Фотохимическое действие света

Понятие фотохимии как раздела химии и физики, в котором изучаются химические реакции, происходящие под действием света. Фотосинтез как пример фотохимических реакций. Исследование примеров фотохимического действия света, применение его основных свойств.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 23.05.2015
Размер файла 53,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

«Гродненский государственный аграрный университет»

РЕФЕРАТ

«Фотохимическое действие света»

Выполнила:

ИТФ, 1 курс, 2а группа

Сёмуха Анастасия Юрьевна

Проверил:

Забелин Николай Николаевич

Гродно, 2015

Введение

Оптика - раздел физики, который изучает явления, связанные с распространением электромагнитных волн преимущественно видимого или близких к нему диапазонов (инфракрасные и ультрафиолетовые излучения). Оптика описывает свойства света и объясняет связанные с ним явления.

Волновая оптика (или, как ещё говорят, физическая оптика) рассматривает свет как электро-магнитные волны. Явления интерференции и дифракции света служат опытным подтверждением его волновой природы.

Геометрическая оптика есть предельный случай волновой оптики. Геометрическая оптика - приближённая теория; она работает тем лучше, чем меньше длина световой волны по сравнению с характерными размерами препятствий. Волновая оптика объясняет законы геометрической оптики и устанавливает границы их применимости.

Свет -- электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра.

В физике свет изучается в разделе Оптика, может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов: частиц, обладающих определённой энергией и нулевой массой покоя.

Свет оказывает давление на препятствия, хотя и очень малое. Оно впервые было обнаружено и измерено русским физиком П.Н.Лебедевым.

Под действием света происходят также многие химические реакции.

Поглощение света может вызвать и некоторые химические процессы, состоящие обычно в распаде молекулы, поглотившей свет на части, за которым нередко следует ряд дальнейших химических превращений. Наибольшее значение имеет химический процесс, который разыгрывается под действием света в зеленых частях растений.

Как известно, дыхание всех живых существ сопровождается окислением углерода, входящего в состав их тел. Сгорание углерода (превращение его в СО2) сопровождается освобождением энергии, которая и используется животными при их движении. Точно так же главный источник энергии, используемый в технике, есть процесс сжигания топлива, т. е. опять-таки процесс образования СО2.

Обратный процесс расщепления СО2 происходит в зеленых частях растений под действием солнечного света, как фотохимический процесс. Расщепление углекислоты сопровождается дальнейшими химическими превращениями, приводящими в конце концов к образованию тех основных органических соединений, из которых построено тело растений и животных. Таким образом, этот «великий круговорот углерода» в природе осуществляется благодаря фотохимическому превращению. Энергия, затраченная при этом солнечным светом, запасается в виде внутренней энергии продуктов превращения и является главным запасом энергии, используемым до последнего времени человеком.

Важную роль в исследовании процесса расщепления СО2 под действием света играют исследования русского биолога Климентия Аркадьевича Тимирязева (1843--1920), который установил, что процесс этот связан с хлорофиллом растений, обусловливающим зеленую окраску листьев растений, и что он происходит по преимуществу под действием красного излучения солнечного спектра, которое наиболее сильно поглощаются хлорофиллом. Однако весь фотохимический процесс очень сложен, и, несмотря на успехи последних лет, позволившие выяснить отдельные этапы процесса, их последовательность и взаимосвязь еще недостаточно изучены.

Наряду с этим фотохимическим процессом, идущим в природе в гигантских масштабах, известно и множество других фотохимических превращений. Простым примером может служить фотохимический процесс выцветания многих красок, состоящий в окислении этих красок кислородом воздуха под действием света. Покрасив раствором некоторой краски (цианина) слой желатины, мы можем сохранять такую окрашенную пластинку довольно долго. Но если направить на нее интенсивный пучок света (от солнца или дугового фонаря), то пластинка в тех местах, куда падает свет, выцветает так быстро, что эти участки становятся бесцветными на глазах. Отбеливание холста, растянутого на солнцепеке, по существу представляет собой фотохимическое выцветание. Многие фотохимические процессы в настоящее время используются в технике для ускоренного получения тех или иных веществ. Большинство таких процессов идет особенно энергично под действием коротковолнового ультрафиолетового света. свет фотохимия фотосинтез

