Химическая термодинамика
Ключевые понятия химической термодинамики и ее система, пояснения открытой, закрытой и изолированной систем. Микроскопические и макроскопические параметры состояния системы, а также ее процессы: изохорный, изобарный, изотермический и адиабатный.
Рубрика | Химия |
Вид | курс лекций |
Язык | русский |
Дата добавления | 23.02.2014 |
Размер файла | 747,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ДrH0298 = -ДfH0298H2 + 2Дf H0298H = -0+2.217,9 = 435,8 КДж
При ДrН0298 >О реакция разложения водорода - эндотермическая.
Вычислим изменение энтропии реакции при Т =298 К
ДrS2980 = - S0298H2 + 2S0298H = -130,6 + 2 . 114,6 = 98,6 Дж/К
Рассчитаем изменение энергии Гиббса при T = 298 К
ДrGT = 435800 - 298.98,6 = 406954 Дж = 406,954 КДж.
При ДrGT>0 реакция идет самопроизвольно в обратном направлении.
Рассчитаем изменение энергии Гиббса при T = 4500 К
ДrGT = 435800 - 4500.98,6 = -7900 Дж = -7,9 КДж.
При ДrGT<0 реакция идет самопроизвольно в прямом направлении.
Ответ. ДrG0298 = 406,954 КДж, ДrG4500 = -7,9 КДж.
Задачи для самостоятельного решения
1. Рассчитайте величину So298 для процесса
Na2O(т) + H2O(ж) = 2NaOH(т), используя значения стандартных энтропий веществ
So(NaOH,т) = 64,16 Дж/(мольЧК),
So(Na2O,т) = 75,5 Дж/(мольЧК), So(H2O,ж) = 70 Дж/(мольЧК), рассчитываем So298:
2. Рассчитайте изменение энергии Гиббса (DGo298) для процесса
Na2O(т) + H2O(ж) = 2NaOH(т) по значениям стандартных энергий Гиббса образования веществ. Возможно ли самопроизвольное протекание реакции при стандартных условиях и 298К ? G0298 для веществ: (NaOH,т) = -381,1 кДж/моль (Na2O) = -378 кДж/моль, (H2O,ж) = -237 кДж/моль.
3. Рассчитайте Ho298 химической реакции Na2O(т) + H2O(ж) = 2NaOH(т)
по значениям стандартных теплот образования веществ Укажите тип реакци (экзо- или эндотермическая).
Стандартные Н0 Na2O(т), H2O(ж) и NaOH(т) при 298К равны соответственно -416, -286 и -427,8 кДж/моль.
4. Определите, возможно ли при 95oС самопроизвольное протекание процесса Na2O(т) + H2O(ж) = 2NaOH(т). Ответ обоснуйте, рассчитав величину изменения энергии Гиббса при данной температуре.
6. ОСНОВЫ КИНЕТИКИ
В предыдущем разделе были сформулированы критерии самопроизвольного протекания химических реакций. Но это не означает, что если реакция с точки зрения термодинамики может идти самопроизвольно, то она мгновенно осуществится. Примером может служить существование человека в окружающей среде. Человеческие ткани в основном состоят из различных органических соединений. Процесс взаимодействия практически любого органического соединения с кислородом является самопроизвольным процессом с точки зрения термодинамики. Но человек на воздухе не сгорает, а существует достаточно долгое время, обеспечивая свое существование за счет реакций окисления органических соединений. В то же время процесс сгорания природного газа протекает достаточно быстро, а некоторые реакции сопровождаются взрывами, т. е. выделением большого количества энергии в доли секунды. Иными словами, существует какой-то другой барьер протекания химических реакций, помимо термодинамического.
Изучением скоростей протекания химических реакций и их механизмами занимается химическая кинетика. Все химические реакции имеют сложный механизм. Под механизмом реакции понимают последовательность протекания промежуточных стадий реакции, в результате которой происходит образование конечных веществ. Уравнение реакции практически никогда не отражает её механизм, а скорость протекания реакции в этом случае определяется скоростью наиболее медленной стадии, называемой лимитирующей стадией.
6.1 Скорость химической реакции
Запишем уравнение элементарной химической реакции в общем виде:
аА + bВ = dD + еЕ,
где А, В -- исходные вещества, D, Е -- продукты реакции, строчными буквами (а, b, d, е) обозначены стехиометрические коэффициенты.
Напомним, что реакция, протекающая слева направо и отражающая процесс взаимодействия исходных веществ, называется прямой реакцией. Реакция, идущая в обратном направлении, называется обратной.
Построим график, на оси ординат которого отложим концентрацию одного (любого) из компонентов системы, а на оси абсцисс -- время.
По мере протекания химической реакции концентрации исходных веществ уменьшаются, а концентрации продуктов реакции увеличиваются. Выберем два момента времени t1 и t2. Им будут соответствовать концентрации с1 и с2. Скорость химической реакции определяется как изменение концентрации любого из веществ в единицу времени, что математически можно выразить так:
V =
Рис. 3. Зависимость концентраций одного из исходных веществ (I) и одного из продуктов реакции (2) от времени.
Если скорость реакции определять по одному из исходных веществ, то мы получим отрицательное значение, т.к. С2(1)<C11(1). Но это не означает, что скорость реакции отрицательная величина, чего не может быть по физическому смыслу. Знак «минус» показывает, что концентрация исходного вещества во времени уменьшается. В то же время скорость обратной реакции будет со знаком «плюс», т.е. концентрация продукта увеличивается. Уравнение [60] определяет среднюю скорость реакции за выбранный промежуток времени. Если выбрать другой временной интервал, то ему будет соответствовать другая средняя скорость. Исследователя же интересует «истинная скорость» реакции в данный момент времени. К ее получению можно приблизиться, уменьшая временной интервал. Тогда истинная скорость реакции будет равна пределу отношения изменения концентрации к промежутку времени при ?t --> 0:
[61]
Этот предел равен производной, которую можно найти как тангенс угла наклона касательной в точке, соответствующей данному моменту времени. Поэтому истинную скорость называют еще и мгновенной.
