Приготовление растворов кислот

Расчеты при приготовлении растворов и особенности приготовления растворов серной и соляной кислот разных концентраций. Применение методов титрования и пипетирования для установления концентрации. Отмеривание количества воды мерным цилиндром или мензуркой.

Рубрика Химия
Вид лабораторная работа
Язык русский
Дата добавления 17.10.2014
Размер файла 46,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"Южно-Уральский государственный университет"

(национальный исследовательский университет)

Кафедра "Технология и организация питания"

Приготовление растворов кислот

Выполнила: Шарапова В.Н.

Проверила: Сидоренкова Л.А.

Челябинск 2014 г.

Содержание

  • 1. Приготовление растворов кислот
  • 2. Расчеты при приготовлении растворов и особенности приготовления растворов разных концентраций
  • 2.1 Расчеты при приготовлении растворов нормальной концентрации
  • 2.2 Расчеты при приготовлении растворов, концентрация которых выражена в граммах на 1 л
  • 2.3 Расчеты при приготовлении растворов определенной процентной концентрации

1. Приготовление растворов кислот

В анализах методом нейтрализации применяют 0,1 н. и 0,5 н. точные растворы серной и соляной кислот, а в других методах анализа, например в окислительно-восстановительном, часто используют 2 н. приблизительные растворы этих кислот.

Для быстрого приготовления точных растворов удобно пользоваться фиксаналами, представляющими собой навески (0,1 г-экв или 0,01 г-экв) химически чистых веществ, взвешенные с точностью до четырех-пяти значащих цифр, находящиеся в запаянных стеклянных ампулах. При приготовлении 1 л. раствора из фиксанала получают 0,1 н. или 0,01 н. растворы. Небольшие количества растворов соляной и серной кислот 0,1 н. концентрации можно готовить из фиксаналов. Стандартные растворы, приготовленные из фиксаналов, обычно служат для установления или проверки концентрации других растворов. Фиксаналы кислот можно хранить долгое время.

Для приготовления точного раствора из фиксанала ампулу обмывают теплой водой, смывая с нее надпись или этикетку, и хорошо обтирают. Если надпись сделана краской, то ее удаляют тряпочкой, смоченной спиртом. В мерную колбу емкостью 1 л. вставляют стеклянную воронку, а в нее - стеклянный боек, острый конец которого должен быть направлен вверх. После этого ампулу с фиксаналом слегка ударяют тонким дном об острие бойка или дают ей свободно падать, чтобы дно разбилось при ударе об острие. Затем стеклянным штырем с заостренным концом разбивают тонкую стенку углубления в верхней части ампулы и дают содержащейся в ампуле жидкости вытечь. Потом ампулу, находящуюся в воронке, тщательно промывают дистиллированной водой из промывалки, после чего удаляют из воронки, промывают воронку и удаляют ее из колбы, а раствор в колбе доливают до метки дистиллированной водой, закрывают пробкой и перемешивают.

При приготовлении растворов из сухих фиксаналов (например, из фиксанала щавелевой кислоты) берут сухую воронку, чтобы содержимое ампулы можно было при легком встряхивании пересыпать в колбу. После того как вещество перенесут в колбу, промывают ампулу и воронку, растворяют вещество в воде, находящейся в колбе, и доводят объем раствора дистиллированной водой до метки.

Большие количества 0,1 н. и 0,5 н. растворов соляной и серной кислот, а также приблизительные растворы этих кислот (2 н. и др.) готовят из концентрированных химически чистых кислот. Вначале ареометром или денсиметром определяют плотность концентрированной кислоты.

По плотности в справочных таблицах находят концентрацию кислоты (содержание хлористого водорода в соляной кислоте или моногидрата в серной), выраженную в граммах на 1 л. По формулам рассчитывают объем концентрированной кислоты, необходимый для приготовления заданного объема кислоты соответствующей концентрации. Расчет проводят с точностью до двух-трех значащих цифр. Количество воды для приготовления раствора определяют по разности объемов раствора и концентрированной кислоты.

