Микробиология воды

Исследование реакции ионов свинца с карбонатом натрия и дигидроксидом кальция. Определение химических показателей качества воды. Изучение процесса окисления органических веществ в аэробных условиях. Анализ динамики биохимического потребления кислорода.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 18.03.2015
Размер файла 165,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Привести молекулярные и ионные уравнения реакций и объяснить, как влияет рН раствора на полноту осаждения свинца в случае использования извести

Реакция ионов свинца с карбонатом натрия:

Pb2 + 4 Na2CO3 = 2Pb(Na2CO3)2

Pb2+2 + 4 Na+2 + CO2-3 = 2Pb(Na2CO3)2

Реакция ионов свинца и дигидроксидом кальция:

Pb + Ca(OH)2 + 2H2O = CaPb(OH)4 + H2^

Pb2+ + Ca(OH)2 + 2H2O = Ca2+ + Pb(OH)4 + H2^

2. Физические показатели качества воды: мутность, прозрачность

Мутность - показатель качества воды, обусловленный присутствием в воде нерастворенных и коллоидных веществ неорганического и органического происхождения. Причиной мутности поверхностных вод являются илы, кремниевая кислота, гидроокиси железа и алюминия, органические коллоиды, микроорганизмы и планктон. В грунтовых водах мутность вызвана преимущественно присутствием нерастворенных минеральных веществ, а при проникании в грунт сточных вод - также и присутствием органических веществ. В России мутность определяют фотометрическим путем сравнения проб исследуемой воды со стандартными суспензиями. Результат измерений выражают в мг/дм3 при использовании основной стандартной суспензии каолина или в ЕМ/дм3 (единицы мутности на дм3) при использовании основной стандартной суспензии формазина. Последнюю единицу измерения называют также Единица Мутности по Формазину (ЕМФ) или в западной терминологии FTU (Formazine Turbidity Unit). 1FTU=1ЕМФ=1ЕМ/ дм3. В последнее время в качестве основной во всем мире утвердилась фотометрическая методика измерения мутности по формазину, что нашло свое отражение в стандарте ISO 7027 (Water quality - Determination of turbidity). Согласно этому стандарту, единицей измерения мутности является FNU (Formazine Nephelometric Unit). Агентство по Охране Окружающей Среды США (U.S. EPA) и Всемирная Организация Здравоохранения (ВОЗ) используют единицу измерения мутности NTU (Nephelometric Turbidity Unit). Соотношение между основными единицами измерения мутности следующее: 1 FTU(ЕМФ)=1 FNU=1 NTU.

ВОЗ по показаниям влияния на здоровье мутность не нормирует, однако с точки зрения внешнего вида рекомендует, чтобы мутность была не выше 5 NTU (нефелометрическая единица мутности), а для целей обеззараживания - не более 1 NTU.

Мера прозрачности - высота столба воды, при которой можно наблюдать опускаемую в воду белую пластину определенных размеров (диск Секки) или различать на белой бумаге шрифт определенного размера и типа (шрифт Снеллена). Результаты выражаются в сантиметрах.

Характеристика вод по прозрачности (мутности)

Прозрачность

Единица измерения, см

Прозрачная

Более 30

Маломутная

Более 25 до 30

Средней мутности

Более 20 до 25

Мутная

Более 10 до 20

Очень мутная

Менее 10

3. Роль микроорганизмов в процессе очистки сточных вод. Окисление органических веществ в аэробных условиях: элементарный состав илов и его зависимость от состава обрабатываемой воды; микрофлора и микрофауна активного ила и биопенки

При подходящих условиях микроорганизмы растут, размножаются, перерабатывают органические вещества, используя их в качестве пищи, и выделяют в окружающую среду разнообразные конечные продукты. Процессы минерализации органической материи (превращения ее в неорганические вещества) в зависимости от условий и вида микроорганизмов разделяются на две большие группы - аэробные и анаэробные. По этому же принципу подразделяются на два вида и способы биологической очистки сточных вод.

Промышленное применение микроорганизмов заключается в управлении процессом биохимического превращения органических веществ при участии микроорганизмов и ферментов. Одним из наиболее типичных примеров промышленного применения микроорганизмов - биохимическая очистка сточных вод. Органические вещества, содержащиеся в бытовых и промышленных сточных водах, являются благоприятной средой для микроорганизмов, которые в ней быстро размножаются, используя часть пищи для синтеза новых клеток, а другую перерабатывая в простые минеральные продукты - СО2, Н2О и др. Этот процесс, протекающий в присутствии кислорода (воздуха), называется «биохимическим» окислением. До биохимического окисления сточные воды подвергаются механическому очищению (осаждению). В осадках, образующихся в результате механического и биохимического очищения сточных вод, органические вещества минерализуются затем чаще всего за счет анаэробных биохимических процессов. Механизм изъятия органических веществ из сточных вод и их переработки микроорганизмами очень сложен и полностью не изучен. Согласно современным теориям его можно описать тремя последовательными стадиями:

массообмен и сорбция субстрата на поверхности микроорганизмов;

диффузия субстрата через клеточную мембрану микроорганизмов;

метаболизм субстрата в клетках.

Суспендированные вещества и крупные молекулы в растворе надо заранее разрушить, чтобы они могли легко проходить сквозь клеточную оболочку. Это разрушение происходит при помощи ферментов, выделяемых бактериями.

Возможны два пути переноса вещества от поверхности внутрь клетки:

последовательное растворение вещества в оболочке клетки и цитоплазматической мембране, благодаря чему оно диффундирует внутрь клетки;

присоединение транспортируемого вещества к специфическому белку-переносчику, находящемуся в мембране; дальнейшее превращение комплекса вещество-переносчик в растворимое состояние; диффузия комплекса через мембрану в клетку, где комплекс распадается, и белок-переносчик высвобождается для совершения нового цикла.

Основную роль в очистке сточных вод играют процессы превращения вещества, происходящие в клетках микроорганизмов, а именно окисление вещества, сопровождающееся выделением энергии, и синтез новых белковых веществ, протекающий с затратой энергии.