Очевидно, что это определение не однозначно. Если определять скорость реакции по концентрациям различных веществ, мы получим разные результаты, поэтому необходимо указывать, по какому из веществ была определена скорость реакции, или использовать другое соотношение:
[62]
где нi - стехиометрический коэффициент в уравнении реакции.
6.2 Факторы, влияющие на скорость химической реакции
Скорость химической реакции зависит от условий, в которых она протекает. Рассматриваемые ниже факторы, влияющие на скорость протекания реакций, относятся к гомогенным реакциям
I. Природа реагирующих веществ. Под природой реагирующих веществ понимают природу химической связи в молекулах реагентов и ее прочность. Разрыв связей и образование новых связей определяют величину константы скорости, и тем самым влияют на процесс протекания реакции.
II. Концентрация реагирующих веществ. Необходимым (но не достаточным) условием для того, чтобы молекула А прореагировала с молекулой В, является столкновение этих молекул. Вероятность столкновения молекул напрямую зависит от количества молекул в единице объема, а оно определяется концентрациями реагирующих веществ.Вероятностьстолкновениядвухмолекулравна произведению вероятностей нахождения каждой из молекул в точке столкновения. Следовательно, скорость элементарной химической реакции пропорциональна произведению концентраций реагирующих веществ в степенях, указывающих количество молекул данного сорта, участвующих в реакции (стехиометрические коэффициенты). Зависимость скорости элементарной химической реакции:
аА + bВ = dD + еЕ
от концентраций реагирующих веществ описывается следующим уравнением:
V = k·[А]a [В]b, [63]
где k -- константа пропорциональности, называемая константой скорости химической реакции, [А], [В] -- концентрации веществ А и В, выраженные в единицах моль/л, а, b -- стехиометрические коэффициенты.
Если в уравнении [63], связывающем скорость реакции с концентрациями, приравнять их к единице, то получим, что скорость реакции будет равна постоянной величине k. Из этого равенства следует физический смысл константы скорости химической реакции. Константа скорости химической реакции численно равна скорости реакции при концентрациях реагирующих веществ, равных одному молю на литр, т. е. константа скорости равна удельной скорости реакции.
Однако, как уже отмечалось выше, подавляющее большинство реакций идёт в несколько стадий. Например, для реакции:
2Н2 + О2 = 2Н2О
первая стадия (всего их около десяти) выглядит так:
Н2 + О2 = 2ОН*
а следующая, приводящая к началу цепной реакции, так:
ОН* + Н2 = Н2О + Н* и т.д.
Поэтому кинетическое уравнение обычно имеет вид:
V = k М[А]m М [В]n
где т, п -- величины, определяемые экспериментально.
Сумма показателей степеней концентраций реагентов в кинетическом уравнении реакции называется порядком химической реакции. Для уравнения, приведенного выше, порядок реакции равен (т + п). Порядок по данному веществу (частный порядок) определяется как показатель степени при концентрации этого вещества. Так порядок по веществу А равен т.
Например, общий порядок реакции:
Н2 + I2 = 2 НI
равен двум, частные порядки по водороду и по иоду равны единице. Данная реакция относится к простым реакциям, т.е. протекает в одну стадию в соответствии со стехиометрическим уравнением.
Химические реакции можно классифицировать по числу частиц, участвующих в одном элементарном химическом акте. Количество частиц, участвующих в элементарном химическом акте называется молекулярностью реакции. В соответствии с этим признаком реакции делятся на:
мономолекулярные -- реакции, в которых такой акт представляет собой химическое превращение одной молекулы (реакции изомеризации, диссоциация молекул, радиоактивный распад);
бимолекулярные -- реакции, в которых элементарный акт осуществляется при столкновении двух молекул;
тримолекулярные -- реакции, протекающие при столкновении трех молекул.
Вероятность столкновения трех молекул при нормальном давлении мала, поэтому тримолекулярные реакции весьма редки. Реакции большей молекулярности практически не встречаются.
Стехиометрическое уравнение реакции отражает материальный баланс, но не механизм реакции. Большинство реакций представляют собой совокупность нескольких последовательных стадий, каждая из которых может относиться к любой из указанных выше кинетических групп. И только для небольшого числа реакций механизм реакции совпадает со стехиометрическим уравнением.
Молекулярность реакции -- теоретическое понятие. Для того чтобы определить молекулярность реакции, необходимо знать механизм ее протекания.
Порядок реакции является экспериментальной величиной и определяется по зависимости скорости реакции от концентраций веществ, найденной из опытных данных. Только для простых реакций, механизм которых соответствует стехиометрическому уравнению, порядок реакции и молекулярность имеют одинаковое значение. Например, реакция синтеза иодоводорода формально является бимолекулярной реакцией, и порядок ее согласно уравнению равен двум. В большинстве же случаев порядок реакции и молекулярность не совпадают.
Общий порядок реакции определяется порядком наиболее медленно идущей стадии. Таких стадий может быть несколько, и поэтому экспериментально определенный порядок реакции может быть дробной величиной.
Реакция взаимодействия хлора с водородом формально является реакцией второго порядка. Хорошо известно, что эта реакция протекает при освещении по цепному механизму со взрывом.
