратор следует подключать к этому отбору. Применяют различные схемы присоединения деаэратора к отборам турбины в зависимости от его предназначения и типа электростанции. На ТЭСиспользуют следующие схемы включения (см. рис.5).

Деаэратор работает при постоянном давлении:

а) Предвключенная схема(см.рис.5, а). Деаэратор присоединяют через дроссельный регулирующий клапан к регенеративному отбору, питающему паром следующий за деаэратором по ходу воды поверхностный регенеративный подогреватель (ПВД).

б) Деаэратор на самостоятельном регенеративном отборе пара (см.рис. 3, б).

Деаэратор работает на скользящем давлении. (см. рис.5,в). Для обеспечения постоянства давления деаэратор по пару подсоединяется к нескольким отборам турбин. Постоянство давления в деаэраторе нарушает оптимальный подогрев питательной воды по ступеням. Но при недогреве воды, идущей в деаэратор, на 8-10 °С это влияние незначительно, и подогрев в деаэраторе можно рассматривать как общую ступень подогрева, тем более, что питаются они от одного и того же отбора пара.

Рисунок 5 Схемы включения деаэратора питательной воды: а) - предвключенная схема; б) - деаэратор как самостоятельная ступень регенерации; в - деаэратор на «скользящем» давлении; 1 - регулятор давления; 2 - ПВД

Заключение

По данным выполненной работы делаются следующие выводы:

Присутствие кислорода, углекислоты, как и других газов в питательной воде и в паре крайне нежелательно, поэтому необходима возможно более полная деаэрация питательной воды. Углекислота и кислород, способствуют коррозии конструкционных материалов. Углекислота непосредственно не вызывает коррозию, однако ее присутствие активизирует этот процесс. Наличие кислорода в воде сказывается на процессе электрохимической коррозии. В основном кислород ускоряет процесс коррозии, хотя при определенных условиях может тормозить его.

Деаэратор-это одно из важнейших устройств на электростанции, которое удаляет газообразные примеси из теплоносителя.

Из воды следует удалять коррозионно-агрессивные газы и, в первую очередь, кислород и углекислоту.

Наиболее эффективным способом деаэрации является термическая деаэрация, т.к. позволяет удалять из воды любые растворенные в воде газы и не вносят никаких дополнительных примесей в воду.

Деаэраторная установка состоит из деаэрационной колонки и деаэраторного бака, куда стекает продеаэрированная вода.

Благодаря своей конструкции деаэрационная колонка улучшает процесс деаэрации воды.

Процесс деаэрации - это совокупность физических и химических процессов, благодаря которым достигается основная цель работы деаэратора - удаление из воды коррозионно-агрессивных газов.

Основным требованием, предъявляемым к деаэраторам, является необходимость поддерживать постоянное давление в нем.

На основе сформулированных выводов можно утверждать, что цель работы достигнута.

Список использованной литературы

1. В.Я. Рыжкин. Тепловые электрические станции. Учебник для вузов/Под ред. В.Я. Гиршфельда. М.: Энергоатомиздат, 1987.

2. Баскаков А.П., Берг Б.В., Витт О.К. и др. Теплотехника: Учебник /Под ред. А.П. Баскакова. М.: Энергоатомиздат, 1991.

3. Тепловые и атомные электрические станции: Справочник/Под общ. ред. В.А. Григорьева и В.М. Зорина. М.: Энергоиздат, 1982.

4. Промышленная теплоэнергетика и теплотехника: Справочник/Под общ. ред. В.А. Григорьева и В.М. Зорина. М.: Энергоатомиздат, 1983.

5. Теплотехнический справочник/Под ред. В.Н. Юренева, П.Д. Лебедева. М.: Энергия, т.1, 1975, т.2, 1976.

Размещено на Allbest.ru


Подобные документы

  • Поступление газов в воду и необходимость их удаления. Предотвращение коррозии оборудования. Способы удаления газов из воды. Повышение эффективности дегазации путем десорбции. Технологические особенности деаэрации и влияние температуры. Виды аппаратов.

    презентация [13,9 M], добавлен 10.12.2013

  • Строение молекулы воды. Водородные связи между молекулами воды. Физические свойства воды. Жесткость как одно из свойств воды. Процесс очистки воды. Использованием воды, способы ее восстановления. Значимость воды для человека на сегодняшний день.

    презентация [672,3 K], добавлен 24.04.2012

  • Применение пленочных дегазаторов в технике водоподготовки для удаления газов. Основной конструктивный элемент термических деаэраторов для обескислороживания воды. Определение концентрации свободной углекислоты в воде. Принцип строения колец Рашига.

    реферат [1,5 M], добавлен 09.03.2011

  • Исследование основных загрязнителей оборотных вод и факторов, влияющих на качество воды. Характеристика методов удаления грубодисперсных примесей из воды, классификации очистных фильтров. Описания обессоливания воды в установках с неподвижным слоем.

    реферат [676,7 K], добавлен 11.10.2011

  • Классификация методов дегазации воды и теоретические основы процесса удаления углекислоты, сероводорода и кислорода. Установка обескислороживания с помощью ионообменника с палладием. Технология удаления метана из подземных вод вакуумным способом.

    реферат [562,3 K], добавлен 09.03.2011

  • Метод очистки воды путем изменения ее ионного состава вплоть до полного удаления растворенных примесей. Сополимеризация стирола и дивинилбензола. Понижение концентрации иона в растворе в результате его удержания ионитом. Понятие электронейтральности.

    презентация [1,6 M], добавлен 10.12.2013

  • Распределение воды в природе, ее биологическая роль и строение молекулы. Химические и физические свойства воды. Исследования способности воды к структурированию и влияния информации на форму ее кристаллов. Перспективы использования структурированной воды.

    реферат [641,8 K], добавлен 29.10.2013

  • Традиционные приемы хлорирования воды, содержащей фенолы. Общие недостатки аэраторов, построенных на принципе контакта пленки воды с воздухом. Дезодорация воды, удаление токсичных органических и минеральных микрозагрязнений. Аэрирование воды в пенном слое

    реферат [256,7 K], добавлен 26.01.2011

  • Классификация методов умягчения воды. Термический метод умягчения воды. Технологические схемы, конструктивные элементы установок реагентного умягчения воды. Термохимический метод умягчения воды. Особенности умягчения воды диализом, ее магнитная обработка.

    реферат [2,3 M], добавлен 09.03.2011

  • Условные показатели качества питьевой воды. Определение органических веществ в воде, ионов меди и свинца. Методы устранения жёсткости воды. Способы очистки воды. Приготовление рабочего раствора сернокислого калия. Очистка воды частичным замораживанием.

    практическая работа [36,6 K], добавлен 03.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.