При потреблении микроорганизмами питательных веществ, содержащихся в сточных водах, в микробной клетке одновременно протекают два взаимосвязанных процесса - синтез протоплазмы и окисление органических веществ (на окисление клетка потребляет кислород, растворенный в сточной жидкости). Скорость потребления кислорода активным илом зависит от многих взаимосвязанных факторов: концентрации микроорганизмов и простейших в активном иле, скорости их роста и физиологической активности; концентрации и состава питательных веществ, поступающих с загрязненным потоком, а также от содержания кислорода в среде и условий аэрации в аэротанке.

В процессе биоокисления органических веществ микроорганизмами важнейшую роль играет транспорт кислорода в системе газ-жидкость-клетка, в связи, с чем процессы массопередачи и гидродинамики в аэротенках являются основополагающими.

Для очистки сточных вод широко используются два типа биологических процессов: аэробные (в которых микроорганизмы используют растворенный в сточных водах) и анаэробные (в которых микроорганизмы не имеют доступа ни к свободными растворенному кислороду ни к другим, предпочтительным в энергических отношениях акцепторам электронов).

Активный ил аэробных очистных систем:

Микрофлору биологических очистных систем составляют микроорганизмы, являющиеся биохимическим агентом при аэробной очистке сточных вод, образуют сложные сообщества активного ила и биопленки. Такие сообщества микроорганизмов (называемые также смешанной культурой, смешанным биоценозом) состоят из представителей многих систематических групп -- бактерий, актиномицетов, грибов, водорослей, членистоногих. Основу биомассы таких сообществ составляют бактерии. Общая поверхность 1 грамма сухой биомассы этих микроорганизмов оценивается площадью около 100 м2, что и обусловливает высокую скорость обменных процессов при очистке сточных вод.

Биопленка, покрывающая твердые поверхности, погруженные в объем жидкости аэробных биохимических реакторов, образована иммобилизованными клетками микроорганизмов, ее толщина обычно не более 3 мм, чаще 0,5 - 1,0 мм.

Состав микроорганизмов активного ила и биопленки подвержен изменениям в широких пределах и зависит от условий культивирования, температуры в реакторе. Отмечается влияние мутагенных факторов сточной воды на состав микрофлоры очистных сооружений.

Бактериальный состав активного ила сточных вод в значительной мере зависит от состава очищаемой сточной воды. В таблице приведены данные о содержании бактерий некоторых родов в активных илах очистных систем различных производств.

Количество бактерий в сточных водах различных производств, %

Род бактерий

Производство

Молочное

Жирных кислот

Pseudomonas

4

60

Bacillus

31

18

Bacterium

43

12

Corynebacterium

6

_

Mycobacterium

6

_

Flavobacterium

8

_

Micrococcus

2

_

Sarcina

_

5

Fungi

_

5

Наиболее многочисленным родом в микрофлоре аэробных очистных систем является Pseudomonas - грамотрицательные палочковидные бактерии. Распространенность представителей этого рода бактерий обусловлена широким спектром компонентов загрязнений, которые могут служить для них субстратом.

У бактерий рода Pseudomonas имеется около 150 ферментных систем, способных превращать вещества сточной воды в биомассу и обеспечивать клетку энергией. К порядку Pseudomonas относится 50 - 80 % биомассы бактерий илов аэробных систем очистки производственных сточных вод. В этот порядок входят бактерии, окисляющие нитриты (Nitrosomonas), соединения серы (Sulfomonas, Thiobacillus).

В производственных стоках встречаются многие виды Bacterium. К ним относится аммонификаторы В. Micoides, разлагающие органические аминосодержащие соединения (белки, мочевину, аминокислоты) с образованием иона NH4+ или свободного аммиака.

Бактериальный состав активных илов стабилен в течение длительного периода эксплуатации. Доминирующими родами являются Pseudomonas и Alcaligenes (5-39 и 36-84% соответственно), в то время как Bacillus, Zoogloea и факультативные анаэробы являются индикаторами нарушения процесса очистки. При перегрузке очистной системы резко возрастает содержание Zoogloea -- до 45 %.

Прослеживается также изменение количества простейших от нагрузки на активный ил. В активном иле имеются так называемые индикаторные организмы, по состоянию которых судят о нормальном протекании процессов очистки. К ним относятся инфузории - Ciliata, Paramecium, Lacrimaria, Stentor, Stilonichia, Euplofes patella, Aspidisca costata, Opercularia, Vorticella. Установлено, что в нормально развитом биоценозе на 1016клеток бактерий приходится 10-16 клеток простейших, в илах худшего качества -- 5-9 клеток, а в илах ненормально работающих очистных систем -- 1-4 клетки. Из других организмов в илах встречаются коловратки (Rotatoria), являющиеся индикатором нормального насыщения жидкости кислородом.

В системах с изменяющейся нагрузкой на активный ил по ходу движения жидкости (аэротенки-вытеснители, биофильтры) изменяется состав микрофлоры. На начальной стадии процесса очистки, когда на единицу биомассы приходится большая часть субстрата, в биоценозе преимущественно развиваются гетеротрофные бактерии и простейшие, питающиеся растворенными компонентами сточной воды. Далее со снижением загрязненности воды уменьшается количество бактерий, появляется больше свободноплавающих простейших, питающихся бактериями. В конце процесса очистки развивается большое количество хищных простейших, появляются низшие беспозвоночные.

В биопленке, покрывающей поверхности носителя в реакторах с иммобилизованной микрофлорой, помимо бактерий наблюдается большое количество простейших, коловраток, червей. Биоценоз ила аэротенков и биопленка идентичны при очистке одной и той же воды, однако количество различных видов организмов разное. Показателем хорошего состояния биопленки является наличие инфузорий кругловых, брюхореспичных, жгутиковых, червей Nematoda, коловраток.

На стадии окончания биологической очистки воды протекают процессы нитрификация с образованием нитритов и жиратов. В этом процессе в качестве биологических агентов выступают бактерии из родов, Nitrosomonas и Nitrobacter. Наиболее изученным микроорганизмом, осушествляющим окисление аммонийного азота до нитритов -- нитрификацию первой фазы, является Nitrosomonas europaea. Основной биологический агент нюрой фазы нитрификации -- окисления нитритов в нитраты -- Nitrobacter Vinogradskyi.

Глубокая биологическая доочистка сточных вод осуществляется с помощью культуры микроводорослей.