Заполним сосуд смесью водорода с хлором и опустим его открытым горлом в эксикатор с водой. Гипотетически предположим, что эта реакция будет протекать с измеримой скоростью. Образующийся хлороводород мгновенно растворяется в воде. За счет этого вода начнет заполнять колбу, уменьшая объем непрореагировавшей смеси водорода и хлора. Так как в реакцию вступают два объема реагентов и образуются два объема хлороводорода, на которые уменьшается объем реакционной смеси, концентрации реагирующих веществ меняться не будут. Иными словами, реакция будет протекать с постоянной скоростью и не будет зависеть от концентраций реагирующих веществ. Такое возможно лишь в том случае, когда общий порядок реакции равен нулю.
Реакции, протекающие с постоянной скоростью, не зависящей от концентрации, являются реакциями нулевого порядка:
V = kМС° = k [64]
III. Температура. С увеличением температуры увеличивается кинетическая энергия молекул, а следовательно, и скорость их движения. Увеличение скорости приводит к увеличению числа столкновений молекул и, как следствие этого, к увеличению скорости реакции. Экспериментально было установлено, что при увеличении температуры на каждые 10° скорость химической реакции возрастает в два-четыре раза:
[65]
где V1 -- скорость реакции при температуре T1, V2 -- скорость при температуре Т2. Коэффициент г называется температурным коэффициентом скорости реакции, и его значение для большинства неорганических веществ варьирует от двух до четырех. Эта закономерность носит название правила Вант-Гоффа.
При увеличении температуры скорость реакции увеличивается, и при этом концентрации реагирующих веществ не меняются. Следовательно, константа скорости будет изменяться с изменением температуры. Экспериментальное изучение зависимости скорости реакции от температуры позволило Аррениусу предложить уравнение, названное его именем:
ln k = - [66]
Из этого уравнения следует, что константа скорости реакции экспоненциально растет с увеличением температуры. Аррениус предположил, что константа А, фигурирующая в эмпирическом уравнении [66], равна отношению энергии активации к универсальной газовой постоянной, а константа В, ее чаще обозначают через ln k0, учитывает число эффективных (то есть приводящих к химической реакции) столкновений. С учетом этого уравнение [66] можно привести к виду:
[67]
Если построить график зависимости экспериментально найденных величин ln k от обратной температуры, то получим прямую линию (рис. 4). Отрезок, который отсекает эта прямая на оси ординат при 1 / Т --> 0, равен ln k0, а тангенс угла ц наклона прямой
tgц = - [68]
Из величины тангенса угла наклона прямой можно определить энергию активации.
Рис. 4. Зависимость логарифма константы скорости химической реакции от обратной температуры.
Найти энергию активации можно, измерив скорость реакции при двух разных температурах. Отношение скоростей реакций равно отношению констант скоростей или разности их логарифмов, что позволяет исключить ln k0:
[69]
Безусловно, скорость химической реакции зависит от числа столкновений молекул реагирующих веществ. Но не всякое столкновение приводит к протеканию реакции. Образование продуктов реакции происходит лишь при столкновении «активных» молекул, т.е. молекул, обладающих энергией выше определенного энергетического барьера. При любой заданной температуре молекулы обладают различными энергиями. Существует распределение молекул по энергиям. Зависимость числа молекул от самой энергии приведена на рис. 5.
Рис. 5. Кривая распределения молекул по кинетическим энергиям.
На рис.5 приведены две кривые распределения молекул по энергиям при разных температурах, причем Т2>Т1. Из рисунка видно, что средняя кинетическая энергия увеличивается, а число молекул, обладающих средней кинетической энергией, уменьшается. Это происходит из-за того, что площадь под кривой, соответствующая общему числу молекул, не меняется, так как число молекул остается постоянным. Пусть Еа -- энергия, соответствующая энергетическому барьеру начала реакции. Тогда площадь, заштрихованная под кривой, будет определять число молекул, способных вступить в реакцию, т.е. «активных» молекул. Энергия, соответствующая Еа, называется энергией активации. С увеличением температуры увеличивается площадь, соответствующая количеству молекул, обладающих энергией больше энергии активации реакции, что и определяет увеличение скорости реакции. Данное утверждение справедливо для предположения, что энергия активации не зависит от температуры. В общем случае это не так, но это допущение корректно для ограничения интервала температур.
Физический смысл энергии активации легко понять из рис. 6, если по оси ординат отложить изменение энтальпии, а по оси абсцисс - направление хода реакции.
Рис. 6. Физический смысл понятия энергии активации.
В этом случае разность между суммой энергий исходных веществ и максимумом кривой 1 соответствует величине энергии активации прямой реакции, а разность между суммой энергий продуктов реакций и этим же максимумом -- энергии активации обратной реакции. Ввиду того, что сумма энергий исходных веществ больше суммы энергий продуктов реакции, график, приведенный на рис.6, относится к экзотермической реакции. Из него следует, что для прямой экзотермической реакции энергия активации всегда меньше энергии активации обратной. Для эндотермической реакции характерно обратное их соотношение.
IV. Катализатор. Катализ представляет собой распространенное явление, которое состоит в том, что введение в систему малых количеств посторонних веществ, получивших название катализаторы, существенным образом изменяет скорость химической реакции. Катализаторами называют вещества, которые изменяют скорость химической реакции, но не входят в стехиометрическое уравнение реакции.
Катализаторы могут как увеличивать скорость реакции, так и уменьшать ее. В соответствии с этим различают положительный и отрицательный катализ. Как правило, термин «катализатор» применяют к тем веществам, которые увеличивают скорость химической реакции. Вещества, которые уменьшают скорость реакции, называют ингибиторами.
Катализаторы принимают самое непосредственное участие в процессе, но по окончании его могут быть выделены из реакционной смеси в исходном количестве. Для катализаторов характерна селективность, т.е. способность влиять на прохождение реакции в определённом направлении. Из одних и тех же исходных веществ могут быть получены различные продукты в зависимости от используемого катализатора.
