Свойства углеводов

Важнейшие химические свойства углеводов, их элементарный состав, распространение и классификация. Ациклическая и циклическая формы глюкопиранозы. Структурные формулы кетогексоз. Взаимодействие моносахаридов со спиртами. Значение гликозидной связи.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 15.12.2013
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Углеводы

1. Определение

углевод глюкопираноза моносахарид гликозидный

Углеводы -- это альдо- или кето-производные многоатомных спиртов. Сахара, имеющие в своем составе альдогруппу , называют альдозами, а имеющие в составе кетогруппу -- кетозами.

К альдосахарам относятся рибоза, глюкоза, манноза, галактоза и др.:

К сахарам, имеющим кетогруппу, относятся рибулоза и фруктоза:

Важнейшие химические свойства углеводов обусловливаются присутствием в их молекуле именно этих групп.

2. Элементарный состав

В состав углеводов обязательно входят углерод, водород и кислород. Массовая доля углерода составляет 44 %, водорода -- 6, кислорода -- 50 %. Соотношение атомов водорода и кислорода в углеводах такое же, как и в воде, -- 2:1.

3. Значение углеводов

1. Строительный или исходный материал, идущий на синтез белков, жиров, органических кислот и других соединений. Все органические вещества строятся из продуктов диссимиляции углеводов.

2. Являются исходными веществами для дыхания, т.е. это источник энергии в организме. Для быстрого восстановления сил человек в первую очередь должен в рацион включить углеводы.

3. Это запасные вещества, откладывающиеся в плодах, корнеплодах и других органах растений, использующиеся затем человеком.

4. Это структурные элементы, входящие в состав тела растений. Древесина - это опорная ткань растений, представленная целлюлозой, клеточные стенки - это гемицеллюлоза, пектиновые вещества и др. углеводы.

5. Защитная функция - защищают организмы от разрушающего воздействия внешней среды.

6. Являются сырьем для пищевой промышленности. Все отрасли пищевой промышленности, перерабатывающие растительное сырье (винодельческая, консервная, хлебопекарная и кондитерская, сахарная и многие другие), связаны с использованием химических и биохимических свойств углеводов.

4. Распространение углеводов

Углеводы относятся к наиболее распространенным органическим соединениям растительного мира. В растениях доля углеводов может составлять от 70 до 90 % их сухой массы. Например, в корнеплодах сахарной свеклы - 20% сахарозы, в зерновках злаков - до 60% крахмала, в хлопчатнике до 95% целлюлозы.

5. Классификация углеводов

Все углеводы подразделяются на две группы:

Простые -- моносахариды (монозы).

Моносахариды не способны гидролизоваться с образованием более простых соединений. По числу атомов углерода в цепи различают триозы, тетрозы, пентозы, гексозы и гептозы, содержащие соответственно 3, 4, 5, 6 и 7 атомов углерода. В природе наиболее распространены гексозы и пентозы.

Сложные -- полисахариды (полиозы).

Полисахариды подразделяют на:

Низкомолекулярные - сахароподобные, или олиго-сахариды, или полисахориды первого порядка.

Высокомолекулярные, или несахароподобные, или полисахариды второго порядка (рис. 1).

При гидролизе полисахаридов в качестве конечных продуктов образуются моносахариды. У несахароподобных полисахаридов молекулярная масса велика, в их состав входят остатки сотен и тысяч моносахаридов, конкретное число которых химической формулой не определяется.

Рис. 1. Классификация углеводов растений

Полисахариды первого порядка также подразделяют на две группы: 

Дисахариды, наиболее известным представителем которых является сахароза;

Собственно олигосахариды, представляющие соединения сахарозы с одним, двумя и тремя остатками моносахарида галактозы -- рафиноза, стахиоза, вербаскоза -- соответственно три-, тетра- и пентасахариды.

Полисахариды второго порядка подразделяют на:

Запасные -- крахмал, животный и растительный гликоген;

Структурные -- целлюлозы, гемицеллюлозы, пектиновые вещества, слизи и др. (рис 1).

6. Свойства моносахаридов

Физические свойства

Моносахариды -- кристаллические вещества белого цвета, хорошо растворимые в воде, сладкие на вкус. Если сладость сахарозы принять за 100 единиц, то сладость фруктозы составляет 170, инвертного сахара - 130, глюкозы - 70, мальтозы - 30 единиц. Несахароподобные полисахариды не имеют сладкого вкуса, не растворимы в воде, а в горячей воде образуют вязкие коллоидные растворы.

Оптические свойства.

Моносахариды -- оптически активные соединения, так как в их молекулах имеются асимметрические или хиральные атомы углерода, связанные с четырьмя различными заместителями. Таких атомов углерода может быть (за исключением производного трисахарида - дегидро-оксиацетона) один или несколько.

Простейшим моносахаридом, проявляющим оптическую активность, является глицеральдегид. В его молекуле находится один асимметрический углеродный атом, а сам моносахарид существует в двух формах:

D-форма изомера, если в его молекуле гидроксильная группа у асимметрического углеродного атома, максимально удаленного от альдегидной или кетонной группы, занимает то же положение, что и в молекуле D-глицеральдегида; если же она занимает то же положение, что и в молекуле L-глицеральдегида, то такую форму обозначают как L-изомер.