Глава 1. Фотохимия

Фотохимия - раздел химии, в котором изучаются химические реакции, происходящие под действием света. Фотохимия тесно связана с оптикой и оптическими излучениями. Первые фотохимические закономерности были установлены в 19 веке. Как самостоятельная область науки фотохимия оформилась в 1-й трети 20 в., после открытия закона Эйнштейна, ставшего основным в фотохимии. Молекула вещества при поглощении кванта света переходит из основного в возбуждённое состояние, в котором она и вступает в химическую реакцию. Продукты этой первичной реакции (собственно фотохимической) часто участвуют в различных вторичных реакциях, приводящих к образованию конечных продуктов. С этой точки зрения фотохимию. можно определить как химию возбуждённых молекул, образовавшихся при поглощении квантов света. Часто более или менее значительная часть возбуждённых молекул не вступает в фотохимическую реакцию, а возвращается в основное состояние в результате различного рода фотофизических процессов дезактивации. В ряде случаев эти процессы могут сопровождаться испусканием кванта света (флуоресценция или фосфоресценция). Отношение числа молекул, вступивших в фотохимическую реакцию, к числу поглощённых квантов света называются квантовым выходом фотохимической реакции. Квантовый выход первичной реакции не может быть больше единицы; обычно эта величина значительно меньше единицы из-за эффективной дезактивации. Вследствие темновых реакций общий квантовый выход может быть значительно больше единицы.

Глава 2. Фотохимическое действие света. Фотосинтез как пример фотохимических реакций

Любое превращение молекул есть химический процесс.

Химические процессы, протекающие под действием видимого света и ультрафиолетовых лучей, называются фотохимическими реакциями.

Световой энергии достаточно для расщепления многих молекул. В этом проявляется химическое действие света. К фотохимическим реакциям относятся: фотосинтез углеводов в растениях, распад бромистого серебра на светочувствительном слое фотопластинки, взаимодействие хлора с водородом на свету с образованием HCl и многое другое. Выцветание тканей на солнце и образование загара (потемнение кожи человека под воздействием ультрафиолетовых лучей) - это тоже примеры химического действия света.

Процесс фотосинтеза

Важнейшие химические реакции под действием света и солнца происходят во многих микроорганизмах, траве, зеленых листьях деревьев и растений, дающих нам пищу и кислород для дыхания. Листья поглощают из воздуха углекислый газ и расщепляют его молекулы на составные части: углерод и кислород. Происходит это в молекулах хлорофилла под действием красных лучей солнечного спектра. Этот процесс называется фотосинтезом.

Фотосинтез - основной процесс в биосфере, ведущий к запасанию энергии света в виде энергии химических связей восстановленных соединений (углеводов), образующихся из СО2 и Н2О. Суммарное уравнение фотосинтеза имеет вид:

Или

Фотосинтез может протекать только под действием света определенного спектрального состава. В изучении строения и значения хлорофилла видное место занимают работы великого русского ученого К.А.Тимирязева.

К. А. Тимирязев исследовал зависимость фотосинтеза от интенсивности света и его спектрального состава и при этом установил, что из углекислого газа, находящегося в воздухе, растения ассимилируют углерод за счет энергии солнечного света. Им было экспериментально подтверждено, что в красных и синих лучах, которые наиболее полно поглощаются хлорофиллом, процессы проходят эффективнее. Именно Тимирязеву принадлежит идея, что хлорофилл как физически, так и химически принимает участие в процессе фотосинтеза. Далее он развил свою теорию и опубликовал работу «Зависимость усвоения углерода от интенсивности света» в 1889 году. По сути, ученый на практике доказал, что процесс фотосинтеза подчиняется закону сохранения энергии и первому закону фотохимии.

Первый закон фотохимии (закон Гротгуса - Дрейпера): химически активны лишь те лучи, которые поглощаются реакционной смесью. Закон Гротгуса-Дрейпера непосредственно связывает химическое действия света с его поглощением веществом.

- начальная интенсивность светового потока (т.е. до прохождения поглощающего слоя);

- интенсивность светового потока после прохождения через слой вещества толщиной ;

- концентрация вещества, поглощающего свет;

- молярный коэффициент поглощения.

Наиболее важным законом, позволяющим разобраться в механизме фотохимических реакций, является второй закон фотохимии или закон квантовой эквивалентности Штарка-Эйнштейна: кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит от его частоты.

Кажется удивительным, что при всей важности фотосинтеза ученые так долго не приступали к его изучению. После эксперимента Ван Гельмонта, поставленного в XVII веке, наступило затишье, и лишь в 1905 году английский физиолог растений Фредерик Блэкман (1866-1947) провел исследования и установил основные процессы фотосинтеза. Он показал, что фотосинтез начинается при слабом освещении, что скорость фотосинтеза возрастает с увеличением светового потока, но, начиная с определенного уровня, дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза. Блэкман показал, что повышение температуры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и освещения скорость фотосинтеза возрастает значительно больше, чем при одном лишь усилении освещения.

На основании этих экспериментов Блэкман заключил, что происходят два процесса: один из них в значительной степени зависит от уровня освещения, но не от температуры, тогда как второй сильно определяется температурой независимо от уровня света. Это озарение легло в основу современных представлений о фотосинтезе.