При создании благоприятных условий для культивирования микроволорослей (освещенность, температура, субстрат) их смешанное сообщество обычно состоит из представителей род jd Chlorella, Scenedesmus, Nitzschia, Ankistrodesmus.

При достаточном количестве органического субстрата в сточной Воде в освещенном культиваторе наблюдается симбиоптическое взаимодействие между сообществами бактерий и микроводорослей. Культура микроводорослей спонтанно развивается в условиях достаточной освещенности на последних стадиях очистки воды в дисковых биофильтрах, биопрудах.

Положительный эффект от культивировании микроводорослей заключается не только в снижении концентрации азота и фосфора в очищенной воде, а в их обеззараживающем действии.

Химический состав активных илов:

Активные илы очистных систем преимущественно состоят из биомассы смешанного сообщества микроорганизмов, растущего т сложном субстрате (сточной воде). Состав биомассы в основном определяет состав активною ила. Однако при очистке жидкостей с большим содержанием органических взвешенных веществ и размерами частиц более 10-4 м в активных плах накапливается осажденное в отстойниках вещество дисперсной фазы стоков. Рециркуляция активного ила приводит к частичному разложению, уменьшению размеров органических частиц дисперсной фазы. Существует функциональная зависимость между возрастом биомассы активного ила, концентрацией, дисперсным составом поступающей в аэротенк взвеси и ее концентрацией в активном иле.

Многочисленными исследованиями установлено, что биомасса аэробного активного ила имеет следующий элементный состав: С5Н7О2N, а с учетом фосфора С5Н7О2NP0,06. Содержанием фосфора можно пренебречь, поскольку в сточных водах пищевых предприятий он имеется в достаточном количестве и в расчетах прироста биомассы может не учитываться.

Для расчетов, связанных с определением прироста биомассы, баланса элементов, в процессе очистки достаточно точной формулой клеточного вещества является С5Н7О2N. Эта формула отражает состав как аэробного, так и анаэробного активного ила и согласуется с элементным составом практически всех микроорганизмов, применяемых в биотехнологии в качестве биологических агентов.

Типичный состав сухого вещества микробной клетки характеризуется следующими значениями %: углерод - 50; азот - 7-12; фосфор 1-3; сера 0,5-1,0; магний - 0,5.

Биохимический состав беззольного клеточного вещества активного ила по классам соединений оценивается следующими показателями %:

углеводы - 3,8-5,3; белки - 56,3-58,2; жиры - 21,7-21,9.

Примятый в биотехнологии расчет состава биомассы на абсолютно сухое вещество (АСВ) представляется более рациональным, чем расчет на беззольное вещество, поскольку зольные элементы являются оставной частью клеточного вещества. Стехиометрические расчеты выхода биомассы, экономических коэффициентов и т. д. ведутся в пересчете на сухое вещество, следовательно, правильнее учитывать и зольную часть вещества микроорганизмов.

При аэробной очистке основными технологическими параметрами являются скорость разбавления (время пребывания) и удельная скорость роста биомассы. В таблице ниже приведены данные о составе биомассы активного ила в различных режимах работы экспериментальной установки, представляющей собой реактор-смеситель с отстойником и системой рециркуляции.

Состав биомассы активного ила при различных режимах очистки

Анализируемый образен

Время пребывания, ч

Удельная скорость роста, ч-1

Исходная сточная вода

-

-

Активный ил без рециркуляции

6,25

0,16

12,50

0,08

25,00

0,04

50,00

0,02

Активный ил с рециркуляцией

12,50

0,026

25,00

0,011

50,00

0,003

Анализируемый образец

Состав, % к АСВ

белок

углеводы

нуклеиновые кислоты

зольность

Исходная сточная вода

53,7

15,7

4,88

23,0

Активный ил без рециркуляции

63,8

13.0

4.20

18,8

63,3

94

4,04

18,8

64,0

8,6

4.14

19,7

63,4

12,2

4,22

-

Активный ил с рециркуляцией

63,0

8,8

4,80

19,8

53,3

13,6

4,01

19.7

53,4

12.6

4,24

20,0

Наибольшее содержание белка в активном иле при режимах без рециркуляции. Возврат ила приводит к увеличению его возраста и относительному увеличению содержания минеральных компонентов. Изменение количества углеводов имеет нерегулярный характер, а содержание нуклеиновых кислот относительно стабильно. Постоянное содержание нуклеиновых кислот в илах различного "возраста" (величина, обратная удельной скорости роста) свидетельствуют о том, что состав биомассы клеток мало изменяется и различных режимах культивирования. Нарастание зольности "старых" плов связано, по-видимому, с накоплением в осадке различных минеральных частик, которые тяжелее микробных клеток и концентрируются за счет осаждения в отстойнике и рециркуляции. Исследование состава ила по длине аэротенка показало, что содержание нуклеиновых кислот незначительно изменяется с "возрастом" клеток.

Исследования изменения химического состава активного ила при очистке модельных стоков молочных заводов показали, что содержание общего углерода составляет 50,2--60,2% при времени пребывания в аэротенке от 13 до 24 ч. Количество углерода зависело не от времени аэрации, а от ее интенсивности. Длительность аэрации в исследовавшемся весьма узком диапазоне мало влияла на химический состав ила. При очистке сточных вод, не содержащих литеральных дисперсных частиц, зольность биомассы активного ила не зависит от "возраста" последнего и находится в пределах 19--21 %. В связи с этим существующие системы расчета аэробной очистки, учитывающие накопление "инертной биомассы" с возрастанием времени пребывания ила, не отражают существа биохимических процессов, а являются эмпирическим обобщением данных о возрастании количества минеральных частиц и осадке вторичных отстойников. Нее расчетные модели, связывающие "возраст" ила с его зольностью, применимы только к тем системам очистки и тем сточным водам, на которых были получены экспериментальные данные.

4. Химические показатели качества воды: биохимическое потребление кислорода (БПК)

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов и т.п. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы.

В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием двуокиси углерода. При этом на окисление потребляется растворенный в воде кислород. В водоемах с большим содержанием органических веществ большая часть РК потребляется на биохимическое окисление, лишая таким образом кислорода другие организмы. При этом увеличивается количество организмов, более устойчивых к низкому содержанию РК, исчезают кислородолюбивые виды и появляются виды, терпимые к дефициту кислорода. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации РК, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (т.е. в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1)°С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК5)*, однако содержание некоторых соединений более информативно характеризуется величиной БПК за 10 суток или за период полного окисления (БПК10 или БПКполн соответственно). Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света (в темном месте).