Таблица 1. Плотность и концентрация растворов соляной кислоты (15°С)

Плотность г/см 3

Содержание HCl

Плотность г/см 3

Содержание HCl

%

г/л

%

г/л

1,000

0,16

1,6

1,115

22,86

255

1,005

1,15

12

1,120

23,82

267

1,010

2,14

22

1,125

24,78

279

1,015

3,12

32

1,130

25,75

291

1,020

4,13

42

1,135

26,70

302

1,025

5,15

53

1,140

27,66

315

1,030

6,15

63

1,142

28,14

321

1,035

7,15

74

1,145

28,61

328

1,040

8,16

85

1,150

29,57

340

1,045

9,16

96

1,152

29,95

345

1,050

10,17

107

1,155

30,55

353

1,055

11,18

118

1,160

31,52

366

1,060

12,19

129

1,163

32,10

373

1,065

13,19

140

1,165

32,49

379

1,070

14,17

152

1,170

33,46

391

1,075

15,16

163

1,171

33,65

394

1,080

16,15

174

1,175

34,42

404

1,085

17,13

186

1,180

35,39

418

1,090

18,11

197

1,185

36,31

430

1,095

19,06

209

1,190

37,23

443

1,100

20,01

220

1,195

38,16

456

1,105

20,97

232

1,200

39,11

469

1,110

21,92

243

Таблица.2 Плотность и концентрация растворов серной кислоты (15°С)

Плотность г/см 3

Содержание H2SO4

%

г/л

1,000

0,09

1

1,010

1,57

16

1,020

3,03

31

1,030

4,49

46

1,040

5,96

62

1,050

7,37

77

1,060

8,77

93

1,070

10,19

109

1,080

11,60

125

1,090

12,99

142

1,100

14,35

158

1,110

15,71

175

1,120

17,01

191

1,130

18,31

207

1,140

19,61

223

1,150

20,91

239

1,160

22,19

257

1,170

23,47

275

1,180

24,76

292

1,190

26,04

310

1,200

27,32

328

1,250

33,43

418

1,300

39,19

510

1,350

44,82

605

1,400

50,11

702

1,450

55,03

798

1,500

59,70

896

1,550

64,26

996

1,600

68,70

1099

1,650

72,96

1204

1,700

77,17

1312

1,800

86,92

1564

1,810

88,30

1598

1,820

90,05

1639

1,830

92,10

1685

1,840

95,60

1759

Раствор соляной кислоты готовят путем приливания в сосуд для приготовления раствора половины требуемого количества дистиллированной воды, а затем концентрированной кислоты; после перемешивания раствор доливают до полного объема оставшимся количеством воды. Частью второй порции воды ополаскивают мензурку, которой отмеривали кислоту.

Раствор серной кислоты готовят путем медленного приливания концентрированной кислоты при постоянном перемешивании (чтобы не допустить разогревания) к воде, налитой в сосуд из термостойкого стекла. При этом небольшое количество воды оставляют для ополаскивания мензурки, которой отмеривали кислоту, приливая этот остаток в раствор после его охлаждения.

Иногда для химического анализа применяют растворы твердых кислот (щавелевой, винной и др.). Эти растворы готовят растворением в дистиллированной воде навески химически чистой кислоты.

Массу навески кислоты вычисляют по формуле. Объем воды для растворения берут приблизительно равным объему раствора (если растворение ведется не в мерной колбе). Для растворения этих кислот применяют воду, не содержащую углекислого газа.

Пример 1. Рассчитать количество концентрированной соляной кислоты плотности 1,14 г/см 3 и количество воды, необходимое для приготовления 10 л 0,1 н. раствора.

В таблице по плотности находим содержание хлористого водорода HCl в концентрированной кислоте: Гк = 315 г/л.

Рассчитываем объем концентрированного раствора соляной кислоты:

Vк = 36,5N*V / Тк = 36,5*0,1*10000 / 315 = 315 мл.

Количество воды, необходимое для приготовления раствора:

VH2O = 10000 - 115 = 9885 мл.

Пример 2. Рассчитать количество щавелевой кислоты, необходимое для приготовления 2 л 0,1 н. раствора.

Масса навески щавелевой кислоты H2C2O4*2H2O:

63,03N*V / 1000 = 63,03*0,1*3000 / 1000 = 12,6 г.

Установление концентрации рабочих растворов кислот можно проводить по карбонату натрия, буре, точному раствору щелочи (титрованному или приготовленному из фиксанала). При установлении концентрации растворов соляной или серной кислот по карбонату натрия или по буре пользуются методом титрования навесок или (реже) методом пипетирования. При методе титрования навесок используют бюретки емкостью 50 или 25 мл.

При установлении концентрации кислот большое значение имеет выбор индикатора. Титрование выполняют в присутствии такого индикатора, у которого переход окраски происходит в интервале pH, соответствующем точке эквивалентности для химической реакции, протекающей при титровании. При взаимодействии сильной кислоты с сильным основанием в качестве индикаторов можно использовать метиловый оранжевый, метиловый красный, фенолфталеин и другие, у которых переход окраски происходит при pH = 4ч10.