Два процесса иногда называют «световой» и «темновой» реакцией, что не вполне корректно, поскольку оказалось, что, хотя реакции «темновой» фазы идут и в отсутствии света, для них необходимы продукты «световой» фазы.

Фотосинтез начинается с того, что излучаемые солнцем фотоны попадают в особые пигментные молекулы, находящиеся в листе, -- молекулы хлорофилла. Хлорофилл содержится в клетках листа, в мембранах клеточных органелл хлоропластов (именно они придают листу зеленую окраску). Процесс улавливания энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул -- эти кластеры принято называть Фотосистемой I и Фотосистемой II. Номера кластеров отражают порядок, в котором эти процессы были открыты, и это одна из забавных научных странностей, поскольку в листе сначала происходят реакции в Фотосистеме II, и лишь затем -- в Фотосистеме I.

Когда фотон сталкивается с 250-400 молекулами Фотосистемы II, энергия скачкообразно возрастает и передается на молекулу хлорофилла. В этот момент происходят две химические реакции: молекула хлорофилла теряет два электрона (которые принимает другая молекула, называемая акцептором электронов) и расщепляется молекула воды. Электроны двух атомов водорода, входивших в молекулу воды, возмещают два потерянных хлорофиллом электрона.

После этого высокоэнергетический («быстрый») электрон перекидывают друг другу. При этом часть энергии идет на образование молекулы аденозинтрифосфата (АТФ), одного из основных переносчиков энергии в клетке. Тем временем немного другая молекула хлорофилла Фотосистемы I поглощает энергию фотона и отдает электрон другой молекуле-акцептору. Этот электрон замещается в хлорофилле электроном, прибывшим по цепи переносчиков из Фотосистемы II. Энергия электрона из Фотосистемы I и ионы водорода, образовавшиеся ранее при расщеплении молекулы воды, идут на образование НАДФ-Н, другой молекулы-переносчика.

В результате процесса улавливания света энергия двух фотонов запасается в молекулах, используемых клеткой для осуществления реакций, и дополнительно образуется одна молекула кислорода. (Отмечу, что в результате еще одного, значительно менее эффективного процесса с участием одной лишь Фотосистемы I, также образуются молекулы АТФ.) После того как солнечная энергия поглощена и запасена, наступает очередь образования углеводов. Основной механизм синтеза углеводов в растениях был открыт Мелвином Кальвином, проделавшим в 1940-е годы серию экспериментов, ставших уже классическими. Кальвин и его сотрудники выращивали водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Им удалось установить химические реакции темновой фазы, прерывая фотосинтез на разных стадиях.

Глава 3. Применение фотохимического действия света

Фотография

Важным применением фотохимических превращений является фотография.

Процесс фотографирования широко известен. На фотографическую пластинку проектируется при помощи специальной оптики изображение предмета. После этого пластинку проявляют, закрепляют и получают негатив -- изображение предметов с обратным по отношению к естественному распределением света и тени (на негативе светлые места предмета изображаются темными и наоборот). Повторение этого процесса (с другой оптикой, что несущественно) с переносом изображения на фотобумагу дает изображение с правильным распределением света и тени.

Голография

Голография (т. е. «полная запись», от греческого: голос -- весь, графо -- пишу) есть особый способ фиксирования на фотопластинке структуры световой волны, отраженной предметом. При освещении этой пластинки (голограммы) пучком света зафиксированная на ней волна восстанавливается в почти первоначальном виде, так что при восприятии восстановленной волны глазом зрительное ощущение бывает практически таким, каким оно было бы при наблюдении самого предмета.

Голография была изобретена в 1947 г. английским физиком Д. Табором. Однако полное осуществление идеи Габора стало возможным только после появления в 1960 г. источников света высокой степени когерентности -- лазеров. Исходная схема Габора была усовершенствована американскими физиками Э. Лейтом и Ю. Упатниексом, которые получили в 1963 г. первые лазерные голограммы. Советский ученый Ю. Н. Денисюк предложил в 1962 г. оригинальный метод фиксирования голограмм на толстослойной эмульсии. Этот метод, в отличие от голограмм на тонкослойной эмульсии, дает цветное изображение предмета.

Фотобумага

Луи Бланкар-Эврар (Франция) изобрел и применил не проявляемую альбуминную фотобумагу еще в 1850 г., она использовалась в качестве типовой до конца XIX века. Громоздкий фотоувеличитель, названный солнечной камерой, был изобретен в 1857 г. американцем Д.Вудвордом. С появлением дуговых ламп фото печатание можно было выполнять в темной комнате, но оставалась нерешенной проблема прочности фотобумаги. В 1874 г. П.Маудслей в Англии сообщил о создании желатиновой фотобумаги, содержащей бромид серебра, и в 1879 г. Дж.Сван организовал промышленное производство этой фотобумаги. Желатина стала основой всех фотобумаг с проявлением, которые заменили альбуминную фотобумагу, и до сих пор используется в промышленном производстве.