Практически все моносахариды, встречающиеся в природе, принадлежат к D-ряду.

Моносахариды способны вращать плоскость поляризованного луча вправо -- это правовращающие или влево -- левовращающие сахара. Правовращающие соединения обозначают знаком (+), левовращающие -- знаком (-). Обозначения, указывающие на принадлежность моносахаридов к D- или L-ряду, не зависят от того, в какую сторону (вправо или влево) вращает плоскость поляризованного луча данное соединение. Так, D-глюкоза вращает плоскость поляризации вправо, а D-фруктоза -- влево.

Рацемат - это смесь, состоящая из 50% правовращающего изомера и 50% левовращающего изомера, т.е. смесь лишенная оптической активности.

Структура моносахаридов

В природных условиях пентозы и гексозы находятся в алифатической и в циклической или полуацетальной форме.

Структурные формулы альдогексоз

D-Глюкоза может образовывать две циклические формы -- пиранозную и фуранозную. Формирование пиранозного кольца в молекуле D-глюкозы обусловлено протеканием реакции между альдегидной и гидроксильной группами, приводящей к образованию полуацеталя (рис 2).

Рис. 2. Ациклическая и циклическая формы глюкопиранозы

Альдогексозы могут существовать в виде циклических соединений с пятичленным кольцом, образуя фуранозные циклы. Однако шестичленное альдопиранозное кольцо более устойчиво, чем альдофуранозное, поэтому в растворах альдогексоз преобладает альдопиранозная форма.

- и -изомеры моносахаридов.

При циклизации в молекуле D-глюкозы асимметрических центров на один больше по сравнению с тем числом, которое она имеет в линейной форме.

Образовавшийся из альдегидной или кетонной группы гидроксил обладает повышенной реакционной способностью и называется гликозидным гидроксилом.

Если гликозидный гидроксил расположен под плоскостью пиранозного или фуранозного кольца, то моносахариды находятся в -форме, если же гликозидный гидроксил расположен над плоскостью кольца, то образуются -формы сахаров. На рис. 2 и 3 гликозидный гидроксил обозначен пунктиром.

Поэтому полуацетали могут существовать в виде двух стереоизомеров: -глюкопиранозы и -глюкопиранозы, -фруктофуранозы и -фруктофуранозы (рис. 2 и 3).

Значение - и -изомеров.

Существование - и -изомеров обеспечивает большое химическое разнообразие полисахаридов. Так, в крахмале глюкоза представлена -, а в целлюлозе -формой. Поэтому полисахариды имеют различные строение, функцию и способность включаться в процесс дыхания, а также усваиваться в желудочно-кишечном тракте животных и человека.

Мутаратация

Это явление характерно только для свежеприготовлен-ных растворов сахаров. Суть его заключается в том, что сразу после растворения сахара удельное вращение водных растворов моносахаридов начинает изменяться, достигая лишь через некоторое время постоянной величины. Это объясняется тем, что происходит взаимные превращения различных форм углеводов (рис. 2 и 3).

Структурные формулы кетогексоз

В молекуле кетогексоз гидроксильная группа пятого углеродного атома взаимодействует с карбонильной группой у второго углеродного атома, образуя пятичленное фуранозное кольцо с полуацетальной связью (рис. 3).

Рис. 3. Ациклическая и циклическая формы фруктофуранозы

D-Фруктоза образует две фуранозные формы (-D- и -D-фруктофуранозы), из которых чаще встречается -D-фруктофураноза.

Восстановление моносахаридов

При восстановлении моносахаридов образуются соответствующие многоатомные спирты, так как восстановлению подвергается альдегидная или кетонная группа:

В растениях наиболее часто встречаются сорбит, который образуется при восстановлении глюкозы или фруктозы, маннит -- при восстановлении маннозы и рибит -- при восстановлении рибозы. Сорбит содержится в ягодах рябины, в соке вишен, слив, яблок и груш.

Взаимодействие моносахаридов со спиртами

Сахара, являясь производными спиртов, могут взаимодействовать со спиртами с образованием простых эфиров типа R--О--R1 с выделением воды.

Если реакция проходит только с участием гликозидного гидрооксила, то образовавшаяся структура носит название гликозида. В этом случае вновь образовавшаяся связь называется гликозидной (рис. 4).

Размещено на http://www.allbest.ru

Рис. 4. Образование гликозидов

В этом случае спирт неуглеводной природы называется аглюконом.

Значение гликозидной связи

Гликозидная связь имеет очень важное биологическое значение. С помощью этой связи осуществляется ковалентное связывание моносахаридов в составе олиго- и полисахаридов. На рис. 5 показано образование гликозидной связи между молекулами - и -глюкозы в дисахаридах.