Величина БПК увеличивается со временем, достигая некоторого максимального значения - БПКполн, причем загрязнители различной природы могут повышать (понижать) значение БПК. Динамика биохимического потребления кислорода при окислении органических веществ в воде приведена на рис.

Динамика биохимического потребления кислорода: а - легкоокисляющиеся («биологически мягкие») вещества - сахара, формальдегид, спирты, фенолы и т.п.; в - нормально окисляющиеся вещества - нафтолы, крезолы, анионогенные ПАВ, сульфанол и т.п.; с - тяжело окисляющиеся («биологически жесткие») вещества - неионогенные ПАВ, гидрохинон и т.п.

Таким образом, БПК - количество кислорода в миллиграммах, требуемое для окисления находящихся в 1 л воды органических веществ в аэробных условиях, без доступа света, при 20°С, за определенный период в результате протекающих в воде биохимических процессов. Ориентировочно принимают, что БПК5 составляет около 70% БПКполн, но может составлять от 10 до 90% в зависимости от окисляющегося вещества.

Особенностью биохимического окисления органических веществ в воде является сопутствующий ему процесс нитрификации, искажающий характер потребления кислорода

Определение концентрации растворенного кислорода при анализе воды на БПК может выполняться различными методами. Наиболее распространен для определения РК при анализе БПК метод йодометрического титрования - метод Винклера.

Мешающее влияние на определение БПК оказывают процессы, происходящие в пробе в промежуток времени между отбором пробы и ее обработкой в лаборатории. Для исключения этого влияния начинать определение необходимо сразу же на месте отбора пробы. При этом следует соблюдать те же условия, что и при работе в лаборатории (хранение пробы в темноте, без доступа воздуха, при температуре 20°С).

5. Физико-химические основы удаления растворенных примесей из природных вод, гиперфильтрация (обращенный осмос)

Гиперфильтрация и ее вид - нанофильтрация происходят в искусственно созданных условиях обратного осмоса.

Осмос - естественный процесс переноса молекул растворителя (воды) через полупроницаемые перегородки (мембраны) из области с более низкими концентрациями растворенных примесей в область более высоких, что приводит к выравниванию концентраций и к уменьшению свободной энергии частиц примесей.

Осмотическое давление, МПа, возникающее при осмосе, зависит от абсолютной температуры воды и концентрации растворенного вещества (уравнение Вант-Гоффа)

Где i - количество грамм-ионов, на которое диссоциирует одна грамм-молекула растворенного вещества; = 8310 Дж/градЧкгЧмоль - универсальная газовая постоянная; T - абсолютная температура; C - концентрация данного вещества в растворе, кг/м3; M - его молекулярная масса.

Если осмотическое давление создается несколькими (N) ионами и ионными соединениями, формула Вант-Гоффа записывается следующим образом:

Для молекулярных (недиссоциируемых) частиц i = 1,0, для полностью диссоциируемых на одновалентные ионы солей i = 2,0.

Для многокомпонентной морской воды, например, осмотическое давление достигает 2,5МПа.

Если искусственно создать в области больших концентраций растворенных примесей давление, превышающее осмотическое, то перенос через полупроницаемую мембрану молекул воды будет происходить в противоположном (по сравнению с осмосом) направлении: из области более высоких в область более низких концентраций. Этот процесс называется обратным осмосом и используется для разделения гомогенных и гетерогенных систем, для очистки воды от крупных молекул и гидратированных ионов, а также коллоидов (ультрафильтрация).

Осмотическое давление водных растворов некоторых солей при Т = 293°С

Ниже приведена схема, иллюстрирующая процесс осмоса. По одну сторону мембраны находятся только молекулы воды, по другую - молекулы воды, множество более крупных молекул и гидратированные ионы, диаметр гидратной оболочки которых достигает в некоторых случаях 2…3 нм (см. табл.). В момент, указанный на схеме, выход из поры закрыт гидратированным катионом, но в следующий момент времени этот катион под влиянием диффузии сместится, выход из поры окажется открытым и свободным, а находящиеся внутри порового канала молекулы воды переместятся в область справа от мембраны.

По условиям изготовления мембран невозможно обеспечить одноразмерность пор, часть из них имеет слишком большие диаметры (крупные поры). Через крупные поры в фильтрат проникают растворенные загрязнения, ухудшая этим его качество.

В процессе обратного осмоса у поверхности мембраны накапливаются крупные молекулы и гидратированные ионы, концентрация которых в пристенном слое превышает среднюю концентрацию в потоке воды. Такое повышение концентрации называется концентрационной поляризацией, характеризуемой градиентом концентрации в направлении, перпендикулярном поверхности мембраны. Градиент концентрации зависит от гидродинамических условий. Между подводом вещества к мембране и его уносом за счет диффузии и конвекции устанавливается динамическое равновесие. Как видно на рисунке, градиент концентрации наблюдается в пограничном слое потока, где всегда формируется ламинарный режим движения воды; в пределах ядра потока концентрация загрязнений остается постоянной. Концентрационная поляризация отрицательно влияет на работу гиперфильтрационной установки. Повышение концентрации у поверхности мембраны вызывает увеличение осмотического давления, не соответствующего средней концентрации растворенных веществ. Повышение рабочего давления увеличивает энергоемкость установки, а в случае уменьшения избытка рабочего давления по отношению к осмотическому - снижается селективность и ухудшается качество фильтрата. Поэтому в гиперфильтрационной установке следует создавать условия для турбулизации потока, омывающего мембраны, повышать его скорость и этим уменьшать толщину пограничного слоя.

Отрицательным последствием концентрационной поляризации следует считать опасность образования отложений, если будет превышено значение произведения растворимости находящихся в пристенной области катионов и анионов удаляемых солей. дигидроксид вода химический аэробный

Количественная характеристика концентрационной поляризации - коэффициент , равный соотношению концентраций солей у поверхности мембраны, и поступающих на очистку. По существующей практике значение может находиться в диапозоне 1,05-1,40.

