Жидкие кристаллы
Температурный интервал существования жидких кристаллов. Стадии переработки жесткоцепных полимеров. Получение высокопрочных высокомодульных полимерных материалов, лиотропных жидких кристаллов. Представления о природе жидкокристаллического состояния.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 13.11.2014 |
Размер файла | 65,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Жидкие кристаллы
жидкий кристалл жесткоцепной лиотропный
ЖИДКИЕ КРИСТАЛЛЫ, в-ва, переходящие при определенных условиях (т-ра, давление, концентрация в растворе) в жидкокристаллическое состояние, которое является промежуточным между кристаллическим состоянием и жидкостью. Как и обычные жидкости, жидкие кристаллы обладают текучестью, но при этом для них характерно спонтанное появление анизотропии свойств (оптических, электрических, магнитных и др.) при отсутствии трехмерного дальнего порядка в расположении частиц (атомов, молекул). Поэтому жидкокристаллическое состояние часто называют также мезоморфным (мезофазой). На диаграмме состояния температурный интервал существования жидких кристаллов ограничен температурой плавления твердых кристаллов и температурой просветления, при которой жидкокристаллические мутные образцы становятся прозрачными вследствие плавления мезофазы и превращения ее в изотропную жидкость. Молекулы жидкокристаллических соединений обладают стержнеобразной или дискообразной формой и имеют тенденцию располагаться преимущественно параллельно друг другу. Термотропные жидкие кристаллы образуются при термическом воздействии на вещество. Такие жидкие кристаллы образуют производные ароматические соединения, содержащие чередующиеся линейные и циклические группировки (бензольные кольца). Жидкокристаллическая фаза образуется чаще всего в том случае, если заместители в молекуле располагаются в пара-положении. Большое кол-во термотропных жидкокристаллич. соед. может быть изображено общей формулой:
X обычно --СН=N--, СН2--СН2--, НС=СН--, , --С(О)--NH--. Концевыми группами Y и Z м. б. алкильные и алкоксильные группировки, галогены, циано-, нитро- и аминогруппы и др. Часто жесткие фрагменты молекул ц - циклич. группировки, определяющие существование мезофазы, называются "мезогенными". Наличие разветвлений в молекулах приводит к сужению температурного интервала существования мезофазы.
Лиотропные жидкие кристаллы образуются при растворении нек-рых в-в в определенных р-рителях. Напр., водные р-ры мыл, полипептидов, липидов, белков, ДНК и др. образуют жидкие кристаллы в определенном интервале концентраций и т-р. Структурными единицами лиотропных жидких кристаллов являются надмолекулярные образования разл. типов, распределенные в среде р-рителя и имеющие цилиндрич., сферич. или др. форму. В зависимости от характера расположения стержнеобразных молекул различают три осн. типа жидких кристаллов - смектический, нематический и холестерический. В смектич. жидких кристаллах (их наз. смектиками, обозначают S) молекулы располагаются в слоях. Центры тяжести удлиненных молекул находятся в равноотстоящих друг от друга плоскостях и подвижны в двух измерениях (на смектич. плоскости). Длинные оси молекул могут располагаться как перпендикулярно к плоскости смектич. слоя (ортогональные смектики, рис. 1,а), так и под нек-рым углом к слою (наклонные смектики, рис. 1,б).
Рис. 1 Структура смектических (а и б) и нематических (в) жидких кристаллов (а - ортогональное, б - наклонное расположение молекул)
Кроме того, возможно упорядоченное и неупорядоченное расположение молекул в самих слоях. Все это обусловливает возможности образования разл. полиморфных модификаций. Известно св. десятка полиморфных смектич. модификаций, обозначаемых буквами латинского алфавита, смектики А, В, С и т. д. (или SА, SВ, SC и т. д.). Формирование смектич. фаз характерно для жидкокристаллич. соед., молекулы к-рых содержат длинные концевые алкильные или алкоксильные группы Y и Z с числом атомов углерода / 4-6. Нематич. жидкиекристаллы (нематики N) характеризуются наличием ориентационного порядка, при к-ром длинные оси молекул расположены однонаправленно при беспорядочном расположении центров тяжести молекул (рис. 1,в). Нематич. тип жидких кристаллов образуют соед., в молекулах к-рых имеются короткие алкильные или алкоксильные группы (число атомов углерода[ 3).
Холестерич. тип мезофазы (холестерики Сhоl) образуется двумя группами соед.: производными оптически активных стероидов, гл. обр. холестерина (отсюда назв.), и нестероидными соед., принадлежащими к тем же классам соед., к-рые образуют нематич. жидкие кристаллы, но обладающими хиральностью (алкил-, алкокси-, ацилоксизамещенные азометины, производные коричной к-ты, азо- и азоксисоединения и др.). В холестерич. жидких кристаллах молекулы расположены так же, как в нематических, но в каждом слое молекулы повернуты относительно их расположения в соседнем слое на определенный угол. В целом реализуется структура, описываемая спиралью (рис. 2). В-ва с дискообразными молекулами (дискотики D) могут образовывать жидкие кристаллы, в к-рых молекулы упакованы в колонки (имеется дальний порядок в ориентации плоскостей дискообразных молекул) или расположены так же, как в нематиках (дальний порядок отсутствует) (рис. 3, а и б). Своеобразная структура жидкокристаллич. соед., обеспечивающая сочетание упорядоченности в расположении молекул с их высокой подвижностью, определяет широкие области практич. использования жидких кристаллов. Направление преимуществ. ориентации молекул, характеризуемое аксиальным единичным вектором, или директором, может легко изменяться под воздействием разл. внеш. факторов - т-ры, мех. напряжений, напряженности электрич. и магн. полей.