Рис. 5. Гликозидная связь в дисахаридах

Гликозиды, содержащие аглюконы, также широко распространены в растениях. Они часто обладают специфическим запахом и вкусом. Например, гликозид синигрин, содержащийся в семенах горчицы, при гидролизе которого образуется эфирное горчичное масло, придающее специфические вкус и аромат пищевой горчице:

Гликозид глюкованилин синтезируется в ванильном дереве; амигдалин -- нитрилгликозид (цианогенный гликозид) содержится в семенах миндаля, вишен, персиков и других косточковых. В плодах зеленого картофеля обнаружен соланин, придающий им неприятный горький привкус. Некоторые гликозиды обладают фармакологическим действием на сердечную мышцу. Красящие вещества многих плодов и цветов (антоцианы) также представляют собой гликозиды.

Окисление моносахаридов

Моносахариды легко окисляются, причем в зависимости от условий окисления образуют различные продукты:

Действие слабых окислителей

При действии слабых окислителей - щелочных растворов некоторых металлов окисляется альдегидная группа (гликозидный гидроксил), в результате чего образуются альдоновые кислоты. Из глюкозы в результате реакции образуется глюконовая кислота (глюконат).

Сахара, имеющие свободный гликозидный гидроксил, называются восстанавливающими. Они способны восстанавливать щелочные растворы оксидов металлов до оксидов с меньшей степенью окисления или до металлов. Это свойство положено в основу количественного определения сахаров по методу Бертрана, основанному на способности редуцирующих сахаров восстанавливать ион двухвалентной меди до одновалентной:

Действие сильных окислителей

При наиболее энергичном окислении альдоз, например концентрированной азотной кислотой, окисляется не только гликозидный гидроксил, но и первичная спиртовая группа с образованием двухосновных кислот. Из глюкозы при этом образуется сахарная кислота, из галактозы -- слизевая. Если у моносахаридов окисляется только первичная спиртовая группа, то образуются уроновые кислоты.

Кислоты -- продукты окисления моносахаридов, часто присутствующие в растениях, являются промежуточными метаболитами при синтезе многих органических соединений. Например, из глюкуроновой кислоты образуются пентозы, последняя же является исходным соединением для образования в растениях аскорбиновой кислоты; галактуроновая кислота и ее метоксилированные производные являются мономерами пектиновых веществ.

Взаимодействие моносахаридов с кислотами

Моносахариды, являясь производными спиртов, могут взаимодействовать с кислотами с образованием сложных эфиров. Наиболее важные производные -- фосфорные эфиры сахаров - сахарофосфаты.

Донор фосфорной кислоты -- АТР, в молекуле которой расщепляется высокоэнергетическая связь. Под действием фермента гексокиназа остаток фосфорной кислоты переносится на глюкозу к первому углеродному атому (рис. 6).

Рис. 6. Образование фосфорного эфира глюкозы

Глюкозо-1-фосфат и другие фосфорные эфиры содержат по одному остатку фосфорной кислоты, взятой от АТР, следовательно, фосфорные эфиры получили и какую-то часть химической энергии от АТР. Фосфорные эфиры углеводов отличаются запасом энергии и большей лабильностью, способностью вступать в биохимические реакции. В виде фосфорных эфиров сахара участвуют в биохимических реакциях. Среди этих реакций можно выделить мутацию, эпимеризацию, перенос двух- и трехуглеродных остатков и др.

Изомеризация моносахаридов

Превращения моносахаридов по типу альдоза--кетоза обычно проходят в виде сахарофосфатов. В растениях широко распространены глюкозо-6-фосфатизомераза, катализирующая превращение глюкозо-6-фосфата во фруктозо-6-фосфат. Рибозо-5-фосфатизомераза превращает рибозо-5-фосфат в рибулозо-5-фосфат; триозофосфатизо-мераза переводит глицеральдегид-3-фосфат в дигидрооксиацетонфосфат.

При эпимеризации происходит изменение конфигурации при одном из асимметрических углеродных атомов моносахарида. Эти реакции катализируются ферментами-эпимеразами, которые также относятся к классу изомераз. Субстратами для действия этих ферментов являются сахарофосфаты или производные уридиндифосфата:

Рибулозо-5-фосфат ксилулозо-5-фосфат

Реакция катализируется ферментом рибулозофосфат-3-эпимераза, который широко распространен в природе и участвует в реакциях цикла Кальвина.

Взаимодействие моносахаридов с аминокисло-тами - реакция меланоидинообразования

Высокая реакционная способность обусловливает участие моносахаридов в разнообразных сложных превращениях, которые протекают в процессе технологической обработки растительного сырья. Под влиянием повышенных температур, кислой или щелочной рН среды, высокой влажности, характерных для многих технологических процессов, например при выпечке хлеба, тепловой сушке, стерилизации консервов, ферментации табака и чая, старении коньяка моносахариды участвуют в реакциях неферментативного характера, вызывающих потемнение обрабатываемых продуктов. Эти реакции получили название реакций меланоидинообразования.

При меланоидинообразовании происходит взаимодействие восстанавливающих сахаров -- моносахаридов, дисахаридов и продуктов гидролиза полисахаридов с аминокислотами, пептидами и белками с образованием темноокрашенных продуктов -- меланоидинов, как правило, трудно или нерастворимых в воде.

Химизм реакции до конца не установлен. Считают, что на первом этапе происходит разложение исходной аминокислоты и реагирующей с ней восстанавливающего сахара. Из аминокислоты образуется соответствующий альдегид, аммиак и углекислый газ, а из сахара фурфурол или оксиметилфурфурол. Альдегиды обладают определенным запахом и придают аромат пищевым продуктам. Фурфурол или оксиметилфурфурол далее реагируют с другой аминокислотой с образованием желто-коричневых пигментов.