Например, оксид углерода (II) и водород в зависимости от применяемого катализатора, температуры реакции и соотношения реагентов могут давать различные продукты реакции: метанол, смесь различных спиртов (синтол), метан, смесь углеводородов:
Взаимодействие аммиака с кислородом без катализатора протекает следующим образом:
4 NH3 + ЗО2 = 2 N2 + 6 Н2О,
а в присутствии катализатора (Рt) -- в соответствии с уравнением:
4NH3 + 5 О2 = 4 NO + 6 Н2О.
Особое место занимают биокатализаторы -- ферменты, представляющие собой белки. Ферменты оказывают влияние на скорости строго определенных реакций, т. е. обладают очень высокой селективностью. Ферменты ускоряют реакции в миллиарды и триллионы раз при комнатной температуре. При повышенной температуре они теряют свою активность, так как происходит денатурация белков.
Различают два типа катализа: гомогенный катализ, когда реагирующие вещества находятся в одной фазе, и гетерогенный -- реакции происходят на поверхности катализатора, т.е. катализатор и исходные вещества находятся в разных фазах.
Катализатор не влияет на состояние равновесия в системе, а лишь изменяет скорость, с которой достигается это состояние. Это следует из того, что равновесию отвечает минимум изобарно-изотермического потенциала (энергии Гиббса), и константа равновесия имеет одинаковое значение, как в присутствии катализатора, так и без него.
Действие гомогенного катализатора заключается в том, что он реагирует с одним из исходных веществ с образованием промежуточного соединения, которое, в свою очередь, вступает в химические реакции с другим исходным веществом, давая желаемый продукт реакции и «освобождая» катализатор. Таким образом, при гомогенном катализе процесс протекает в несколько стадий, но с меньшими значениями энергии активации для каждой стадии, чем для прямого некаталитического процесса.
Пусть вещество А реагирует с веществом В, образуя соединение АВ:
А+В=АВ
Реакция протекает с незначительной скоростью. При добавлении катализатора К протекают следующие реакции:
А+К=АК
АК+В=АВ+К
Сложив эти два уравнения, получим:
А+В=АВ
Концентрация катализатора мала и не меняется до окончания процесса.
Влияние катализатора на скорость реакции хорошо иллюстрирует кривая 2 на рис.6. Она имеет два максимума, первый из которых соответствует энергии активации реакции образования промежуточного соединения, а второй -- энергии активации реакции промежуточного соединения с другим исходным веществом с образованием нужного продукта реакции и катализатора. Примером реакции, протекающей с участием гомогенного катализатора, может служить реакция окисления оксида серы (IV) до оксида серы (VI):
SО2 + 0,5О2 = SО3
с катализатором NO2:
SО2 + NO2 = SО3+NO
NO + 0,5O2 =NO2
Эти реакции лежат в основе нитрозного метода получения серной кислоты.
Для объяснения механизма действия гетерогенного катализатора рассмотрим свойства атомов или молекул на поверхности любого кристаллического вещества. На поверхности фазы свойства атомов отличаются от свойств атомов, находящихся внутри кристаллической решётки. Кристалл каждого вещества обладает присущей ему трехмерной периодичностью расположения молекул, атомов или ионов. Для простоты изложения рассмотрим двухмерную решетку, изображенную на рис. 7.
Из рисунка видно, что силы, которые действуют на атом «А», находящийся внутри фазы, со стороны других атомов, полностью скомпенсированы. Другая картина наблюдается, если атом расположен на поверхности кристалла (атом «В»). В этом случае силы, действующие на атом, не скомпенсированы. В жидкостях это приводит к появлению поверхностного натяжения. В твердых телах поверхностные атомы стремятся компенсировать свою ненасыщенность взаимодействием с молекулами газов (или жидкостей), окружающих кристалл. Молекулы газа (или жидкости) адсорбируются на поверхности кристалла, что приводит к перераспределению электронной плотности в адсорбированных молекулах и ослаблению химической связи в них вплоть до полной диссоциации молекулы на атомы. Это значительно облегчает взаимодействие адсорбированных молекул (атомов) реагирующих веществ между собой. Естественно, что чем больше поверхность, тем эффективнее катализатор.
Рис. 7. Механизм действия гетерогенного катализатора.
В качестве катализаторов широко используются металлы, такие как никель, платина, палладий, медь и др. Эти металлы используют в реакциях гидрирования и дегидрирования, платину применяют также в реакциях каталитического окисления, например, при окислении аммиака до оксида азота (II). Очень хорошими катализаторами являются кристаллические алюмосиликаты -- цеолиты, Аl2Оз, А12(SО4)з. Эти вещества образуют кристаллогидратные соединения с водой, поэтому их используют как катализаторы в реакциях гидратации и дегидратации.
Часто в качестве факторов, влияющих на скорость гетерогенных химических реакций, указываются поверхность реагирующих веществ и давление.
В гетерогенных реакциях взаимодействие веществ происходит на поверхности раздела фаз, и чем больше площадь этой поверхности, тем выше скорость реакции. Это положение хорошо иллюстрирует реакция взаимодействия твердых сульфата меди и иодида калия:
2 СuSО4 + 4 КI = 2 СuIv +I2 + 2 К2SО4
О протекании этой реакции можно судить по появлению коричневой окраски, обусловленной образованием иода. Если смешать эти вещества в ступке без растирания, появляется слабая коричневая окраска. По мере растирания смеси окраска становится более интенсивной. При добавлении к смеси нескольких капель воды смесь мгновенно буреет. Наблюдаемые явления легко объяснить: растирание увеличивает поверхность соприкосновения, следовательно, скорость реакции возрастает. При добавлении воды компоненты смеси частично растворяются, что приводит к практически мгновенному протеканию реакции. Отсюда видно, что в гетерогенных реакциях увеличение поверхности соприкосновения соответствует увеличению концентрации реагирующих веществ.