Заключение

Фотохимическое действие света играет колоссальную роль в жизни человека. Многие важнейшие процессы, происходящие в окружающей среде и в нас самих, имеют фотохимическую природу. Достаточно назвать такие явления, как фотосинтез, зрение и образование озона в атмосфере под действием УФ-облучения.

Фотосинтез обеспечивает существование жизни на Земле. Подавляющую часть информации об окружающем мире человек и большинство животных получают посредством зрения, основанного на фотоизомеризации родопсина, которая запускает цепь ферментативных процессов усиления сигнала и тем самым обеспечивает чрезвычайно высокую чувствительность вплоть до регистрации отдельных фотонов. Озон образуется в верхних слоях атмосферы из кислорода под действием коротковолнового (<180 нм) излучения Солнца по реакции:

Он поглощает излучение Солнца в области 200-300 нм, губительно действующее на живые организмы.

Список литературы

1. Введение в фотохимию органических соединений. Л., «Химия», 1976 Уэйн Р. Основы и применение фотохимии. М., «Мир», 1991

2. Турро Н. Молекулярная фотохимия. М., 1967 Калверт Дж., Питтс Дж. Фотохимия. М., 1968 Окабе Х. Фотохимия малых молекул. М., 1981

3. http://www.xumuk.ru/encyklopedia/2/4903.html

4. http://enc-dic.com/colier/Fotohimija-6848/

5. http://timiryazev.ru/znachenie.html

6. Бугаенко Л.Т., Кузьмин М.Г., П о л а к Л.С., Химия высоких энергий, M., 1988. М.Г. Кузьмин

7. Малый академический словарь. -- М.: Институт русского языка Академии наук СССР Евгеньева А. П. 1957--1984

Размещено на Allbest.ru


Подобные документы

  • Особенности химических реакций в полимерах. Деструкция полимеров под действием тепла и химических сред. Химические реакции при действии света и ионизирующих излучений. Формирование сетчатых структур в полимерах. Реакции полимеров с кислородом и озоном.

    контрольная работа [4,5 M], добавлен 08.03.2015

  • Виды фотохимических процессов, протекающих при фотовозбуждении молекул. Различие кинетики фотохимических и темновых реакций. Полные и локальные скорости фотохимических реакций. Кинетика флуоресценции, фосфоресценции и интеркомбинационной конверсии.

    курсовая работа [2,8 M], добавлен 13.10.2011

  • Физико-химические методы для установления структуры и анализа биологически активных соединений. Обработка сигналов. Законы поглощения света. Электронная абсорбционная спектроскопия. Спектр электромагнитного излучения. Длина волны. Скорость света.

    реферат [989,4 K], добавлен 06.02.2009

  • Химическая кинетика и ее значение в управлении химическими процессами. Классификация реакций по средам протекания, их отличительные черты. Скорость химических реакций, зависимость ее от температуры среды и наличия света. Принцип действия катализаторов.

    реферат [152,7 K], добавлен 29.05.2009

  • Рассмотрение возможности экологизации раздела химии: "Физико-химические свойства водорода" путем внедрения темы: "Альтернативная энергетика". Обзор сведений о водородной энергетике как альтернативном виде энергии. Выбор наилучших форм организации занятий.

    дипломная работа [135,3 K], добавлен 24.12.2009

  • Окислительно-восстановительные реакции. Колебательные химические реакции, история их открытия. Исследования концентрационных колебаний до открытия реакции Б.П. Белоусова. Математическая модель А.Лоткой. Изучение механизма колебательных реакций.

    курсовая работа [35,4 K], добавлен 01.02.2008

  • Понятие и виды сложных реакций. Обратимые реакции различных порядков. Простейший случай двух параллельных необратимых реакций первого порядка. Механизм и стадии последовательных реакций. Особенности и скорость протекания цепных и сопряженных реакций.

    лекция [143,1 K], добавлен 28.02.2009

  • Природа и внутреннее строение ферментов. Рассмотрение кинетических закономерностей односубстратных ферментативных реакций, осложненных ингибированием. Исследование кинетики реакции окисления сукцината натрия в фумарат натрия под действием сукционимидазы.

    курсовая работа [407,3 K], добавлен 13.10.2011

  • Общие представления о реакции, типы реакции в бензольном кольце, примеры реакций замещения, протекающих по радикальному механизму. Реакционная способность ароматических субстратов и атакующего радикала, влияние растворителя на реакционную способность.

    курсовая работа [190,9 K], добавлен 14.07.2010

  • Понятие, основные физические и химические свойства циклоалканов как насыщенных моноциклических углеводородов, алициклических соединений. Исследование примеров данных соединений: бензола, циклогексана: их схемы и элементы, применение и побочные действия.

    презентация [158,7 K], добавлен 05.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.