Из аминокислот легче всего вступает в эту реакцию самая дефицитная аминокислота лизин, из-за чего снижается биологическая ценность продукта.

Пиролиз моносахаридов

Нагревание моно-, а также дисахаридов выше 100 С приводит к их пиролизу с образованием множества ароматобразующих темноокрашенных продуктов, обладающих определенными запахом и вкусом. Наиболее интенсивно этот процесс пиролиза, получивший название карамелизация, идет в пределах температур от 150 до 400 С.

К веществам, образующимся при карамелизации, относятся альдегиды, кетоны, дикетоны, мальтол, производные фурана и циклопептана, а также высокомолекулярные горькие вкусовые вещества невыясненной природы.

В большинстве случаев реакции карамелизации идут одновременно с реакциями меланоидинообразования, образуя сложный комплекс взаимосвязанных превращений, определяющих цвет, вкус, аромат, пищевую и биологическую ценность получаемых продуктов.

7. Распространение углеводов в растениях

Моносахариды

Глюкоза С6Н2О6 (структурные формулы см. рис. 2) (моноза, гексоза, альдоза, виноградный сахар) -- самая распространенная из моноз как в растительном, так и в животном мире. Содержится в свободном виде во всех зеленых частях растений, в семенах, различных фруктах и ягодах. В больших количествах глюкоза содержится в винограде -- отсюда происходит ее название -- виноградный сахар. Особенно велика биологическая роль глюкозы в образовании полисахаридов -- крахмала, целлюлозы, построенных из остатков D-глюкозы. Глюкоза входит в состав тростникового сахара, гликозидов, таннина и других дубильных веществ. Глюкоза хорошо сбраживается дрожжами.

Фруктоза С6Н12О6 (структурные формулы см. рис. 3) (моноза, гексоза, кетоза, левулеза, плодовый сахар) содержится во всех зеленых растениях, в нектаре цветов. Особенно ее много в плодах, поэтому ее второе название -- плодовый сахар. Фруктоза гораздо слаще других сахаров. Она входит в состав сахарозы и высокомолекулярных полисахаридов, таких, например, как инулин. Как и глюкоза, фруктоза хорошо сбраживается дрожжами.

Дисахариды

Сахароза С12Н22О11 (дисахарид) чрезвычайно широко распространена в растениях, особенно много ее в корнеплодах свеклы (от 14 до 20 % сухой массы), а также в стеблях сахарного тростника (массовая доля сахарозы от 14 до 25 %).

Сахароза состоит из -D-глюкопиранозы и -D-фруктофуранозы, соединенных 1  2 связью за счет гликозидных гидроксилов.

Сахароза не содержит свободного гликозидного гидроксила, является невосстанавливающим сахаром, потому относительно химически инертна, за исключением ее чрезвычайной чувствительности к кислотному гидролизу. Поэтому сахароза является транспортным сахаром, в виде которого углерод и энергия транспортируются по растению. Именно в виде сахарозы углеводы перемещаются из мест синтеза (листья) к месту, где они откладываются в запас (плоды, корнеплоды, семена, стебли). По проводящим пучкам растений сахароза движется со скоростью 2030 см/ч. Сахароза очень хорошо растворяется в воде и обладает сладким вкусом. С повышением температуры ее растворимость увеличивается. В абсолютном спирте сахароза нерастворима, а в водном спирте она растворяется лучше. При нагревании до 190200 С и выше происходит дегидратация сахарозы с образованием различных окрашенных полимерных продуктов -- карамелей. Эти продукты под названием колер используются в коньячном производстве для придания окраски коньякам.

Гидролиз сахарозы.

При нагревании растворов сахарозы в кислой среде или под действием фермента -фруктофуранозидазы она гидролизуется, образуя смесь равных количеств глюкозы и фруктозы, которая называется инвертным сахаром (рис. 7).

Рис. 7. Схема образования инвертного сахара из сахарозы

Фермент -фруктофуранозидаза широко распространен в природе, особенно активен он в дрожжах. Фермент находит применение в кондитерской промышленности, так как образующийся под его воздействием инвертный сахар препятствует кристаллизации сахарозы в кондитерских изделиях. Инвертный сахар слаще сахарозы благодаря наличию свободной фруктозы. Это позволяет, применяя инвертный сахар, экономить сахарозу. Кислотный гидролиз сахарозы происходит также при варке варенья и приготовлении джема, но ферментативный гидролиз проходит легче, чем кислотный.

Мальтоза С12Н22О11 состоит из двух остатков -D-глюкопиранозы, соединенных гликозидной связью 1  4.

Мальтоза в свободном состоянии в растениях содержится в небольшом количестве, но появляется при прорастании, так как она образуется при гидролитическом расщеплении крахмала. В нормальном зерне и муке она отсутствует. Наличие ее в муке говорит о том, что эта мука получена из проросшего зерна. Большое количество мальтозы содержится в солоде, который применяется в пивоварении, поэтому мальтозу называют также солодовым сахаром. Под действием фермента -глюкозидазы (мальтазы) мальтоза подвергается гидролизу до D-глюкозы. Мальтоза сбраживается дрожжами.