На скорость реакций с участием газообразных веществ влияет изменение давления. Уменьшение или увеличение давления приводит к соответствующим изменениям объема, а поскольку количества веществ при этом не изменяются, будут изменяться концентрации реагирующих веществ.
Таким образом, выделять поверхность реагирующих веществ и давление в отдельные факторы, влияющие на скорость химических реакции, вряд ли целесообразно, так как их изменение в соответствующих реакциях равносильно изменению концентраций в гомогенной реакции.
2.3 Экспериментальные методы определения констант скорости химической реакции
Реакции первого порядка. Примером такой реакции является радиоактивный распад атомов. Для реакций первого порядка кинетическое уравнение имеет следующий вид:
V = [70]
Роль концентрации при радиоактивном распаде играет количество радиоактивных атомов N. Заменив в
уравнении [70] концентрацию на количество атомов и перенеся члены уравнения, включающие N, влево, время -- вправо (эта операция называется разделением переменных), получим:
[71]
Интегрируя уравнение [71] по времени от 0 до t и по числу атомов от N0 до Nt получим:
[72]
Потенцируя это уравнение, получим закон радиоактивного распада:
Nt = Nо Мe-kt [73]
В уравнении радиоактивного распада принято константу k обозначать буквой л. Важной характеристикой радиоактивного изотопа является величина, называемая период полураспада T1/2. Периодом полураспада называется промежуток времени, за который распадается половина атомов. Пусть исходное количество атомов равно N0, тогда через промежуток времени Т1/2, количество атомов будет равно Nt = . Подставив эти данные в уравнение [72], получим:
ln [74]
Уравнение [72], записанное через разность логарифмов, представляет уравнение прямой в координатах 1n N -- время. В общем случае для реакции первого порядка выполняется аналогичная зависимость
ln С --t. Построив соответствующий график (рис.8), найдем значение константы скорости для реакции первого порядка, как тангенс угла наклона прямой.
Рис. 8. Определение константы скорости реакции первого порядка.
На рис. 10 приведена экспоненциальная зависимость изменения концентрации реагента от времени. Эта зависимость описывается уравнением [73].
Реакции второго порядка. Реакция димеризации оксида азота (IV)
2 NO2 =N2O4
является реакцией второго порядка. Кинетическое уравнение этой реакции имеет следующий вид:
[75]
Проведя разделение переменных и проинтегрировав обе части уравнения в тех же пределах, что и уравнение [71], получим
[76]
Если ввести следующие обозначения: у =1/Ct ; х = t; А =k; В =1/C0, то уравнение [76] представляет собой уравнение прямой у = А * х + В. Отложив по оси ординат 1/C, а по оси абсцисс время, и построив экспериментальную прямую, аналогичную прямой, приведенной на рис. 8, найдем значение константы скорости для реакции второго порядка, как тангенс угла ее наклона. Наклон построенной прямой будет противоположен наклону прямой на рис. 8, так как при уменьшении концентрации со временем обратная ей величина возрастает.
Рис. 9. Определение константы скорости реакции второго порядка
Для рассмотрения реакции третьего порядка можно получить соответствующие соотношения, используя приведенный выше подход.
Из рис. 10, на котором приведены зависимости изменения концентрации от времени протекания реакции для различных порядков, видно, что наиболее резко концентрация вещества меняется со временем в реакции первого порядка, более медленно в реакции 2-го порядка и т.д. Здесь принимается, что значения констант скорости для всех порядков численно равны.
Рис. 10. Изменение концентрации реагента в реакциях первого -третьего порядков в зависимости от времени протекания реакции.
химический термодинамика изохорный адиабатный
Размерность константы скорости. В зависимости от порядка реакции меняется и размерность константы скорости. Для реакции I-го порядка, подставив размерность скорости и концентрации в уравнение [69], получим:
отсюда
По аналогии, используя уравнение [75], имеем:
откуда получаем:
Методом математической индукции можно вывести размерность k для реакции n-го порядка, которая будет равна:
[kn] = моль1-n · лn-1·t-1 [77]
Отсюда следует вывод, что если в задаче указана размерность константы скорости, то автоматически задан порядок реакции, и наоборот.
В заключение следует указать, что разобранные закономерности справедливы для закрытых систем, в которых невозможен обмен веществом с окружающей средой и реакции протекают при постоянном объеме.
КИНЕТИЧЕСКОЕ ХИМИЧЕСКОЕ РАВНОВЕСИЕ - состояние химической системы, при котором возможны реакции, идущие с равными скоростями в противоположных направлениях. При химическом равновесии концентрации реагентов, температура и другие параметры системы не изменяются со временем.
Необратимые и обратимые реакции. Если слить растворы кислоты и щелочи, образуется соль и вода, например,
HCl + NaOH = NaCl + H2O, и если вещества были взяты в нужных пропорциях, раствор имеет нейтральную реакцию и в нем не остается даже следов соляной кислоты и гидроксида натрия. Если попытаться провести реакцию в растворе между образовавшимися веществами - хлоридом натрия и водой, то никаких изменений не обнаружится. В подобных случаях говорят, что реакция кислоты со щелочью необратима, т.е. обратная реакция не идет. Практически необратимы при комнатной температуре очень многие реакции, например,
H2 + Cl2 = 2HCl, 2H2 + O2 = 2H2O и др.
Необратимые реакции протекают до конца - до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расходуется полностью.