При взаимодействии сильной кислоты со слабым основанием или с солями слабых кислот и сильных оснований в качестве индикаторов используют такие, у которых переход окраски происходит в кислой среде, например метиловый оранжевый. При взаимодействии слабых кислот с сильными щелочами применяют индикаторы, у которых переход окраски происходит в щелочной среде, например фенолфталеин. Концентрацию раствора нельзя определить титрованием, если при титровании взаимодействует слабая кислота со слабым основанием.

При установлении концентрации соляной или серной кислот по карбонату натрия на аналитических весах в отдельных бюксах берут три-четыре навески безводного химически чистого карбоната натрия с точностью до 0,0002 г. Для установления концентрации 0,1 н. раствора путем титрования из бюретки емкостью 50 мл масса навески должна быть около 0,15 г. Сушкой в сушильном шкафу при 150°С навески доводят до постоянной массы, а затем переносят в конические колбы емкостью 200-250 мл и растворяют в 25 мл дистиллированной воды. Бюксы с остатками карбоната взвешивают и по разности масс определяют точную массу каждой навески.

Титрование раствора карбоната натрия кислотой ведут в присутствии 1-2 капель 0,1%-ного раствора метилового оранжевого (титрование заканчивается в кислой среде) до изменения желтой окраски раствора в оранжево-желтую. При титровании полезно пользоваться раствором - "свидетелем", для приготовления которого в дистиллированную воду, налитую в такую же колбу, как и колба, в которой производится титрование, добавляют одну каплю кислоты из бюретки и столько капель индикатора, сколько его добавляют в титруемый раствор.

Объем дистиллированной воды для приготовления раствора - "свидетеля" должен быть примерно равен объему раствора в колбе в конце титрования.

Нормальную концентрацию кислоты рассчитывают по результатам титрования:

N = 1000mн / ЭNa2CO3V = 1000mн / 52,99V

где mн - масса навески соды, г;

V - объем раствора кислоты (мл), израсходованный на титрование.

Из нескольких опытов берут среднюю сходящуюся величину концентрации.

Пример 3. Рассчитать массу навески карбоната натрия для установления концентрации 0,1 н. раствора серной кислоты, если для титрования используют бюретку емкостью 25 мл.

Предполагаем израсходовать на титрование около 20 мл кислоты.

Масса навески соды:

52,99 * 0,1 * 20 / 1000 = 0,1 г.

Пример 4. Навеска карбоната натрия в 0,1482 г оттитрована 28,20 мл раствора соляной кислоты. Определить концентрацию кислоты.

Нормальная концентрация соляной кислоты:

1000 * 0,1482 / 52,99 * 28,2 = 0,1012 н.

При установлении концентрации раствора кислоты по карбонату натрия методом пипетирования навеску химически чистого карбоната натрия, предварительно доведенную высушиванием в сушильном шкафу до постоянной массы и взвешенную с точностью до 0,0002 г, растворяют в дистиллированной воде в откалиброванной мерной колбе емкостью 100 мл.

Величина навески при установлении концентрации 0,1 н. раствора кислоты должна быть около 0,5 г (чтобы при растворении получить примерно 0,1 н. раствор). На титрование берут пипеткой 10-25 мл раствора карбоната натрия (в зависимости от емкости бюретки) и 1-2 капли 0,1%-ного раствора метилового оранжевого.

Метод пипетирования часто применяют при установлении концентрации растворов с помощью полумикробюреток емкостью 10 мл с ценой деления 0,02 мл.

Нормальную концентрацию раствора кислоты при ее установлении методом пипетирования по карбонату натрия вычисляют по формуле:

N = 1000mнV1 / 52,99VкV2,

где mн - масса навески карбоната натрия, г;

V1 - объем раствора карбоната, взятый на титрование, мл;

Vк - объем мерной колбы, в которой производилось растворение навески карбоната;

V2 - объем раствора кислоты, израсходованный на титрование.

Пример 5. Определить концентрацию раствора серной кислоты, если для ее установления 0,5122 г карбоната натрия было растворено в мерной колбе емкостью 100,00 мл и на титрование 15,00 мл раствора карбоната израсходовано 14,70 мл раствора кислоты (при использовании бюретки емкостью 25 мл).

Нормальная концентрация раствора серной кислоты:

1000 * 0,5122 * 15 / 52,99 * 100 * 14,7 = 0,09860 н.