Лактоза С12Н22О11 построена из -D-галактопиранозы и D-глюкопиранозы, соединенных между собой 1  4 гликозидной связью. В растениях она встречается редко.

В большом количестве (45 %) лактоза содержится в молоке, поэтому ее называют молочным сахаром. Это восстанавливающий сахар со слабым сладким вкусом. Сбраживается лактозными дрожжами до молочной кислоты.

Целлобиоза С12Н22О11 состоит из двух остатков -D-глюкопиранозы, соединенных между собой 1  4 гликозидной связью.

Она служит структурным компонентом полисахарида целлюлозы и образуется из нее при гидролизе под действием фермента целлюлазы. Этот фермент продуцируется рядом микроорганизмов, а также он активен в прорастающих семенах.

Несахароподобные полисахариды

Запасные полисахариды

Крахмал (С6Н10О5)n является важнейшим представителем полисахаридов в растениях. Этот запасной полисахарид используется растениями как энергетический материал. Крахмал в животном организме не синтезируется, аналогичным запасным углеводом у животных является гликоген.

Крахмал в больших количествах содержится в эндосперме злаков -- 6585 % его массы, в картофеле -- до 20 %.

Крахмал не является химически индивидуальным веществом. В его состав кроме полисахаридов входят минеральные вещества, в основном представленные фосфорной кислотой, липиды и высокомолекулярные жирные кислоты -- пальмитиновая, стеариновая и некоторые другие соединения, адсорбированные углеводной полисахаридной структурой крахмала.

В клетках эндосперма крахмал находится в виде крахмальных зерен, форма и размер которых характерны для данного вида растения. Форма крахмальных зерен дает возможность легко распознать крахмалы различных растений под микроскопом, что используется для обнаружения примеси одного крахмала в другом, например при добавлении кукурузной, овсяной или картофельной муки к пшеничной.

В запасающих тканях различных органов -- клубнях, луковицах более крупные крахмальные зерна откладываются в запас в амилопластах как вторичный (запасной) крахмал. Крахмальные зерна имеют слоистую структуру.

Строение углеводных компонентов крахмала

Углеводная часть крахмала состоит из двух полисахаридов:

1. Амилозы;

2. Амилопектина.

1 Строение амилозы.

В молекуле амилозы остатки глюкозы связаны гликозидными 1  4 связями, образуя линейную цепочку (рис. 8, а).

У амилозы различают восстанавливающий конец (А) и невосстанавливающий (В).

Линейные цепи амилозы, содержащие от 100 до нескольких тысяч остатков глюкозы, способны спирально свертываться и таким образом принимать более компактную форму (рис. 8, б). В воде амилоза растворяется хорошо, образуя истинные растворы, которые неустойчивы и способны к ретроградации -- самопроизвольному выпадению в осадок.

Рис. 8. Крахмал, его строение. Амилоза и амилопектин:

а -- схема соединения молекул глюкозы в амилозе; б -- пространственная структура амилозы; в -- схема соединения молекул глюкозы в амилопектине; г -- пространственная молекула амилопектина

2 Строение амилопектина

Амилопектин представляет собой разветвленный компонент крахмала. Он содержит до 50 000 остатков глюкозы, соединенных между собой главным образом 1  4 гликозидными связями (линейные участки молекулы амилопектина). В каждой точке разветвления молекулы глюкозы (-D-глюкопиранозы) образуют 1  6 гликозидную связь, которая составляет около 5 % общего числа гликозидных связей молекулы амилопектина (рис. 8, в, г).

Каждая молекула амилопектина имеет один восстанавливающий конец (А) и большое количество невосстанавливающих концов (В). Структура амилопектина трехмерна, его ветви расположены по всем направлениям и придают молекуле сферическую форму. Амилопектин в воде не растворяется, образуя суспензию, но при нагревании или под давлением образует вязкий раствор -- клейстер. С йодом суспензия амилопектина дает красно-бурую окраску, йод при этом адсорбируется на молекуле амилопектина, поэтому цвет суспензии обусловлен окраской самого йода.

Содержание амилозы и амилопектина в крахмале

Как правило, содержание амилозы в крахмале составляет от 10 до 30 %, а амилопектина -- от 70 до 90 %. Некоторые сорта ячменя, кукурузы и риса называются восковидными. В зернах этих культур крахмал состоит только из амилопектина. В яблоках крахмал представлен только амилозой.

Ферментативный гидролиз крахмала

Гидролиз крахмала катализируется ферментами - амилазами. Амилазы относятся к классу гидролаз, подклассу - карбогидраз. Различают б- и -амилазы. Это однокомпонентные ферменты, состоящие из молекул белка. Роль активного центра у них выполняют группы - NH2 и - SH.

Характеристика б - амилазы

б - Амилаза содержится в слюне и поджелудочной железе животных, в плесневых грибах, в проросшем зерне пшеницы, ржи, ячменя (солод).

б- Амилаза является термостабильным ферментом, её оптимум находится при температуре 700С. Оптимальное значение pH 5.6-6.0, при pH 3.3-4.0 она быстро разрушается.