Многие реакции обратимы уже в обычных условиях, это означает, что в заметной степени протекает обратная реакция. Например, если попытаться нейтрализовать щелочью водный раствор очень слабой хлорноватистой кислоты, то окажется, что реакция нейтрализации до конца не идет и раствор имеет сильнощелочную среду. Это означает, что реакция HClO + NaOH - NaClO + H2O обратима, т.е. продукты этой реакции, реагируя друг с другом, частично переходят в исходные соединения. В результате раствор имеет щелочную реакцию. Обратима реакция образования сложных эфиров (обратная реакция называется омылением):
RCOOH + R'OH - RCOOR' + H2O, многие другие процессы.
Как и многие другие понятия в химии, понятие обратимости во многом условно. Обычно необратимой считают реакцию, после завершения которой концентрации исходных веществ настолько малы, что их не удается обнаружить (конечно, это зависит от чувствительности методов анализа). При изменении внешних условий (прежде всего температуры и давления) необратимая реакция может стать обратимой и наоборот. Так, при атмосферном давлении и температурах ниже 1000° С реакцию
2Н2 + О2 = 2Н2О
еще можно считать необратимой, тогда как при температуре 2500° С и выше вода диссоциирует на водород и кислород примерно на 4%, а при температуре 3000° С - уже на 20%. В конце 19 в. немецкий физикохимик Макс Боденштейн (1871-1942) детально изучил процессы образования и термической диссоциации иодоводорода:
H2 + I2 - 2HI
Изменяя температуру, он мог добиться преимущественного протекания только прямой или только обратной реакции, но в общем случае обе реакции шли одновременно в противоположных направлениях. Подобных примеров множество. Один из самых известных - реакция синтеза аммиака
3H2 + N2 - 2NH3;
обратимы и многие другие реакции, например, окисление диоксида серы
2SO2 + O2 - 2SO3,
реакции органических кислот со спиртами и т.д.
Скорость реакции и равновесие
Пусть есть обратимая реакция A + B -C + D. Если предположить, что прямая и обратная реакция проходят в одну стадию, то скорости этих реакций будут прямо пропорциональны концентрациям реагентов: скорость прямой реакции v1 = k1[A][B], скорость обратной реакции v2 = k2[C][D] (квадратными скобками обозначены молярные концентрации реагентов). Видно, что по мере протекания прямой реакции концентрации исходных веществ А и В снижаются, соответственно, уменьшается и скорость прямой реакции. Скорость же обратной реакции, которая в начальный момент равна нулю (нет продуктов C и D), постепенно увеличивается. Рано или поздно наступит момент, когда скорости прямой и обратной реакций сравняются. После этого концентрации всех веществ - А, В, С и D не изменяются со временем. Это значит, что реакция достигла положения равновесия, а неизменяющиеся со временем концентрации веществ называются равновесными. Но, в отличие от механического равновесия, при котором всякое движение прекращается, при химическом равновесии обе реакции - и прямая, и обратная - продолжают идти, однако их скорости равны и поэтому кажется, что никаких изменений в системе не происходит. Доказать протекание прямой и обратной реакций после достижения равновесия можно множеством способов. Например, если в смесь водорода, азота и аммиака, находящуюся в положении равновесия, ввести немного изотопа водорода - дейтерия D2, то чувствительный анализ сразу обнаружит присутствие атомов дейтерия в молекулах аммиака. И наоборот, если ввести в систему немного дейтерированного аммиака NH2D, то дейтерий тут же появится в исходных веществах в виде молекул HD и D2. Другой эффектный опыт был проведен на химическом факультете МГУ. Серебряную пластинку поместили в раствор нитрата серебра, при этом никаких изменений не наблюдалось. Затем в раствор ввели ничтожное количество ионов радиоактивного серебра, после чего серебряная пластинка стала радиоактивной. Эту радиоактивность не могло «смыть» ни споласкивание пластинки водой, ни промывание ее соляной кислотой. Только травление азотной кислотой или механическая обработка поверхности мелкой наждачной бумагой сделало ее неактивной. Объяснить этот эксперимент можно единственным образом: между металлом и раствором непрерывно происходит обмен атомами серебра, т.е. в системе идет обратимая реакция Ag(тв) - е- = Ag+. Поэтому добавление радиоактивных ионов Ag+ к раствору приводило к их «внедрению» в пластинку в виде электронейтральных, но по-прежнему радиоактивных атомов.Таким образом, равновесными бывают не только химические реакции между газами или растворами, но и процессы растворения металлов, осадков. Например, твердое вещество быстрее всего растворяется, если его поместить в чистый растворитель, когда система далека от равновесия, в данном случае - от насыщенного раствора. Постепенно скорость растворения снижается, и одновременно увеличивается скорость обратного процесса - перехода вещества из раствора в кристаллический осадок. Когда раствор становится насыщенным, система достигает состояния равновесия, при этом скорости растворения и кристаллизации равны, а масса осадка со временем не меняется.
Рис.
Константа равновесия. Важнейший параметр, характеризующий обратимую химическую реакцию - константа равновесия К. Если записать для рассмотренной обратимой реакции A + D -C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия - k1[A]равн[B]равн = k2[C]равн[D]равн, откуда [C]равн[D]равн/[A]равн[B]равн = k1/k2 = К, то величина К называется константой равновесия химической реакции. Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k1 и k2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H2 + N2 2NH3 выражение для константы равновесия записывается в виде K = [NH3]2 равн/[H2]3равн[N2]равн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.
1. Пусть реакция необратима. Тогда k2 = 0. Примером может служить реакция водорода с бромом при 300° С. Кинетические кривые показывают изменение концентрации веществ А, B, C, D (в данном случае H2, Br2 и HBr) в зависимости от времени. Для простоты предполагается равенство исходных концентраций реагентов H2 и Br2. Видно, что концентрации исходных веществ в результате необратимой реакции снижаются до нуля, тогда как сумма концентраций продуктов достигает суммы концентраций реагентов. Видно также, что скорость реакции (крутизна кинетических кривых) максимальна в начале реакции, а после завершения реакции кинетические кривые выходят на горизонтальный участок (скорость реакции равна нулю). Для необратимых реакций константу равновесия не вводят, поскольку она не определена (К ? Ґ).