При установлении концентрации серной или соляной кислот по тетраборату натрия (буре) обычно используют метод титрования навесок. Кристаллогидрат буры Na2B4O7*10H2O должен быть химически чистым и перед установлением по нему концентрации кислоты его подвергают перекристаллизации. Для перекристаллизации 50 г буры растворяют в 275 мл воды при 50-60°C; раствор фильтруют и охлаждают до 25-30°C. Энергично помешивая раствор, вызывают кристаллизацию. Кристаллы отфильтровывают на воронке Бюхнера, растворяют снова и перекристаллизовывают. После фильтрования кристаллы сушат между листами фильтровальной бумаги при температуре воздуха 20°C и относительной влажности воздуха 70%; сушку проводят на воздухе или в эксикаторе над насыщенным раствором хлорида натрия. Высушенные кристаллы не должны прилипать к стеклянной палочке.

Для титрования отбирают в бюкс поочередно 3-4 навески буры с точностью до 0,0002 г и переносят их в конические колбы для титрования, растворяя каждую навеску в 40-50 мл теплой воды при энергичном взбалтывании. После перенесения каждой навески из бюкса в колбу бюкс взвешивают. По разности масс при взвешивании определяют величину каждой навески. Величина отдельной навески буры для установления концентрации 0,1 н. раствора кислоты при применении бюретки емкостью 50 мл должна быть около 0,5 г.

Титрование растворов буры кислотой ведут в присутствии 1-2 капель 0,1%-ного раствора метилового красного до изменения желтой окраски раствора в оранжево-красную или в присутствии раствора смешанного индикатора, состоящего из метилового красного и метиленового синего.

Нормальную концентрацию раствора кислоты рассчитывают по формуле:

N = 1000mн / 190,69V,

где mн - масса навески буры, г;

V - объем раствора кислоты, израсходованный на титрование, мл.

Пример 6. Рассчитать навеску буры для установления концентрации 0,1 н. раствора соляной кислоты методом титрования навесок при применении бюретки емкостью 25 мл.

На титрование предполагается израсходовать 15 мл раствора кислоты.

Масса навески буры:

190,69 * 0,1 * 15 / 1000 = 0,3 г.

Пример 7. Найти концентрацию раствора соляной кислоты, если для титрования навески буры в 0,4952 г израсходовано 24,38 мл соляной кислоты.

1000 * 0,4952 / 190,624,38 = 0,1068

Установление концентрации кислоты по раствору едкого натра или едкого кали проводят путем титрования раствором кислоты раствора щелочи в присутствии 1-2 капель 0,1%-ного раствора метилового оранжевого. Однако этот метод установления концентрации кислоты менее точный, чем приведенный выше. Его обычно используют при контрольных проверках концентрации кислот. В качестве исходного раствора часто пользуются раствором щелочи, приготовленным из фиксанала.

Нормальную концентрацию раствора кислоты N2 рассчитывают по формуле:

N2 = N1V1 / V2,

где N1 - нормальная концентрация раствора щелочи;

V1 - объем раствора щелочи, взятый для титрования;

V2 - объем раствора кислоты, израсходованный на титрование (средняя величина сходящихся результатов титрования).

Пример 8. Определить концентрацию раствора серной кислоты, если на титрование 25,00 мл 0,1000 н. раствора едкого натра израсходовано 25,43 мл раствора серной кислоты.

Концентрация раствора кислоты:

0,1 * 25 / 25,43 = 0,09828 н.

2. Расчеты при приготовлении растворов и особенности приготовления растворов разных концентраций

раствор кислота концентрация мензурка

Точность расчетов при приготовлении растворов зависит оттого, какой готовят раствор: приблизительный или точный. При расчетах приблизительных растворов атомные и молекулярные массы округляют до трех значащих цифр. Так, например, атомную массу хлора принимают равной 35,5 вместо 35,453, атомную массу водорода - 1,0 вместо 1,00797 и т. п. Округление ведут обычно в большую сторону.

При приготовлении стандартных растворов вычисления проводят с точностью до пяти значащих цифр. Атомные массы элементов берут с такой же точностью. При расчетах пользуются пятизначными или четырехзначными логарифмами. Растворы, концентрацию которых будем затем устанавливать титрованием, готовят, как и приблизительные.

Растворы могут быть приготовлены растворением твердых веществ, жидкостей или разбавлением более концентрированных растворов.