Характеристика - амилазы

- амилаза находится в зерне пшеницы, ржи, ячменя, в соевых бобах, в батате. Однако активность фермента в созревших семенах и плодах низкая, возрастает активность при прорастании семян.

в-амилаза расщепляет амилозу полнотью, на 100% превращая ее в мальтозу. Амилопектин расщепляет на мальтозу и декстрины дающие красно-коричневое окрашивание с йодом, расщепляя лишь свободные концы глюкозных цепочек. Действие прекращается, когда доходит до разветвлений. в-амилаза расщепляет амилопектин на 54% с образованием мальтозы. Образовавшиеся при этом декстрины гидролизуются б-амилазой с образованием декстринов меньшей молекулярной массы и не дающих окрашивания с йодом. При последующем длительном действии б-амилозы на крахмал около 85% его превращается в мальтозу.

Т.е. при действии в-амилазы образуются в основном мальтоза и немного высокомолекулярных декстринов. При действии б-амилазы образуются главным образом декстрины меньшей молекулярной массы и незначительное количество мальтозы. Ни б- ни в-амилазы в отдельности не могут полностью гидролизовать крахмал с образованием мальтозы. При одновременном действии обеих амилаз крахмал гидролизуется на 95%.

Продукты гидролиза крахмала

В качестве конечных продуктов гидролиза амилозы обычно образуется не только мальтоза, но и глюкоза, а при гидролизе амилопектина- мальтоза, глюкоза и небольшое количество олигосахаридов, содержащих б І6 - гликозидную связь. Гликозидная связь б І6 гидролизуетя R - ферментом. Основным продуктом, образующимся при гидролизе амилозы и амилопектина, является мальтоза. Далее мальтоза под действием б - глюкозидазы (мальтазы) гидролизуется до D- глюкозы.

Препараты амилаз широко применяют в хлебопечении в качестве улучшителей. Добавление амилаз приводит к образованию более мягкого хлебного мякиша и уменьшает скорость черствения хлеба при хранении.

Гликоген и фитогликоген (растительный гликоген) содержится в зерне кукурузы. По строению фитогликоген близок к запасному полисахариду животных организмов -- гликогену, получившему название животного крахмала. Фитогликоген также как и животный гликоген имеет более высокую степень ветвления, чем амилопектин, около 10 % его связей -- это 1  6 связи, тогда как у амилопектина таких связей около 5 %.

Инулин относится к запасным полисахаридам растений. Он представляет группу молекулярных форм приблизительно одинакового размера.

Инулин как запасной полисахарид откладывается в подземных запасающих органах растений -- в клубнях топинамбура, георгина, корневищах артишока. Причем в качестве энергетического запаса вещества он предпочтительнее крахмала.

Близкое к инулину строение имеет другой запасной полисахарид -- леван. Число моносахаридных остатков у левана равно 78.

Леваны - это временные запасные полисахариды злаковых растений. Они обнаружены в листьях, стеблях и корнях растений и расходуются в период созревания зерна на синтез крахмала. Как и инулин, леван содержит концевой остаток сахарозы. Полисахаридная цепь инулина и левана не имеет восстанавливающих концов -- их аномерные углеродные атомы заняты в образовании гликозидной связи.

Из других запасных полисахаридов известны галактоманнаны в семенах сои, глюкоманнаны, откладываемые в запас некоторыми растениями тропиков, но химическая структура их полностью не установлена.

Структурные полисахариды

Целлюлоза (С6Н10О5) - полисахарид второ-го порядка, является основным компонентом клеточных стенок. Целлюлоза состоит из остатков -D-глюкозы, соединенных между собой 1  4 гликозидной связью (рис. 9, а). Среди других полисахаридов, из которых состоит клеточная стенка растений, он относится к микрофибриллярным полисахаридам, так как в клеточных стенках молекулы целлюлозы соединены в структурные единицы, получившие название микрофибрилл. Последняя состоит из пучка молекул целлюлозы, расположенных по ее длине параллельно друг другу.

Строение целлюлозы

Рис. 9. Строение целлюлозы

а - соединение молекул глюкозы; б - структура микрофибрилл; в - пространственная структура

Распространение целлюлозы

Содержание целлюлозы в растениях колеблется в широких пределах: в волокнах хлопчатника 90 %, древесине 50, листьях табака 10, семенах злаковых культур 35, подсолнечника 2, ягодах винограда 1 %.

В среднем на одну молекулу целлюлозы приходится около 8000 остатков глюкозы. Гидроксилы у атомов углерода С2, С3 и С6 не замещены. Повторяющееся звено в молекуле целлюлозы -- остаток дисахарида целлобиозы.

Свойства целлюлозы

Целлюлоза не растворяется в воде, но в ней набухает. Свободные гидроксильные группы способны замещаться на радикалы -- метильный --СН3 или ацетальный с образованием простой или сложноэфирной связи. Это свойство играет большую роль при изучении строения целлюлозы, а также находит применение в промышленности при производстве искусственного волокна, лаков, искусственной кожи и взрывчатых веществ.