2. Пусть k2 = 0, причем k2 < k1 и К > 1 (реакция водорода с иодом при 300° С). Вначале кинетические кривые почти не отличаются от предыдущего случая, так как скорость обратной реакции мала (мала концентрация продуктов). По мере накопления HI скорость обратной реакции возрастает, а прямой - уменьшается. В какой-то момент они сравняются, после чего концентрации всех веществ уже не изменяются со временем - скорость реакции стала нулевой, хотя реакция не прошла до конца. В данном случае (K > 1) до достижения равновесия (заштрихованная часть) прямая реакция успевает пройди на значительную глубину, поэтому в равновесной смеси больше продуктов (C и D), чем исходных веществ А и В - равновесие сдвинуто вправо.
3. Для реакции этерификации уксусной кислоты (А) этанолом (В) при 50° С константа скорости прямой реакции меньше, чем обратной: k1 < k2, поэтому K < 1. Это означает, что уже при накоплении небольшого количества продуктов С и D (этилацетата и воды) скорость обратной реакции становится значительной, так что равновесие наступает, когда в смеси еще много исходных веществ. В этом случае кинетические кривые не пересекаются, а равновесие сдвинуто влево.
4. В сравнительно редком случае, когда константы скорости прямой и обратной реакций равны (k1 = k2, K = 1), для реакции A + B = C + D при [A]0 = [B]0 в равновесной смеси концентрации исходных веществ и продуктов будут одинаковыми и кинетические кривые сольются. Иногда такие условия можно создать соответствующим подбором температуры. Например, для обратимой реакции СО + Н2О = Н2 + СО2 К = 1 при температуре около 900° С. При более высоких температурах константа равновесия для этой реакции меньше 1 (например, при 1000° С К = 0,61) и равновесие сдвинуто в сторону СО и Н2О. При более низких температурах K > 1 (например, при 700° С К = 1,64) и равновесие сдвинуто в сторону СО2 и Н2.
Значение K может служить характеристикой необратимости реакции в данных условиях. Так, если K очень велика, это значит, что концентрации продуктов реакции намного превышают концентрации исходных веществ при равновесии, т.е. реакция прошла почти до конца. Например, для реакции NiO + H2 = Ni + H2O при 523 К (250° С) К = [Н2О]равн/[Н2]равн = 800 (концентрации твердых веществ постоянны и в выражение для К не входят). Следовательно, в замкнутом объеме после достижения равновесия концентрация паров воды будет в 800 раз больше, чем водорода (здесь концентрации можно заменить пропорциональными им давлениями). Итак, эта реакция при указанной температуре проходит почти до конца. А вот для реакции WO2 + 2H2 =W + 2H2O при той же температуре К = ([Н2]равн/[Н2О]равн)2 = 10-27, следовательно, диоксид вольфрама практически не восстанавливается водородом при 500 К.
Значения К для некоторых реакций приведены в таблице.
Реакция |
Температура, oС |
К |
|
H2 + Cl2 2HCl |
25 |
4·1031 |
|
1270 |
5·108 |
||
H2 + I2(г) 25 |
800 |
||
1035 |
45 |
||
I2(г) 1275 |
0,003 |
||
1475 |
0,07 |
||
3H2 + N2 25 |
7·105 |
||
775 |
0,035 |
||
СаСО3 762 |
100 |
||
837 |
300 |
||
904 |
800 |
Видно, что для одних реакций (это экзотермические реакции, идущие с выделением тепловой энергии) значение К с ростом температуры уменьшается; для других реакций (эндотермических, идущих с поглощением энергии) значение К снижается.Константы равновесия измерены или могут быть рассчитаны для многих реакций при разных температурах, если известен тепловой эффект реакции. Количественно изменение константы равновесия с температурой определяется знаком и абсолютной величиной теплового эффекта (энтальпии) реакции ?H: K = K0е-?H/RT, где K0 - постоянная, не зависящая от температуры, R - газовая постоянная, Т - абсолютная температура, е - основание натуральных логарифмов. Важнейшим успехом химической термодинамики стала возможность рассчитывать значения константы равновесия химических реакций при разных температурах и, соответственно, рассчитывать равновесные концентрации исходных веществ и продуктов без проведения многочисленных и трудоемких экспериментов.
Примеры подобных расчетов.
Реакция восстановления водородом оксида железа(II) FeO + H2 = Fe + H2O(г) слабо эндотермическая: ?H = +23 кДж/моль (в термодинамике принято, что для экзотермических реакций ?Н < 0, а для эндотермических ?Н > 0). Для этой реакции K = [H2O]/[H2] = 0,004 при 500 К и увеличивается с повышением температуры - до 0,85 при 1500 К. Следовательно, FeO при достаточно высокой температуре восстанавливается водородом, хотя в замкнутом сосуде, если не удаляются пары воды, она идет в незначительной степени.
Реакция восстановления оксида хрома(III) Cr2O3 + 3H2 = 2Cr + 3H2O(г) значительно более эндотермическая: ?H = +106 кДж (на 1 моль Cr2O3). Для этой реакции константа равновесия K = [H2O]3/[H2]3 = 10-23 при 500 К и даже при 1500 К она очень мала (K = 10-9). Следовательно, этот оксид не восстанавливается водородом ни при каких температурах.
Реакция восстановления оксида меди экзотермическая: ?H = -80 кДж/моль.