Непосредственная причина ориентации или переориентации директора - анизотропия вязкоупругих, оптич., электрич. или магн. св-в среды. В свою очередь, изменение преимуществ. Ориентации молекул вызывает изменение оптич., электрич. и др. св-в жидких кристаллов, т. е. создает возможность управления этими св-вами посредством сравнительно слабых внеш. воздействий, а также позволяет регистрировать указанные воздействия. Электрооптич. св-ва нематич. жидких кристаллов широко используют в системах обработки и отображения информации, в буквенно-цифровых индикаторах (электронные часы, микрокалькуляторы, дисплеи и т. п.), оптич. затворах и др. светоклапанных устройствах. Преимущества этих приборов - низкая потребляемая мощность (порядка 0,1 мВт/см2), низкое напряжение питания (неск. В), что позволяет, напр., сочетать жидкокристаллич. дисплеи с интегральными схемами и тем самым обеспечивать миниатюризацию индикаторных приборов (плоские телевиз. экраны). Спиральная структура холестериков определяет их высокую оптич. активность (к-рая на неск. порядков выше, чем у обычных орг. жидкостей и твердых кристаллов) и способность селективно отражать циркулярно поляризованный свет видимого, ИК и УФ диапазонов. При изменении т-ры, состава среды, напряженности электромагн. поля изменяется шаг спирали, что сопровождается изменением оптич. св-в, в частности цвета. Это позволяет измерять т-ру тела по изменению цвета жидкого кристалла, контактирующего с пов-стью тела. Жидкокристаллич. термография используется в технике для визуализации ИК, СВЧ излучений, в качестве неразрушающих методов контроля в микроэлектронике и др., в медицине - для диагностики ряда сосудистых и острых воспалит. заболеваний. Особое место среди жидкокристаллич. в-в занимают полимеры. Термотропные полимерные жидкие кристаллы получают "хим. включением" мезогенных групп в состав линейных и гребнеобразных макромолекул. Это позволяет не только значительно увеличить кол-во жидкокристаллич. в-в, но и существенно расширить общие представления о природе жидкокристаллич. состояния. На основе полимеров можно получать жидкокристаллич. стекла, пленки, волокна и покрытия с заданными анизотропными св-вами. Мезогенные группы макромолекул легко ориентируются в мезофазе под действием внеш. полей (мех., электрич., магнитных), а при послед. охлаждении полимера ниже т-ры стеклования полученная анизотропная структура фиксируется в твердом состоянии. Использование лиотропного жидкокристаллич. состояния на стадии переработки жесткоцепных полимеров - новый путь получения высокопрочных высокомодульных полимерных материалов. Жидкие кристаллы открыты в 1888 Ф. Рейнитцером и О. Леманом. Число описанных жидких кристаллов превышает десятки тысяч и непрерывно увеличивается.
Размещено на Allbest.ru
Подобные документы
История открытия жидких кристаллов, особенности их молекулярного строения, структура. Классификация и разновидности жидких кристаллов, их свойства, оценка преимуществ и недостатков практического использования. Способы управления жидкими кристаллами.
курсовая работа [58,4 K], добавлен 08.05.2012Общая характеристика поверхностных явлений в жидких кристаллах. Рассмотрение отличительных особенностей смектических жидких кристаллов, различных степеней их упорядочения. Исследование анизотропии физических свойств мезофазы, степени упорядочения.
реферат [655,6 K], добавлен 10.10.2015Жидкокристаллическое (мезоморфное) состояние вещества. Образование новой фазы. Типы жидких кристаллов: смекатические, нематические и холестерические. Термотропные и лиотропные жидкие кристаллы. Работы Д. Форлендера, способствовавшие синтезу соединений.
презентация [1,0 M], добавлен 27.12.2010Твёрдые кристаллы: структура, рост, свойства. "Наличие порядка" пространственной ориентации молекул как свойство жидких кристаллов. Линейно поляризованный свет. Нематические, смектические и холестерические кристаллы. Общее понятие о сегнетоэлектриках.
курсовая работа [55,4 K], добавлен 17.11.2012История открытия жидких кристаллов. Их классификация, молекулярное строение и структура. Термотропные жидкие кристаллы: смектический, нематический и холестерический тип. Лиотропные ЖК. Анизотропия физических свойств. Как управлять жидкими кристаллами.
реферат [5,4 M], добавлен 27.05.2010Особенности технологии изготовления полимерных материалов, основные параметры процессов переработки. Методы формования изделий из ненаполненных и наполненных полимерных материалов. Методы переработки армированных полимеров. Аспекты их применения.
реферат [36,4 K], добавлен 04.01.2011Основные виды кристаллов. Естественный и искусственный рост кристаллов. Выращивание кристаллов как физико-химический процесс, требуемое оборудование. Способы образования кристаллов. Выращивание монокристаллов из расплава, растворов и паровой фазы.
реферат [57,3 K], добавлен 07.06.2013Изучение понятия, видов и способов образования кристаллов - твердых тел, в которых атомы расположены закономерно, образуя трехмерно-периодическую пространственную укладку - кристаллическую решетку. Образование кристаллов из расплава, раствора, пара.
презентация [6,3 M], добавлен 08.04.2012Причины и условия кристаллизации материальных частиц. Теории зарождения и роста идеальных кристаллов в работах Гиббса, Фольмера, Косселя и Странского. Описание точечных, линейных, двухмерных и объемных дефектов. История получения искусственных кристаллов.
реферат [21,4 K], добавлен 18.11.2010Примеры применения монокристаллов. Семь кристаллических систем: триклинная, моноклинная, ромбическая, тетрагональная, ромбоэдрическая, гексагональная и кубическая. Простые формы кристаллов. Получение перенасыщенного раствора и выращивание кристалла.
презентация [391,6 K], добавлен 09.04.2012