Химия горюче-смазочных материалов

Ассортимент, качество и состав автомобильных бензинов. Топливо для карбюраторных двигателей. Условия работы, эксплуатационные свойства, ассортимент трансмиссионных масел. Масла для гидромеханических передач. Понятие цетанового и октанового чисел.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 21.11.2012
Размер файла 38,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство Образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования (ФГБОУ ВПО “ЗабГУ”)

Институт переподготовки и повышения квалификации

Контрольная работа

По дисциплине: Химия ГСМ

Химия горюче-смазочных материалов

бензин автомобильный цетановый октановый число

Выполнил ст.гр. СТМС-10-01

Мантрусов А.В.

Проверил: преподаватель

Тютрина С.В.

Чита 2012

Автомобильные бензины. Общие требования к топливу для карбюраторных двигателей

Автомобильные бензины

Бензины предназначены для применения в поршневых двигателях внутреннего сгорания с принудительным воспламенением (от искры).

В зависимости от назначения их разделяют на автомобильные и авиационные.

Несмотря на различия в условиях применения автомобильные и авиационные бензины характеризуются в основном общими показателями качества, определяющими их физико-химические и эксплуатационные свойства.

Современные автомобильные и авиационные бензины должны удовлетворять ряду требований, обеспечивающих экономичную и надежную работу двигателя, и требованиям эксплуатации:

иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах;

иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя;

не изменять своего состава и свойств при длительном хранении и не оказывать вредного влияния на детали топливной системы, резервуары, резинотехнические изделия и др.

В последние годы экологические свойства топлива выдвигаются на первый план.

Ассортимент, качество и состав автомобильных бензинов

Основную массу автомобильных бензинов в России вырабатывают по ГОСТ 2084-77 и ГОСТ Р51105-97 и ТУ 38.001165-97. В зависимости от октанового числа ГОСТ 2084-77 предусматривает пять марок автобензинов: А-72, А-76, АИ-91, АИ-93 и АИ-95.

Для первых двух марок цифры указывают октановые числа, определяемые по моторному методу, для последних - по исследовательскому. В связи с увеличением доли легкового транспорта в общем объеме автомобильного парка наблюдается заметная тенденция снижения потребности в низкооктановых бензинах и увеличения потребления высокооктановых. Бензин А-72 практически не вырабатывается ввиду отсутствия техники, эксплуатируемой на нем.

Наибольшая потребность существует в бензине А-92, который вырабатывается по ТУ 38.001165-97, хотя доля бензина А-76 в общем объеме производства остается очень высокой. Указанные ТУ предусматривают также марки бензинов А-80 и А-96 с октановыми числами по исследовательскому методу соответственно 80 и 96. Эти бензины предназначены в основном для поставки на экспорт.

Бензин АИ-98 с октановым числом 98 по исследовательскому методу производится по ТУ 38.401-58-122-95 и ТУ 38.401-58-127-95.

Бензины А-76, А-80, АИ-91, А-92 и А-96 допускается вырабатывать с использованием этиловой жидкости. Малоэтилированный бензин АИ-91 с содержанием свинца 0,15 г/дм3 выпускается по отдельным техническим условиям (ТУ 38.401-58-86-94). При производстве бензинов АИ-95 и АИ-98 использование алкилсвинцовых антидетонаторов не допускается. Требования ГОСТ 2084-77 к качеству автомобильных бензинов приведены в таблице. Все бензины, вырабатываемые по ГОСТ 2084-77, в зависимости от показателей испаряемости делят на летние и зимние. Зимние бензины предназначены для применения в северных и северо-восточных районах в течение всех сезонов и в остальных районах с 1 октября до 1 апреля. Летние - для применения во всех районах кроме северных и северо-восточных в период с 1 апреля по 1 октября; в южных районах допускается применять летний бензин в течение всех сезонов. Параметры автомобильных бензинов, вырабатываемых по ГОСТ 2084-77, существенно отличаются от принятых международных норм, особенно в части экологических требований. В целях повышения конкурентоспособности российских бензинов и доведения их качества до уровня европейских стандартов разработан ГОСТ Р 51105-97 “Топлива для двигателей внутреннего сгорания. Неэтилированный бензин. Технические условия”, который вводится в действие с 01.01.99 г. Этот стандарт не заменяет ГОСТ 2084-77, которым предусмотрен выпуск как этилированных, так и неэтилированных бензинов.

Требования, предъявляемые к топливу

Категории: Использование топлив для карбюраторных двигателей

Качество применяемого топлива, независимо от типа двигателя, является одним из важнейших факторов, обеспечивающих его высокие технико-экономические показатели. В связи с этим, каждое топливо должно обладать определенными эксплуатационными свойствами, которые регламентируются численными значениями его физико-химических показателей, фиксируемых в соответствующих ГОСТах. По этим характеристикам следует подобрать соответствующий вид топлива, чтобы обеспечить соответствующее смесеобразование, его характер сгорания, устойчивость к нагарообразованию, склонность к коррозионному воздействию, возможность хранения без нарушения первоначальных качеств и т. п.