CuO + H2 = Cu + H2O(г)
Константа равновесия очень велика уже при комнатной температуре (K = 1012), но скорость реакции при этом ничтожно мала. При повышении температуры эта константа уменьшается (поскольку ?H < 0), но и при 500 К она все еще достаточно велика (K = 106), чтобы при нагревании реакция прошла практически до конца. Расчеты константы равновесия очень важны для практики. Например, для синтеза аммиака увеличению К способствует понижение температуры, но чем ниже температура, тем медленнее идет реакция. Чтобы ее ускорить, нужно повышать температуру (жертвуя при этом выходом аммиака). К ускорению реакции приводит и введение катализатора. Таким образом, надо найти оптимальное для промышленного синтеза соотношение между всеми параметрами процесса, однако пока нет промышленных катализаторов, позволяющих проводить реакцию при температурах хотя бы около 100° С, когда концентрация аммиака в равновесной смеси достаточно высока, поэтому приходится использовать другой способ сдвигать равновесие в сторону аммиака - увеличивать давление, сохраняя высокую температуру. Возникает важный для практических целей вопрос: можно ли с помощью катализатора сместить в нужную сторону химическое равновесие и таким способом увеличить выход продукта? Оказывается, нет. Введение в систему, в которой протекает обратимая реакция, катализатора приведет к снижению энергии активации как прямой, так и обратной реакции на одну и ту же величину. Это означает, что катализатор в равной мере ускоряет обе реакции. Таким образом, для обратимых реакций роль катализатора заключается только в более быстром достижении равновесия.
1.4.6 Термодинамическое химическое равновесие
Необходимым признаком химического (термодинамического) равновесия системы является неизменность её состояния во времени при заданных внешних условиях.
Химическое равновесие носит динамический характер: какое количество исходных веществ вступает в реакцию, такое же образуется в результате обратной реакции. Достаточным доказательством существования химического равновесия является достижение его с обеих сторон, т.е. в результате протекания как прямого, так и обратного процессов. Химические равновесия чаще всего изучаются при постоянных давлении и температуре. Система стремится к минимуму свободной энергии, который наблюдается в состоянии равновесия.
Используя закон Гесса в применении к свободной энергии Гиббса, можно получить следующий критерий химического равновесия:
rG = У niGi -У njGj [41]
где ni , nj - -- стехиометрические коэффициенты для продуктов реакции и исходных веществ соответственно, а Gi и Gj -- мольная свободная энергия i-го продукта реакции j-го исходного вещества.
Рассмотрим несколько примеров записи констант равновесия для конкретных реакций.
1. Для реакции, протекающей в газовой фазе:
аАг+bВг = сСг + dDг константа равновесия будет определяться следующим выражением:
2. Для гетерогенной реакции, в которой участвуют вещества в разных агрегатных состояниях, например:
2Сu(NOз)2,к = 2СuОк + 4NO2,г + О2,г
константа равновесия должна быть записана так:
где аСu(NO3)2 и a СuО -- активности соответствующих соединений,которые равны единице, так как эти соединеня в данном случае не растворяются друг в друге, а образуют механическую смесь. В этом случае константа равновесия для реакции термического разложения нитрата меди примет следующий вид:
Кр = р4(NO2)·p(O2)
Подобные документы
Определение термодинамической системы, ее параметры и виды. Начала термодинамики. Функции состояния системы: внутренняя энергия, энтальпия, энтропия, химический потенциал. Изобарный, изохорный и изотермический процессы. Тепловой эффект реакции.
реферат [87,7 K], добавлен 20.03.2009Основные понятия раздела "химическая термодинамика". Основные виды термодинамических химических систем. Термодинамические процессы и их классификация. Первый закон термодинамики. Затраты энергии химической системы на преодоление силы, действующей извне.
реферат [1,4 M], добавлен 07.02.2013Термодинамика как явление преобразования тепла в механическую энергию, сферы его применения. Физическая, химическая и техническая термодинамика. Характеристика первого принципа термодинамики. Работа на идеальном газе в различных технических процессах.
презентация [3,4 M], добавлен 12.02.2012Химическая термодинамика. Основные понятия термодинамики. Первое начало термодинамики. Приложения первого начала термодинамики к химическим процессам. Зависимость теплового эффекта реакции от температуры. Закон Кирхгофа. Второе начало термодинамики.
лекция [994,2 K], добавлен 25.07.2008Основные понятия и законы химической термодинамики. Основы термохимических расчётов. Закон Гесса, следствия из него и значение. Расчёты изменения термодинамических функций химических реакций. Сущность химического равновесия, его константа и смещение.
реферат [35,3 K], добавлен 14.11.2009Первый закон термодинамики, вопросы и упражнения, примеры решения задач. Вычисление работы газа, совершенной им при изобарическом расширении и работы изотермического расширения системы. Приложение первого и второго законов термодинамики к химии.
курсовая работа [64,8 K], добавлен 15.11.2009Основные понятия химической термодинамики. Стандартная энтальпия сгорания вещества. Следствия из закона Гесса. Роль химии в развитии медицинской науки и практического здравоохранения. Элементы химической термодинамики и биоэнергетики. Термохимия.
презентация [96,9 K], добавлен 07.01.2014Температура. I закон термодинамики. Термохимия. Второй закон. Равновесие в однокомпонентных гетерогенных системах. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал. Термодинамика смесей идеальных газов.
лекция [203,3 K], добавлен 04.01.2004Влияние температуры на скорость химических процессов. Второй закон термодинамики, самопроизвольные процессы, свободная и связанная энергия. Зависимость скорости химической реакции от концентрации веществ. Пищевые пены: понятия, виды, состав и строение.
контрольная работа [298,6 K], добавлен 16.05.2011Термодинамика как отрасль науки, изучающая взаимные превращения различных видов энергии, связанные с переходом энергии в форме теплоты и работы, ее первое и второе начало. Классификация и типы термодинамических систем. Решение термохимических уравнений.
презентация [222,7 K], добавлен 05.01.2014