6. Обезораживание воды: химические основы хлорирования, хлорирующие реагенты, хлорирование с предварительной аммонизацией

Для хлорирования воды на водопроводных очистных станциях используется жидкий хлор и хлорная известь (для станций малой производительности).

Хлорирование воды жидким хлором. При введении хлора в воду образуются хлорноватистая и соляная кислоты

С12 + Н2О = НОС1 + НС1.

Далее происходит диссоциация образовавшейся хлорноватистой кислоты

НОС1 ч* Н+ + ОС1-.

Получающиеся в результате диссоциации хлорноватистой кислоты гипохлоритные ионы ОС1~ обладают наряду с недиссоциированными молекулами хлорноватистой кислоты бактерицидным свойством.

Сумму С12+НОС1+ОС1- называют свободным активным хлором.

При наличии в воде аммонийных соединений или при специальном введении в воду аммиака (аммонизация воды) образуются монохлорамины NH2CI и дихлорамины NHCb, также оказывающие бактерицидное действие, несколько меньшее, чем свободный хлор, но более продолжительное. Хлор в виде хлораминов в отличие от свободного называется связанным активным хлором.

Количество активного хлора, необходимого для обеззараживания воды, должно определяться не по количеству болезнетворных бактерий, а по всему количеству органических веществ и микроорганизмов (а также и неорганических веществ, способных к окислению), которые могут находиться в хлорируемой воде.

Правильное назначение дозы хлора является исключительно важным. Недостаточная доза хлора может привести к тому, что он не окажет необходимого бактерицидного действия; излишняя доза хлора ухудшает вкусовые качества воды. Поэтому доза хлора должна быть установлена в зависимости от индивидуальных свойств очищаемой воды на основании опытов с этой водой.

Расчетная доза хлора при проектировании обеззараживающей установки должна быть принята исходя из необходимости очистки воды в период ее максимального загрязнения (например, в период паводков).

Показателем достаточности принятой дозы хлора служит наличие в воде так называемого остаточного хлора (остающегося в воде от введенной дозы после окисления находящихся в воде веществ). Согласно требованиям ГОСТ 2874--73, концентрация остаточного хлора в воде перед поступлением ее в сеть должна находиться в пределах 0,3-- 0,5 мг/л.

За расчетную следует принимать ту дозу хлора, которая обеспечивает указанное количество остаточного хлора. Расчетная доза назначается в результате пробного хлорирования.

Для осветленной речной воды доза хлора обычно колеблется в пределах 1,5--3 мг/л; при хлорировании подземных вод доза хлора чаще всего не превышает 1--1,5 мг/л; в отдельных случаях может потребоваться увеличение дозы хлора из-за наличия в воде закисного железа.

При повышенном содержании в воде гуминовых веществ требуемая доза хлора возрастает.

При введении хлора в обрабатываемую воду должны быть обеспечены хорошее смешивание его с водой и достаточная продолжительность (не менее 30 мин) его контакта с водой до подачи ее потребителю. Хлорирование уже осветленной воды обычно производят перед поступлением ее в резервуар чистой воды, где и обеспечивается необходимое для их контакта время.

Вместо хлорирования воды после отстойников и фильтров в практике водоочистки иногда применяют хлорирование ее перед поступлением на отстойники (предварительное хлорирование) -- до смесителя, а иногда перед подачей на фильтр.

Предварительное хлорирование способствует коагуляции, окисляя органические вещества, которые тормозят этот процесс, и, следовательно, позволяет уменьшить дозу коагулянта, а также обеспечивает хорошее санитарное состояние самих очистных сооружений. Предварительное хлорирование требует повышения доз хлора, так как значительная часть его идет на окисление органических веществ, содержащихся в еще не осветленной воде.

Вводя хлор до и после очистных сооружений, можно снизить общий расход хлора по сравнению с расходом его при предварительном хлорировании, сохранив преимущества, даваемые последним. Такой метод носит название двойного хлорирования.

Хлор поступает на станции в металлических баллонах в сжиженном состоянии под давлением 6--8 кгс/см2. Стандартные баллоны содержат 25--40 (малые) и 100 (большие) кг жидкого хлора1.

Из баллонов хлор подается в воду через специальные приборы -- хлораторы (газодозаторы), в которых осуществляется его дозирование и смешивание с некоторым количеством воды. Получаемая «хлорная вода» поступает в обрабатываемую воду.

Существуют различные системы хлораторов: одни из них рассчитаны на непрерывную подачу определенных количеств газа в единицу времени (хлораторы непрерывного действия), другие -- на отмеривание определенных порций газа (порционные). Существуют также хлораторы, автоматически меняющие количество подаваемого хлора при изменении расхода обрабатываемой воды.

Кроме того, различают хлораторы напорные и вакуумные. Недостатком напорных хлораторов является возможность утечки из них хлора. Ввиду ядовитости хлора утечка его представляет опасность для обслуживающего персонала. Эта опасность устранена в вакуумных хлораторах. В них газ находится под давлением ниже атмосферного, что исключает возможность его утечки в помещение. В силу этого вакуумные хлораторы рекомендуются для преимущественного использования в установках для обеззараживания воды.

Хлор прежде всего поступает в промежуточный баллон, в котором он переходит из жидкого в газообразное состояние и где отделяются загрязняющие хлор примеси. Из промежуточного баллона хлор поступает в хлоратор. Для дополнительного контроля за расходом хлора баллон с ним устанавливается на весах.

На V.54 показано устройство вакуумного хлоратора ВНИИГС. В состав его входят: промежуточный баллон с хлором 1; фильтр 2; редукционный клапан 3, который понижает давление в трубке, подающей хлор; манометры 4\ измерительная шайба 5; показатель дозы хлора 6; смеситель 7; эжектор 8, создающий разрежение в хлораторе.

Так как из одного баллона (при комнатной температуре) может ^ыть получено лишь около 0,5--0,7 кг хлора в 1 ч, то при большом общем расходе хлора может возникнуть необходимость одновременного использования значительного числа баллонов. Во избежание этого принимают меры по увеличению съема хлора с баллонов, обогревая их нагретым воздухом или водой. Этим путем можно увеличить съем хлора с одного баллона до 10 кг в 1 ч.

Однако на крупных водоочистных станциях этих мероприятий оказывается все же недостаточно и наиболее целесообразно применять для хлора большеемкую тару.