Для обеспечения надежной и долговечной работы карбюраторных двигателей применяемые топлива должны отвечать следующим основным эксплуатационным требованиям:

- иметь высокую теплоту сгорания и его рабочей смеси, обеспечивающую высокую экономичность двигателя;

- обладать хорошими смесеобразующими свойствами, обуславливающими легкий запуск двигателя, его плавный переход с одного режима работы на другой, а также обеспечивать устойчивую его работу при эксплуатации в различных климатических условиях;

- обеспечивать бездетонационную работу на всех эксплуатационных режимах;

- не образовывать нагароотложений на деталях, приводящих к перегреву и снижению экономичности, а также не вызывать повышения износов двигателя;

- не вызывать коррозии деталей как при непосредственном контакте с топливом, так и от образующихся продуктов сгорания;

- быть стабильным при транспортировке и хранении, т. е. не изменять своих первоначальных свойств после их получения;

- иметь более низкую температуру застывания, чтобы иметь хорошую прокачиваемость при минусовых температурах окружающего воздуха;

- при обращении и сгорании не оказывать вредного воздействия как на здоровье человека, так и на окружающую среду.

Для получения высоких экономических и динамических показателей карбюраторного двигателя весьма важным является оптимальное обеспечение условий для нормального протекания процессов смесеобразования и сгорания топлива, зависящих от совершенства системы питания и непосредственно от качества самого топлива.

Трансмиссионные масла. Условия работы, эксплуатационные свойства, ассортимент трансмиссионных масел. Масла для гидромеханических передач

Трансмиссионные масла

Трансмиссионные масла предназначены для применения в узлах трения агрегатов трансмиссий легковых и грузовых автомобилей, автобусов, тракторов, тепловозов, дорожно-строительных и других машин. Кроме того трансмиссионные масла в различных зубчатых редукторах и червячных передачах промышленного оборудования.

Трансмиссионные масла представляют собой базовые масла, легированные различными функциональными присадками. В качестве базовых компонентов используют минеральные, частично или полностью синтетические масла.

Общие требования к трансмиссионным маслам:

В агрегатах трансмиссий смазочное масло является неотъемлемым элементом конструкции. Способность масла выполнять и длительно сохранять функции конструкционного материала определяется его эксплуатационными свойствами. Общие требования к трансмиссионным маслам определяются конструкционными особенностями, назначением и условиями эксплуатации агрегата трансмиссии.

Трансмиссионные масла работают в режимах высоких скоростей скольжения, давлений и широком диапазоне температур. Пусковые свойства и длительная работоспособность трансмиссионных масел должны обеспечиваться в интервале температур от -60 до +150 °С. Поэтому к трансмиссионным маслам предъявляют довольно жесткие требования.

Основные функции трансмиссионных масел:

Трансмиссионные масла предохраняют поверхности трения от износа, заедания, питтинга и других повреждений;

Трансмиссионные масла снижают до минимума потери энергии на трение;

Трансмиссионные масла отводят тепло от поверхностей трения;

Трансмиссионные масла снижают шум и вибрации зубчатых колес, а так же уменьшают ударные нагрузки;

Трансмиссионные масла не должны быть токсичными. Для обеспечения надежной и длительной работы агрегатов трансмиссий трансмиссионные масла должны обладать определенными характеристиками:

иметь достаточные противозадирные, противоизносные и противопиттинговые свойства;

обладать высокой антиокислительной стабильностью;

иметь хорошие вязкостно-температурные свойства;

не оказывать коррозионного воздействия на детали трансмиссии;

иметь хорошие защитные свойства при контакте с водой;

обладать достаточной совместимостью с резиновыми уплотнениями;

иметь хорошие антипенные свойства;

иметь высокую физическую стабильность в условиях длительного хранения.

Все эти свойства трансмиссионного масла могут быть обеспечены путем введения в состав базового масла соответствующих функциональных присадок: депрессорной, противозадирной, противоизносной, антиокислительной, антикоррозионной, противоржавейной, антипенной и др.

Классификация трансмиссионных масел:

Многообразие вырабатываемых трансмиссионных масел, предназначенных для разнообразной техники, вызвало необходимость разработки и использования классификаций масел, которые позволяют правильно решить вопрос выбора сорта масла ддя данной конструкции трансмиссии.

Отечественная классификация трансмиссионных масел отражена в ГОСТ 17479.2-85. В зависимости от уровня кинематической вязкости при 100 °С трансмиссионные масла разделяют на четыре класса. В соответствии с классом вязкости ограничены допустимые пределы кинематической вязкости трансмиссионного масла при 100 °С и отрицательная температура, при которой динамическая вязкость не превышает 150 Па·с. Эта вязкость для трансмиссионного масла считается предельной, так как при ней еще обеспечивается надежная работа агрегатов трансмиссий.