Усвояемость целлюлозы

У большинства животных и человека целлюлоза не переваривается в желудочно-кишечном тракте, так как в их организме не вырабатывается целлюлаза -- фермент, гидролизующий   4 гликозидную связь. Этот фермент синтезируется различного рода микроорганизмами, вызывающими гниение древесины. Целлюлозу хорошо переваривают термиты, потому что в их кишечнике живут симбиотические микроорганизмы, вырабатывающие целлюлазу.

В кормовые рационы крупного рогатого скота включают целлюлозу (в составе соломы и других компонентов), так как в их желудке находятся микроорганизмы, синтезирующие фермент целлюлазу.

Значение целлюлозы

Промышленное значение целлюлозы огромно -- производство хлопчатобумажных тканей, бумаги, деловой древесины и целый ряд химических продуктов, в основе которых лежит переработка целлюлозы.

Гемицеллюлозы -- полисахариды второго порядка, образующие вместе с пектиновыми веществами и лигнином матрикс клеточных стенок растений, заполняющий пространство между каркасом стенок, сложенных из целлюлозных микрофибрилл.

Гемицеллюлозы подразделяют на три группы:

1. Ксиланы;

2. Маннаны;

3. Галактаны.

1. Ксиланы образованы остатками D-ксилопиранозы, соединенными связями   4 в линейную цепь. Семь из каждых десяти ксилозных остатков ацетилированы по С3 и редко по С2. К некоторым ксилозным остаткам присоединена 4-о-метил--D-глюкуроновая кислота через гликозидную   2 связь.

2. Маннаны состоят из основной цепи, образованной из -D-маннопиранозных и -D-аминопиранозных остатков, связанных гликозидными   4 связями. К некоторым остаткам маннозы основной цепи   6 связями присоединены единичные остатки -D-галактопиранозы. Гидроксильные группы при С2 и С3 некоторых остатков маннозы ацетилированы.

3. Галактаны состоят из -галактопиранозных остатков, соединенных   4 связями в основную цепь. К ним по С6 присоединены дисахариды, состоящие из D-галактопиранозы и L-арабофуранозы.

Пектиновые вещества представляют собой группу высокомолекулярных полисахаридов, которые вместе с целлюлозой, гемицеллюлозой и лигнином образуют клеточные стенки растений.

Строение пектиновых веществ

Основным структурным компонентом пектиновых веществ служит галактуроновая кислота, из которой строится главная цепь; в состав боковых цепей входят арабиноза, галактоза и рамноза. Часть кислотных групп галактуроновой кислоты этерифицирована метиловым спиртом (рис. 10), т.е. мономером является метоксигалактуроновая кислота. В метоксиполигалактуроновой цепи мономерные звенья связаны   4 гликозидными связями, боковые цепи (разветвления) присоединены к главной цепи   2 гликозидными связями.

Пектиновые вещества сахарной свеклы, яблок, плодов цитрусовых растений различаются между собой по составу боковых цепей полигалактуроновой цепи и по физическим свойствам.

В зависимости от количества метоксильных групп и степени полимеризации различают высоко- и низкоэтерифицированные пектины. У первых этерифицировано более 50 %, у вторых -- менее 50 % карбоксильных групп.

Пектиновые вещества -- это физические смеси пектинов с сопутствующими веществами -- пентозанами и гексозанами. Молекулярная масса пектина от 20 до 50 кДа.

Содержание пектиновых веществ

Содержание пектиновых веществ в растительном сырье колеблется от 0,5 до 1,5 % и более: в яблоках от 0,8 до 1,3 %, в абрикосах около 1,0, в черной смородине около 1,5, в моркови и сахарной свекле около 2,5 %.

Различают яблочный пектин, который получают из яблочных выжимок, цитрусовый пектин -- из цитрусовых корочек и выжимок, свекловичный пектин -- из свекловичного жома. Богаты пектиновыми веществами айва, красная смородина, кизил, алыча и другие плоды и ягоды.

В растениях пектиновые вещества присутствуют в виде нерастворимого протопектина, связанного с арабаном или ксиланом клеточной стенки. Протопектин переходит в растворимый пектин либо при кислотном гидролизе, либо под действием фермента протопектиназы. Из водных растворов пектин выделяют осаждением спиртом или 50%-ным ацетоном.

Пектиновые кислоты и их соли

Пектиновые кислоты -- высокомолекулярные полигалактуроновые кислоты, небольшая часть карбоксильных групп у которых этерифицирована метиловым спиртом. Соли пектиновых кислот называют пектинатами. Если пектин полностью деметоксилирован, то их называют пектовыми кислотами, а их соли -- пектатами.

Пектолитические ферменты

Ферменты, участвующие в гидролизе пектиновых веществ называются пектолитическими. Они имеют большое значение, так как способствуют повышению выхода и осветлению плодово-ягодных соков.Пектиновые вещества в растениях обычно содержатся не в свободном виде, а в виде сложного комплекса- протопектина. В этом комплексе метоксилированная полигалактуроновая кислота связана с другими углеводными компонентами клетки - арабаном и галактаном. Под действием фермента протопектиназы происходит отщепление арабана и галактана от протопектина. В результате действия этого фермента образуется метоксилированная полигалактуроновая кислота, или растворимый пектин. Растворимый пектин далее расщепляется другими пектолитическими ферментами.

