Типы химической связи

Природа ковалентной связи и ее характеристики (энергия, длина, полярность, поляризуемость). Двухосновные предельные кислоты. Методы синтеза и особенности химического поведения. Синтезы на основе малонового эфира. Пиролиз кальциевых и бариевых солей.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 27.10.2014
Размер файла 192,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. Типы химической связи. Природа ковалентной связи и её характеристики (энергия, длина, полярность, поляризуемость)

2. Двухосновные предельные кислоты. Основные методы синтеза и особенности химического поведения. Малоновый эфир

1. Типы химической связи. Природа ковалентной связи и её характеристики (энергия, длина, полярность, поляризуемость)

Типы химических связей. Согласно принятой в настоящее время классификации существует несколько типов химической связи: ионная, ковалентная, водородная, металлическая и др. По способу образования химической связи различают две основные: ионную и ковалентную.

Ионная связь - характерна для атомов значительно отличающихся по электроотрицательности. Ионный тип связи характерен для неорганических соединений.

Хлор по сравнению с натрием обладает большей электроотрицательностью, то есть большим сродством к электрону. Вследствие этого электрон переходит с внешней оболочки натрия на внешнюю оболочку хлора, при этом образуются положительный и отрицательный заряды, между которыми действуют силы электростатического притяжения. Ион натрия приобретает электронную конфигурацию неона, а ион хлора - конфигурацию аргона.

Ковалентной называется химическая связь, образованная за счет обобществления электронов связываемых атомов. Эти обобществленные электроны занимают молекулярные орбитали (МО). МО является, как правило, многоцентровой орбиталью и заполняющие ее электроны делокализованы (рассредоточены). Для квантово-механического описания ковалентной связи используют два основных подхода: метод валентных связей (ВС) и метод молекулярных орбиталей (МО).

Классическим примером ковалентной связи молекула метана:

Атом углерода содержит на внешнем уровне четыре валентных электрона, и чтобы доукомплектовать этот слой до октетной конфигурации, он образует четыре общие электронные пары с четырьмя атомами водорода.

В зависимости от электроотрицательности атомов между которыми образовалась ковалентная связь, она может быть полярной или неполярной.

Если электроотрицательность атомов одинакова, то общая электронная пара находится на одинаковом расстоянии от ядра каждого из атомов. Такая связь называется ковалентной неполярной:

При возникновении ковалентной связи между атомами с различной электроотрицательностью общая электронная пара смещается к более электроотрицательному атому. В этом случае образуется ковалентная полярная связь.

Свойства ковалентной связи выражаются через ее количественные характеристики - энергию, длину, полярность, поляризуемость.

Энергия связи представляет собой энергию, выделяющуюся при ее образовании или необходимую для разъединения двух связанных атомов. Энергия служит мерой прочности связи: чем больше энергия, тем связь прочнее.

Длина связи - это расстояние между центрами связанных атомов. Двойная связь короче одинарной, а тройная - короче двойной.

Полярность связи обусловлена неравномерным распределением (поляризацией) электронной плотности. Причиной полярности связи служит различие в электроотрицательности связанных атомов.

Электроотрицательность характеризует способность атома в молекуле удерживать валентные электроны. Электроотрицательность не является абсолютной константой элемента. Она зависит от эффективного заряда ядра, вида гибридизации АО и влияния заместителей.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов.

Ковалентная связь может образовываться при взаимодействии заполненной двухэлектронной орбитали одного атома (донора) с вакантной орбиталью другого атома (акцептора). Донорами служат соединения, содержащие либо орбитали с неподеленной парой электронов, либо п-МО.

Ковалентная связь, образующаяся за счет пары электронов одного из партнеров по связи, называется донорно-акцепторной, или координационной. Образовавшаяся донорно-акцепторная связь отличается только способом образования; по свойствам она одинакова с остальными ковалентными связями. Атом-донор при этом приобретает положительный заряд.

Семиполярная связь - частный случай донорно-акцепторной связи. Она образуется между атомами, один из которых имеет неподеленную пару электронов, а другой содержит на внешнем энергетическом уровне шесть электронов (секстет), то есть имеет вакантную орбиталь.

Рассмотрим образование семиполярной связи в молекуле оксида триметиламина:

В результате образования связи атом кислорода (акцептор) приобретает отрицательный заряд, а атом азота (донор) - положительный. Такой вид связи обозначают следующим образом:

Соединения с семиполярной связью не проводят электрический ток, несмотря на наличие наряду с ковалентной связью и ионного взаимодействия.

Водородная связь

Атом водорода, связанный с сильно электроотрицательным элементом (азотом, кислородом, фтором и др.), электронодефицитен и способен взаимодействовать с неподеленной парой электронов другого сильно электроотрицательного атома этой же или другой молекулы. В результате возникает водородная связь, являющаяся разновидностью донорно-акцепторной связи.

Графически водородная связь обозначается тремя точками.

Водородная связь бывает внутримолекулярная и межмолекулярная.))

2. Двухосновные предельные кислоты. Основные методы синтеза и особенности химического поведения. Малоновый эфир

Двухосновные предельные карбоновые кислоты (двухосновные насыщенные карбоновые кислоты) - карбоновые кислоты, в которых насыщенный углеводородный радикал соединен с двумя карбоксильными группами -COOH. Все они имеют общую формулу HOOC(CH2)nCOOH, где n = 0, 1, 2, …

Из них важнейшими являются:

НООС-СООН - щавелевая, этандикарбоновая кислота;

НООС-СН2-СООН - малоновая, пропандикарбоновая кислота;

НООС-СН2-СН2-СООН - янтарная, бутандикарбоновая кислота;

НООС-СН2-СН2-СН2-СООН - глутаровая, пентандикарбоновая кислота.