Наряду с приведенным типом хлоратора в нашей практике получили применение вакуумные хлораторы системы проф. Л. А. Кульского, выпускаемые промышленностью. Эти хлораторы изготовляются различной производительности -- от 0,04 до 25 кг хлора в 1 ч.

При проектировании и эксплуатации хлораторных установок надо учитывать требования, направленные на предохранение обслуживающего персонала очистной станции от вредного действия хлора. Помещение хлораторной должно быть расположено в первом этаже и либо примыкать к зданию фильтровальной или насосной станции, либо находиться в отдельном здании (на весьма больших установках). В помещении хлораторной, примыкающем к зданию фильтровальной станции, должно быть две двери: одна -- ведущая в помещение станции, другая -- ведущая наружу. Двери должны герметически закрываться. Помещение хлораторной должно иметь хотя бы одно окно. Необходимо предусмотреть систему искусственной вытяжной вентиляции.

Если в сутки расходуется более трех баллонов жидкого хлора, то при, хлораторной или вблизи нее на территории станции устраивают дежурный склад баллонов, рассчитанный на хранение трехсуточного запаса хлора. Должна быть обеспечена возможность подогревания баллонов на складе перед доставкой их в хлораторную.

Хлорирование воды хлорной известью. Использование хлорной извести, активным компонентом которой является гипохлорит кальция Са(ОС1)г, может быть допущено лишь на станциях малой (до 3 тыс. м3/сутки) производительности.

Техническая хлорная известь содержит 25--30% активного хлора.

В результате введения в воду хлорной извести, как и при введении в нее хлора, получаются хлорноватистая кислота НОС1 и гипохлоритные ионы ОС1~. Для приготовления раствора хлорной извести применяют установку, аналогичную установке, в которой производится приготовление раствора коагулянта. В состав ее входят баки, куда засыпают хлорную известь и добавляют воду. Известковое молоко поступает в рабочие баки, где приготовляется раствор концентрацией до 1--2%. При приготовлении раствора он перемешивается механическими мешалками. Из рабочих баков хлорная вода через дозировочные устройства вводится в дезинфицируемую воду.

Хлорирование с аммонизацией:

Как было сказано, введение в воду хлора вызывает появление в ней специфических хлорных запахов и привкусов. Они ощущаются уже при содержании в воде хлора в количестве 0,3--0,4 мг/л. Кроме того, если в исходной воде содержатся некоторые вещества (хотя бы в самых ничтожных дозах), например фенолы, введение в нее хлора вызывает появление в ней сильных неприятных запахов и привкусов. Для борьбы с этими запахами и привкусами применяют аммонизацию воды, т. е. вводят в воду аммиак или его соли одновременно с хлором.

Для обеспечения более длительного бактерицидного действия хлора, а также для предотвращения появления в воде хлорфенольных запахов и привкусов применяют предварительную аммонизацию, т.е. аммиак вводят в воду раньше хлора. Для борьбы с хлорными запахами и привкусами аммиак вводят в воду позже хлора, перед ее поступлением в резервуар чистой воды.

При аммонизации процесс хлорирования протекает несколько иначе. При взаимодействии аммиака (его водного раствора NH4OH) с хлорноватистой кислотой НОС1, образующейся при хлорировании воды, получаются хлорамины, например

NH4OH + НОС1 = NH2C1 + 2Н2О

или

NH4OH + 2НОС1 = NHC12 + ЗН2О.

Хлорамины изменяют характер взаимодействия хлора с фенолами и препятствуют образованию хлорфенольных запахов. В то же время они в известной мере ослабляют бактерицидное действие хлора, но удлиняют период этого действия. Соотношение доз аммиака и хлора зависит от физико-химических свойств воды и устанавливается в каждом случае опытным путем.

При аммонизации должен быть обеспечен контакт воды с хлором продолжительностью не менее 1 ч, т. е. более длительный, чем при использовании одного хлора.

Для введения и дозирования аммиака применяют дозаторы (аммонизаторы), подобные хлораторам, но выполненные из материалов, устойчивых по отношению к аммиаку, и имеющие некоторые конструктивные особенности. Газообразный аммиак доставляется на станцию в баллонах. Кроме аммиака для аммонизации используют также сульфат аммония (NH4)2SO4-

Применение хлорирования с аммонизацией является также эффективным средством борьбы с развитием бактериальной жизни в трубах водопроводной сети и, в частности, с железобактериями, вызывающими зарастание труб.

7. Привести молекулярные и ионные уравнения реакций. К океслительно-востановительной реакции составить электронные уравнения

Если пропустить диоксид серы через раствор дихромата калия, содержащий достаточное кол-во серной кислоты, то образуется эквимолекулярные кол-ва сульфатов калия и хрома:

K2Cr2O7+3SO2+H2SO4=Cr2(SO4)3+K2SO4+H2O

K+2 +Cr3+2 +O2-7 +3SO2+H2SO4=Cr3+2+(SO4)2-3+K+2+SO2-4+H2O

O2-7 +3SO2+ H2SO4=(SO4)2-3+SO2-4H2O

Если сульфат трехвалентного хрома обработать известью, образуется сульфат кальция а хром окислится и выпадет в осадок:

Cr2(SO4)3+3CaO=3CaSO4+Cr2O3

Cr3+2+(SO4)2-3+3CaO=3Ca2+SO2-4+Cr2O3

Cr3+2+3CaO=3Ca2++Cr2O3

8. Сточные воды: извлечение ионов методом ионного обмена (применение катионидов, анионитов и редокситов)

Метод ионного обмена может использоваться для очистки сточных вод многих химических производств: электрохимических (от ионов тяжелых металлов, цианидов и др.), синтетических волокон (от ионов цинка и др.), азотных удобрений (от аммиака, меди и др.), коксохимических (от тиосульфатов, роданидов и др.), искусственных и естественных изотопов (от радиоактивных веществ) и т.д.

Очистка сточных вод, содержащих соли хромовой кислоты, возможна на сильноосновном анионите. Анионит не изменяет своих свойств (не окисляется) в течение длительного времени при концентрации СrО3 до 1200мг/л. Для анионита, содержащего 6% дивинилбензола, при рН=1,8-6 динамическая обменная емкость составляет 11,5-12% от массы сухой смолы.