2.1 Расчеты при приготовлении растворов нормальной концентрации

Навеску вещества (г) для приготовления раствора определенной нормальности рассчитывают по формуле:

mн=ЭNV/1000,

где Э - химический эквивалент растворяемого вещества;

N - требуемая нормальность раствора, г-экв/л;

V - объем раствора, мл.

Навеску вещества обычно растворяют в мерной колбе. Разбавленные приблизительные растворы можно готовить, растворяя навеску вещества в объеме растворителя, равном объему раствора. Этот объем может быть отмерен мерным цилиндром или мензуркой.

Если раствор готовят из навески кристаллогидрата вещества, то в расчетное уравнение для определения навески подставляют величину химического эквивалента кристаллогидрата.

При приготовлении раствора с определенной нормальной концентрацией путем разбавления более концентрированного раствора объем концентрированного раствора (мл) рассчитывают по формуле:

Vк=ЭNV/Тк,

где Тк - концентрация концентрированного раствора, г/л, или:

Vк=NV/Nк,

где Nк - нормальность концентрированного раствора, или:

Vк=ЭNV/10 pкdк,

где pк - процентная концентрация концентрированного раствора;

dк - плотность концентрированного раствора, г/см 3.

Концентрированные растворы разбавляют в мерных колбах. При приготовлении точных растворов (например, эталонных растворов из более концентрированного стандартного раствора) концентрированные растворы отмеривают пипетками или приливают их из бюреток. При приготовлении приблизительных растворов разбавление можно делать путем смешивания концентрированного раствора с объемом воды, равным разности между объемами разбавленного и концентрированного растворов:

VH2O=V-Vk

2.2 Расчеты при приготовлении растворов, концентрация которых выражена в граммах на 1 л

Величину навески вещества (г) для таких растворов рассчитывают по формуле:

mн=TV/1000,

где Т - концентрация раствора, г/л;

V - объем раствора, мл.

Растворение вещества обычно ведут в мерной колбе с доведением объема раствора после растворения до метки. Приблизительные растворы можно готовить путем растворения навески в объеме воды, равном объему раствора.

Если раствор готовят из навески кристаллогидрата, а концентрация раствора выражена из расчета на безводное вещество, навеску кристаллогидрата вычисляют по формуле:

mн=TVMk/1000M,

где Mk - молекулярная масса кристаллогидрата;

М - молекулярная масса безводного вещества.

При приготовлении растворов путем разбавления более концентрированных объем концентрированного раствора определяют по формуле:

Vк=VT/Tk,

где Tk - концентрация концентрированного раствора, г/л, или:

Vк=100VT/1000pkdk,

где pk - процентная концентрация концентрированного раствора;

dk - плотность концентрированного раствора, г/см 3;

или:

Vк=VT/ЭNk,

где Nk - нормальная концентрация концентрированного раствора; Э - химический эквивалент вещества.

Растворы готовят так же, как и при приготовлении растворов определенной нормальной концентрации путем разбавления более концентрированных растворов.

Для приближенных расчетов, связанных с приготовлением растворов путем разбавления более концентрированных, можно пользоваться правилом разбавления ("правилом креста"), которое гласит, что объемы смешиваемых растворов обратно пропорциональны разностям концентраций смешиваемых и полученного при смешивании растворов. Это выражают схемами:

или:

где N1, Т 1, N3, T3 - концентрации смешиваемых растворов;

N2, Т 2 - концентрации раствора, полученного при смешивании;

V1, V3 - объемы смешиваемых растворов.

Если раствор готовят разбавлением концентрированного раствора водой, то N3 = 0 или Т 3 = 0. Например, для приготовления раствора концентрации Т 2 = 50 г/л из растворов концентрации T1 = 100 г/л и T3 = 20 г/л необходимо смешать объем V1 = 50 - 20 = 30 мл раствора концентрации 100 г/л и V3 = 100 - 50 = 50 мл раствора концентрации 20 г/л:

2.3 Расчеты при приготовлении растворов определенной процентной концентрации

Массу навески (г) рассчитывают по формуле:

mн=pQ/100,

где p - процентная концентрация раствора;

Q - масса раствора, г.

Если задан объем раствора V, массу раствора определяют:

Q=dV,

где d - плотность раствора, г/см 3 (может быть найдена в справочных таблицах).

Массу навески при заданном объеме раствора рассчитывают:

mн=pdV/100.

Массу воды для растворения навески определяют:

mH2O=Q-m,

Так как масса воды численно приблизительно равна ее объему, то воду обычно отмеривают мерным цилиндром.