Химические свойства

Двухосновные кислоты более сильные, чем одноосновные. Это объясняется взаимным влиянием карбоксильных групп, облегчающих диссоциацию:

В целом реакции дикарбоновых кислот и их монокарбоновых аналогов почти не различаются между собой. Механизм реакций образования диамидов, диэфиров и др. из карбоновых кислот тот же, что и для монокарбоновых кислот. Исключение составляют дикарбоновые кислоты, содержащие меньше четырех атомов углерода между карбоксильными группами. Такие кислоты, две карбоксильные группы которых способны реагировать с одной функциональной группой или друг с другом, обнаруживают необычное поведение в реакциях, протекающих с образованием пяти- или шестичленных замкнутых активированных комплексов или продуктов.

Примером необычного поведения карбоновых кислот могут служить реакции, протекающие при нагревании.

При 150 оС щавелевая кислота разлагается на муравьиную кислоту и СО2:

HOOC-COOH ® HCOOH + CO2

ковалентный кислота синтез химический

Циклодегидратация.

При нагревании g-дикарбоновых кислот, у которых карбоксильные группы разделены атомами углерода, происходит циклодегидратация, в результате чего образуются циклические ангидриды:

Синтезы на основе малонового эфира.

Двухосновные кислоты с двумя карбоксильными группами при одном углеродном атоме, т.е. малоновая кислота и ее моно- и дизамещенные гомологи, при нагревании несколько выше их температур плавления разлагаются (подвергаются декарбоксилированию) с отщеплением одной карбоксильной группы и образованием уксусной кислоты или ее моно- и дизамещенных гомологов:

HOOCCH2COOH ® CH3COOH + CO2

HOOCCH(CH3)COOH ® CH3CH2COOH + CO2

HOOCC(CH3)2COOH ® (CH3)2CHCOOH + CO2

Атомы водорода метиленовой группы, находящейся между ацильными группами диэтилового эфира малоновой кислоты (малоновый эфир), обладают кислотными свойствами и дают натриевую соль с этилатом натрия. Эту соль - натрий-малоновый эфир - алкилируют по механизму нуклеофильного замещения SN2. На основе натрий-малонового эфира получают одно- и двухосновные кислоты:

[CH(COOCH2CH3)2]-Na+ + RBr® RCH(COOCH2CH3)2 + 2 H2O ®

При пиролизе кальциевых или бариевых солей адипиновой (С6), пимелиновой (С7) и пробковой (С8) кислот происходит отщепление СО2 и образуются циклические кетоны:

Размещено на Allbest.ru


Подобные документы

  • Строение и схема получения малонового эфира. Синтез ацетоуксусного эфира из уксусной кислоты, его использование для образования различных кетонов. Таутомерные формы и производные барбитуровой кислоты. Восстановление a,b-Непредельных альдегидов и кетонов.

    лекция [270,8 K], добавлен 03.02.2009

  • Одноосновные карбоновые кислоты. Общие способы получения. Двухосновные кислоты, химические свойства. Пиролиз щавелевой и малоновой кислот. Двухосновные непредельные кислоты. Окисление оксикислот. Пиролиз винной кислоты. Сложные эфиры. Получение жиров.

    учебное пособие [568,9 K], добавлен 05.02.2009

  • Понятие химической связи как взаимодействия между атомами, приводящее к образованию устойчивой системы, ее энергия и причины возникновения; относительный характер классификации. Знакомство с способами образования ковалентной, ионной и водородной связи.

    презентация [1,3 M], добавлен 27.01.2014

  • Анализ химической связи как взаимодействия атомов. Свойства ковалентной связи. Механизм образования ионной связи, строение кристаллической решетки. Примеры межмолекулярной водородной связи. Схема образования металлической связи в металлах и сплавах.

    презентация [714,0 K], добавлен 08.08.2015

  • Общая характеристика углерода как химического элемента, его основные свойства, особенности строения. Типы химических связей: ковалентная, ионная и водородная. Способы разрыва химической связи. Электронные эффекты. Кислоты и основания, их сравнение.

    контрольная работа [180,4 K], добавлен 05.08.2013

  • Типы химической связи: ковалентная, ионная и металлическая. Донорно-акцепторный механизм образования и характеристики ковалентной связи. Валентность и степень окисления элементов. Молекулы химических соединений. Размеры и масса атомов и молекул.

    контрольная работа [45,3 K], добавлен 16.11.2010

  • Характеристика ковалентной связи: насыщаемость, направленность, полярность. Гибридизация атомных орбиталей. Ионная, молекулярная, водородная и металлическая химические связи. Вандерваальсовы силы, межмолекулярное взаимодействие; кристаллические решетки.

    презентация [1,1 M], добавлен 22.04.2013

  • Основные приближения метода потенциалов. Ковалентная связь как вид химической связи, характеризуемый увеличением электронной плотности. Свойства и структура ковалентных кристаллов. Особенности двух- и многоатомных молекул. Оценка энергии связи в металлах.

    презентация [297,1 K], добавлен 22.10.2013

  • Особенности валентности - образования у атомов определенного числа химических связей. Основные типы химической связи: ионная, ковалентная, водородная, металлическая. Виды кристаллов по типу химической связи: ионные, атомные, металлические, молекулярные.

    курсовая работа [241,7 K], добавлен 19.10.2013

  • Ранние теории ковалентной связи. Правило октета и структуры Льюиса. Характеристики химической связи, корреляция между ними. Концепции электроотрицательности. Модель отталкивания электронных пар валентных оболочек. Квантовые состояния молекулы как целого.

    лекция [1,9 M], добавлен 18.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.