Регенерируют анионит 10-15% растворами NаОН. Однако десорбция хроматов протекает эффективнее, если анионит предварительно переводится в хлоридную форму. При регенерации анионита раствором, содержащим 2% NаОН и 6% NаСI, десорбируется 89-99% хроматов (от количества сорбированных). При двухкратном использовании регенерирующих растворов концентрация Сr6+ в элюате составляет 48-54г/л, при трехкратном использовании - 73-79г/л.

Полученный при регенерации раствор, содержащий Nа2СrО4, NаОН и NaCI, пригоден для получения пассивирующих растворов. Методом Н - катионирования хромат натрия может быть переведен в хромовую кислоту.

Ионообменное извлечение металлов из сточных вод позволяет рекуперировать ценные вещества с высокой степенью извлечения. Ионный обмен - это процесс взаимодействия раствора с твердой фазой, обладающей свойствами обменивать ионы, содержащиеся в ней, на ионы, присутствующие в растворе. Вещества, составляющие эту твердую фазу, называются ионитами. Метод ионного обмена основан на применении катионитов и анионитов, сорбирующих из обрабатываемых сточных вод катионы и анионы растворенных солей. В процессе фильтрования обменные катионы и анионы заменяются катионами и анионами, извлекаемыми из сточных вод. Это приводит к истощению обменной способности материалов и необходимости их регенерации.

Наибольшее практическое значение для очистки сточных вод приобрели синтетические ионообменные смолы - высокомолекулярные соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Пространственная углеводородная сетка называется матрицей, а обменивающиеся ионы - противоионами. Каждый противоион соединен с противоположно заряженными ионами, называемыми анкерными. Реакция ионного обмена протекает следующим образом:

RSO3H + NaCL = RSO3Na + HCL,

при контакте с катионитом, где R - матрица, Н - противоион, SO3 - анкерный ион;

ROH + NaCL = RCL + NaOH,

при контакте с анионитом.

Для извлечения из сточных вод гальванопроизводства катионов трехвалентного хрома применяют Н-катиониты, хромат-ионы CrO32 - и бихромат-ионы Cr2O72 - извлекают на анионитах АВ-17, АН-18П, АН-25, АМ-п. Емкость анионитов по хрому не зависит от величины рН в пределах от 1 до 6 и значительно снижается с увеличением рН больше 6. При концентрации шестивалентного хрома в растворе от 800 до 1400 экв/л обменная емкость анионита АВ-17 составляет 270 - 376 моль*экв/м3.

Регенерацию сильноосновных анионитов проводят 8 - 10 %-ным раствором едкого натра. Элюаты, содержащие 40 - 50 г/л шестивалентного хрома, могут быть направлены на производство монохромата натрия, а очищенная вода - использоваться повторно.

Фирмой Inovan Umwelttechnik GmbH & Co KG разработана блочно-модульная установка системы REMA, предназначенная для очистки производственных сточных вод от тяжелых металлов. Одинарный блок представляет собой ионообменную колонку, в которой вертикально друг под другом установлены 4 сменные кассеты. В процессе очистки сточные воды последовательно пропускают через эти кассеты снизу вверх. Степень загрязненности ионообменной смолы определяют с помощью индикаторов.

На заводе "Почвомаш" (Киров) внедрен процесс очистки промстоков гальванических производств от ионов хрома волокнистыми материалами. Для сорбции анионов хрома используют материал ВИОН АС-1, имеющий в своем составе сильноосновные винилпиридиниевые группы с СОЕ 1.1 - 1.2 мг*экв/г. Изготовлены две сорбционных колонны из коррозионно-стойкой стали объемом 50 л каждая. Сорбция хрома зависит от его концентрации в исходном растворе. Так, если концентрация составляет до 10 мг/л, то в фильтрате его не обнаруживают. Однако при концентрации аниона хрома 75 мг/л и выше содержание его в фильтрате 0.04 - 0.01 мг/л, что вполне допустимо при замкнутом цикле. Влияние исходной концентрации раствора хрома на его содержание в фильтрате обусловлено высоким ионным радиусом Cr2O72-,вызывающим стерические затруднения при сорбции на волокнистом хемосорбенте. При высоком содержании хрома следует уменьшить скорость подачи раствора на сорбционную колонну. В этом случае возрастает степень очистки. При достижении насыщения сорбционных колонн их снимают со стенда и транспортируют в отделение гальванохимической переработки для регенерации хемосорбционного материала и утилизации элюата. Регенерацию ВИОН АС-1 проводят раствором Na2CO3 . При этом в каждую колонну заливают по 50 л раствора и оставляют его на 3 часа. Последующая операция заключается в промывке фильтра водой.

Было проведено исследование 8 волокнистых сорбентов, применяемых для очистки сточных вод от ионов тяжелых металлов (Ag, Hg, Cr, Cd, Fe).Установлено, что волокнистые сорбенты ПАН-ПЭА, ПАН-ТТО-МКХК и угольное волокно эффективно очищают сточную воду от ионов тяжелых металлов. Они легко регенерируются путем обработки кислотами и могут многократно использоваться для очистки. Из раствора, полученного после регенерации волокон, можно выделять металлы и использовать их повторно.

Синтезированы ионообменные материалы на основе отходов швейного и трикотажного производства, содержащие полиэфирное, полиакрилонитрильное волокно. Установлено, что синтезированные ионообменные волокна проявляют селективные ионообменные свойства .

В лабораторных условиях исследовано выделение хрома из промывных сточных вод гальванических цехов с помощью ионообменных смол (ионообменные смолы в ОН-форме типа "Wolfatit" (ГДР) марок SWB, SZ, SL, SBK, АД-41 и активированного угля марки AS)и углеродистых сорбентов. Показано, что ионообменные смолы можно использовать для очистки сточных вод в промышленном масштабе

Достоинства метода

1) Возможность очистки до требований ПДК.

2) Возврат очищенной воды до 95% в оборот.

3) Возможность утилизации тяжелых металлов.

4) Возможность очистки в присутствии эффективных лигандов.

Недостатки метода

1) Необходимость предварительной очистки сточных вод от масел, ПАВ, растворителей, органики, взвешенных веществ.

2) Большой расход реагентов для регенерации ионитов и обработки смол.

3) Необходимость предварительного разделения промывных вод от концентратов.