При действии фермента пектинэстеразы на растворимый пектин гидролизуются сложноэфирные связи, в результате чего образуется метиловый спирт и полигалактуроновая кислота, т. е. пектинэстераза отщепляет метоксильные группы метоксиполигалактуроновой кислоты.

Фермент полигалактуроназа при действии на растворимый пектин расщепляет связи между теми участками полигалактуроновой кислоты, которые не содержат метоксильных групп.

Технологическое и физиологическое значение

Важное свойство пектиновых веществ -- способность их к желированию, т. е. образовывать прочные студни в присутствии большого количества сахара (6570 %) и при рН 3,13,5. В образующемся студне массовая доля пектина составляет от 0,2 до 1,5 %.

Пектиновые вещества способны образовывать также при соответствующей обработке гели -- в присутствии перекиси водорода и пероксидазы происходит перекрестная сшивка боковых цепей; в присутствии кислоты и сахара, а также солей кальция пектины также образуют гели с высокой водопоглощающей способностью -- 1 г пектина может поглотить от 60 до 150 г воды.

Плотные гели образуют только высокоэтерифици-рованные пектины. Частичный гидролиз метиловых эфиров приводит к снижению желирующей способности. При полном гидролизе метоксильных групп в щелочных растворах или под действием фермента пектинэстеразы образуются пектиновые кислоты, которые представляют собой полигалактуроновую кислоту. Полигалактуроновая кислота не способна образовывать желе.

На желирующей способности пектиновых веществ основано использование их в качестве студнеобразующего компонента в кондитерской промышленности для производства конфитюров, мармелада, пастилы, желе, джемов, а также в консервной промышленности, хлебопечении и в производстве сыров.

Пектиновые вещества обладают важными физиологическими свойствами, выводя из организма тяжелые металлы в результате соединения многовалентных ионов металлов с неэтерифицированными группами --СОО- по типу ионных связей.

Размещено на Allbest.ru


Подобные документы

  • Органические вещества, в состав которых входит углерод, кислород и водород. Общая формула химического состава углеводов. Строение и химические свойства моносахаридов, дисахаридов и полисахаридов. Основные функции углеводов в организме человека.

    презентация [1,6 M], добавлен 23.10.2016

  • Формула углеводов, их классификация. Основные функции углеводов. Синтез углеводов из формальдегида. Свойства моносахаридов, дисахаридов, полисахаридов. Гидролиз крахмала под действием ферментов, содержащихся в солоде. Спиртовое и молочнокислое брожение.

    презентация [487,0 K], добавлен 20.01.2015

  • Изучение строения, классификации и физико-химических свойств углеводов. Роль моносахаридов в процессе дыхания и фотосинтеза. Биологическая роль фруктозы и галактозы. Физиологическая роль альдозы или кетозы. Физические и химические свойства моносахаридов.

    курсовая работа [289,2 K], добавлен 28.11.2014

  • Классификация углеводов (моносахариды, олигосахариды, полисахариды) как самых распространенных органических соединений. Химические свойства вещества, его роль в питании как основного источника энергии, характеристика и место глюкозы в жизни человека.

    реферат [212,0 K], добавлен 20.12.2010

  • Строение углеводов. Механизм трансмембранного переноса глюкозы и других моносахаридов в клетке. Моносахариды и олигосахариды. Механизм всасывания моносахаридов в кишечнике. Фософорилирование глюкозы. Дефосфорилирование глюкозо-6-фосфата. Синтез гликогена.

    презентация [1,3 M], добавлен 22.12.2014

  • Общая характеристика, классификация и номенклатура моносахаридов, строение их молекул, стереоизомерия и конформации. Физические и химические свойства, окисление и восстановление глюкозы и фруктозы. Образование оксимов, гликозидов и хелатных комплексов.

    курсовая работа [1,6 M], добавлен 24.08.2014

  • Углеводы как группа природных полигидроксиальдегидов, их структура и химические свойства, классификация и типы: моносахариды, олигосахариды и полисахариды. Гликолиз и цикл Кребса. Регуляция углеводного обмена. Наследственная неперносимость фруктозы.

    курсовая работа [422,5 K], добавлен 03.07.2015

  • Химические свойства углеводов. Реакции карбонильной группы. Восстановление. Окисление. Действие реагентов Бенедикта, Феллинга и Толленса. Окисление альдоз бромной водой, азотной, периодной кислотой. Реакции с фенилгидразином. Образование простых эфиров.

    реферат [226,9 K], добавлен 04.02.2009

  • Углеводы - важнейшие химические соединения живых организмов. В растительном мире составляют 70-80% из расчета на сухое вещество. Функции углеводов: энергетическая – главный вид клеточного топлива, функция запасных питательных веществ, защитная, регуляторн

    реферат [20,7 K], добавлен 17.01.2009

  • Сущность и состав кислот, их классификация по наличию кислорода и по числу атомов водорода. Определение валентности кислотных остатков. Виды и структурные формулы кислот, их физические и химические свойства. Результаты реакции кислот с другими веществами.

    презентация [1,7 M], добавлен 17.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.