Если раствор готовят растворением кристаллогидрата вещества, а концентрация раствора выражена в процентах безводного вещества, то массу кристаллогидрата рассчитывают по формуле:

mн=pQMk/100M,

где Мk - молекулярная масса кристаллогидрата;

М - молекулярная масса безводного вещества.

Приготовление растворов разбавлением более концентрированных удобно производить путем отмеривания определенных объемов растворов и воды, при этом объем концентрированного раствора вычисляют по формуле:

Vк=pdV/pkdk,

где dk - плотность концентрированного раствора.

Растворы определенной процентной концентрации готовят как приблизительные, а поэтому навески веществ с точностью до двух-трех значащих цифр взвешивают на технических весах, а для отмеривания объемов пользуются мензурками или мерными цилиндрами.

Если раствор получают смешиванием двух других растворов, один из которых имеет большую концентрацию, а другой - меньшую, то массу исходных растворов можно определить, пользуясь правилом разбавления ("правилом креста"), которое для растворов определенной процентной концентрации гласит: массы смешиваемых растворов обратно пропорциональны разностям процентных концентраций смешиваемых и получаемого растворов. Это правило выражают схемой:

Например, для получения раствора в концентрации p2=10% из растворов концентрации p1=20% и р 3=5% нужно смешать количество исходных растворов: m1=10-5=5г 20%-ного раствора и m3=20-10=10г 5%-ного раствора. Зная плотность растворов, можно легко определить требуемые для смешивания объемы.

Размещено на Allbest.ru


Подобные документы

  • Характеристика растворов, содержащих буферные системы и обладающих способностью поддерживать рН на постоянном уровне. Применение буферных растворов и их классификация. Сущность буферного действия. Буферные свойства растворов сильных кислот и оснований.

    контрольная работа [43,9 K], добавлен 28.10.2015

  • Классификация и особенности растворов и растворителей. Участие растворителей в кислотно-основном взаимодействии и их результаты. Протеолитическая теория кислот и оснований. Способы выражения концентрации растворов. Буферные растворы и вычисление их pH.

    реферат [27,6 K], добавлен 23.01.2009

  • Константы и параметры, определяющие качественное (фазовое) состояние, количественные характеристики растворов. Виды растворов и их специфические свойства. Способы получения твердых растворов. Особенности растворов с эвтектикой. Растворы газов в жидкостях.

    реферат [2,5 M], добавлен 06.09.2013

  • Роль осмоса в биологических процессах. Процесс диффузии для двух растворов. Формулировка закона Рауля и следствия из него. Применение методов криоскопии и эбуллиоскопии. Изотонический коэффициент Вант-Гоффа. Коллигативные свойства растворов электролитов.

    реферат [582,1 K], добавлен 23.03.2013

  • Метод кислотно-основного титрования: понятие и содержание, основные этапы и принципы реализации, предъявляемые требования, главные условия и возможности применения. Расчет рН растворов. Построение кривых титрования. Выбор индикатора и его обоснование.

    презентация [1,4 M], добавлен 16.05.2014

  • Особенности методов окислительно-восстановительного титрования. Основные требования к реакциям, константа равновесия. Характеристика видов окислительно-восстановительного титрования, его индикаторы и кривые. Приготовление и стандартизация растворов.

    курсовая работа [1,7 M], добавлен 25.12.2014

  • Классификация методов титриметрического анализа. Посуда в титриметрическом анализе и техника работы с ней. Способы выражения концентрации растворов. Взаимосвязь различных способов выражения концентрации растворов. Молярная концентрация эквивалента.

    реферат [40,8 K], добавлен 23.02.2011

  • Приготовление растворов полимеров: процесс растворения полимеров; фильтрование и обезвоздушивание растворов. Стадии производства пленок раствора полимера. Общие требования к пластификаторам. Подготовка раствора к формованию. Образование жидкой пленки.

    курсовая работа [383,2 K], добавлен 04.01.2010

  • Классификация методов титраметрического анализа. Сущность метода "нейтрализации". Приготовление рабочих растворов. Расчет точек и построение кривых кислотно-основного и окислительно-восстановительного титрования. Достоинства и недостатки йодометрии.

    курсовая работа [383,9 K], добавлен 17.11.2013

  • Механические свойства изделий из полимеров. Воздействие механического поля на жидкокристаллические растворы ЦЭЦ. Анализ результатов рентгеновских исследований растворов ЦЭЦ. Последствия сдвиговой деформации жидкокристаллических растворов ЦЭЦ в ДМФА.

    статья [825,5 K], добавлен 22.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.