4) Громоздкость оборудования, высокая стоимость смол

5) Образование вторичных отходов-элюатов, требующих дополнительной переработки

Ионный обмен - физико-химический процесс распределения ионогенного вещества между жидкой фазой (раствором электролита) и твердой фазой (ионитом). Этот процесс подобен адсорбции, при которой распределение вещества происходит под действием поверхностных сил на границе раздела фаз, только в случае ионного обмена такими силами являются силы кулоновского взаимодействия. Не случайно твердые фазы обоих процессов имеют общее название - сорбенты. С появлением полимерных ионитов (они также называются ионообменными смолами), зерна которых представляют собой поперечно сшитые клубки полимерных нитей с нанизанными на них ионогенными функциональными группами, "макро - граница" ионитов перестала быть единственным носителем сорбционных центров, и процесс перешел в глубь полимера, стал объемным. В связи с этим важнейшая характеристика ионита - обменная емкость - выражается количеством функциональных групп в единице объема смолы.

Согласно закону Кулона, вблизи функциональных групп в ионите концентрируются ионы противоположного заряда, т.е. функциональными группами анионообменника (или анионита) служат положительно заряженные ионы (катионы), ковалентно связанные с полимером (обычно аммониевые основания); и наоборот, в катионите функциональными группами являются ковалентно связанные с полимером анионы (карбоксильные, фосфорнокислые, сульфогруппы и др.). В зависимости от заряда, размеров, конфигурации ионы с разной силой притягиваются к соответствующим функциональным группам. На количество занятых ионами функциональных групп прямо влияет также их концентрация в растворе [20].

Под сорбентами понимают твердые зернистые или волокнистые механически прочные, нерастворимые и химически устойчивые вещества, используемые для разделения или накопления входящих в систему компонентов. Ионообменные сорбенты (иониты) должны обладать способностью к гетерогенным ионообменным реакциям, т.е. во - первых, иметь ионообменную емкость, во - вторых, их кинетические свойства должны обеспечивать сравнительно полное использование их обменной емкости. Важным свойством ионитов является селективность, зависящая от природы обмениваемых ионов [20].

Обменная емкость. Способность к ионному обмену обеспечивается наличием в сорбентах химически активных групп с подвижными обмениваемыми ионами. Их концентрацию в мэкв/г (или мэкв/мл) сорбента называют полной обменной емкостью (ПОЕ) ионита. В соответствии со знаками зарядов матрицы различают сорбенты, способные к обмену катионов (катиониты) , и сорбенты, способные к обмену анионов (аниониты). В химическом аспекте по природе функциональных ионогенных групп катиониты соответствуют кислотам (подвижный ион водорода) или их производным (солям); аниониты соответствуют основаниям (подвижный ион гидроксили) или их производным (солевые формы анионитов).

Катиониты и аниониты подразделяют на две группы по степени ионизации функциональных групп, обусловленной их химической природой, что аналогично обычным понятиям сильные и слабые электролиты. Высокоионизованные сильнокислотные катиониты, так называемые универсальные (КУ), например сульфокатиониты, обладают способностью к обмену ионов водорода в растворах с широким интервалом изменения рН; слабоионизованные катиониты КБ (буферные), например карбоксильные, фосфорнокислые, способны к обмену ионов водорода на металл только в щелочных и лишь отчасти в нейтральных растворах.


Подобные документы

  • Условные показатели качества питьевой воды. Определение органических веществ в воде, ионов меди и свинца. Методы устранения жёсткости воды. Способы очистки воды. Приготовление рабочего раствора сернокислого калия. Очистка воды частичным замораживанием.

    практическая работа [36,6 K], добавлен 03.12.2010

  • Определение физических показателей воды, количества грубодисперсных примесей, плотности жидкостей. Вычисление кислотности и щелочности воды, ее жесткости и солености. Расчет количества сульфатов в воде. Определение химического потребления кислорода.

    контрольная работа [308,7 K], добавлен 26.01.2013

  • Количественный и качественный состав воды. Изучение физических, химических и бактериологических показателей. Содержание нерастворенных примесей, их влияние на прозрачность воды, запах, привкус и цветность. Содержание органических веществ и минерализация.

    презентация [939,6 K], добавлен 14.07.2014

  • Безвредность питьевой воды по химическому составу, определяемая ее соответствием нормативам по обобщенным показателям и содержанию вредных химических веществ, наиболее часто встречающихся в природных водах. Определение температуры и прозрачности воды.

    презентация [573,6 K], добавлен 12.11.2016

  • Определение водородного и гидроксильного показателей. Составление окислительно-восстановительных реакций и электронного баланса. Изменение степени окисления атомов реагирующих веществ. Качественные реакции на катионы различных аналитических групп.

    практическая работа [88,2 K], добавлен 05.02.2012

  • Химический состав воды. Общая жёсткость воды: характеристика, методы определения и влияние избыточной жёсткости. Определение количества фторид-ионов, железа и сухого остатка в образце воды. Влияние техногенного загрязнения на состав природных вод.

    научная работа [134,7 K], добавлен 26.10.2011

  • Санитарно-гигиеническая оценка качества питьевой воды. Нормативное регулирование централизованного хозяйственно-питьевого водоснабжения. Мониторинг физико-химических показателей воды центрального водоснабжения. Оценка цветности, мутности и запаха воды.

    дипломная работа [1,5 M], добавлен 16.02.2022

  • Знакомство с особенностями разработки озонохемилюминесцентного метода контроля органических соединений. Химическое потребление кислорода как общая концентрация кислорода, соответствующая количеству бихромата. Анализ критериев оценки качества воды.

    дипломная работа [723,1 K], добавлен 04.01.2015

  • Характеристика адсорбционных методов. Расчет изотермы адсорбции молекулярно-растворенных органических веществ на активных углях. Методы выбора и контроля адсорбентов для очистки воды. Влияние ионизации и ассоциации молекул в растворе на их адсорбцию.

    курсовая работа [2,0 M], добавлен 17.08.2009

  • Исследование химических свойств воды, предназначенной для ухода за розарием, полученной из сплит-систем. Анализ качества и объема, химический и экологический анализ воды из других источников. Проведение расчета ее потребного количества для полива.

    научная работа [27,2 K], добавлен 28.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.