В зависимости от эксплуатационных свойств и возможных областей применения масла для трансмиссий автомобилей, тракторов и другой мобильной техники отнесены к пяти группам: ТМ-1 - ТМ-5, указанным в таблице. Группу масел устанавливают по результатам оценки их свойств по ГОСТ 9490-75 при разработке новых трансмиссионных масел и постановке их на производство, а также при периодических испытаниях товарных масел 1 раз в 2 года. По классификации ГОСТ 17479.2-85 масла маркируют по уровню напряженности работы трансмиссии и классу вязкости. Например, в маркировке масла ТМ-5-18 ТМ означает начальные буквы русских слов "трансмиссионное масло", первая цифра - группа масла по эксплуатационным свойствам, вторая цифра - класс вязкости масла.

Требования к эксплуатационным свойствам смазочных масел

С учётом выполняемых функций требования к маслу определяется его назначением, особенностями его применения и условиями работы машины и механизма. Масло должно обладать:

1. Оптимальными вязкостно-температурными свойствами для облегчения запуска механизма при низких температурах, для снижения износа деталей и уменьшения потерь на трение.

2. Хорошими смазывающими свойствами для обеспечения надёжной смазки на всех режимах работы.

3. Достаточной антиокислительной стойкостью, препятствующей изменению химического состава масла в процессе работы.

4. Хорошими моющими свойствами с целью снижения склонности к образованию отложений.

5. Высокими противокоррозионными свойствами по отношению к конструкционным материалам.

6. Удовлетворительными защитными свойствами для предохранения металлов от атмосферной коррозии.

Кроме того, масло должно: обладать низкой испаряемостью, малой пенообразующей способностью; не оказывать отрицательное воздействие на уплотнительные материалы; быть нетоксичным; не подвергаться биоповреждениям; не изменять своих свойств при хранении и транспортировке; легко транспортироваться и перекачиваться.

Из перечисленных свойств общими для всех групп масел являются смазочные, вязкостно-температурные, антиокислительные. В то же время другие, например, моющие, противопенные, характерны для масел определённого назначения. Ряд свойств являются основными только в определённых условиях применения, например, биостойкость важна при использовании масел во влажной атмосфере тропического климата.

Эксплуатационные свойства

Смазочные и противокоррозионные. В процессе работы ДВС происходит изменение размеров и формы трущихся деталей: цилиндр-поршень, вал-подшипник, кулачок-толкатель и др. Для цилиндро-поршневой группы характерны, например, адгезионный и абразивный износы. При этом последний может возникать из-за твёрдых частичек нагары, попадающих между гильзой и поршнем из камеры сгорания. Для пары вал-подшипник характерны коррозионный и адгезионный виды износа. Для пары кулачок-толкатель - питтинг, возникающий из-за высоких ударных нагрузок.

Увеличение износа более вероятно при переходе от гидродинамического к граничному трению. Такой переход возможен в результате повышения температуры, удельных нагрузок и скорости скольжения в зоне трения контактируемых деталей. Удельное давление в зоне компрессионных колец составляет 0,15…0,30 МПа, маслосъёмных колец - 0,5…1,3 МПа, в подшипниках коленчатого вала - 20…30 МПа при скорости скольжения до 15 м/с. Наибольшие нагрузки (ударные) испытывает пара кулачок-толкатель, где давление достигает 500…700 МПа, а в отдельных случаях 2100 МПа.

Уменьшение скорости скольжение трения также способствует реализации граничного режима. Например, гидродинамический режим смазки возможен в паре кольцо-гильза в средней части поршня. Вблизи мёртвых точек, когда движение поршня замедлено также появляется граничный режим трения. Как правило, максимальный износ гильзы цилиндра наблюдается в месте остановки 1ого компрессионного кольца.

Подшипники коленчатого вала работают преимущественно в режиме гидродинамической смазки. Граничный режим возникает лишь в момент пуска или при перегрузках.

На интенсивность изнашивания кроме конструктивных особенностей влияет эксплуатация, в частности сорт применяемого масла и топлива. Например, повышенное содержание серы в топливе ускоряет износ цилиндро-поршневой группы. Резко увеличивается износ деталей двигателя при использовании спиртовых альтернативных топлив и особенно метанола, как в чистом виде, так и в смеси с бензином.

На пусковые износы большое влияние оказывает температура: чем она выше, тем меньше износ, так как создаются благоприятные возможности для лучшего поступления масла к трущимся деталям.

Износ увеличивается и за счёт повышения химической активности масла, что видно на паре вал-подшипник. Вкладыш изготавливается из сплавов цветных металлов менее стойких к химической повреждаемости, чем вал. Отсюда потери массы вкладышей из-за химического и коррозионно-химического износа.

Для подавления коррозионных процессов в двигателе используют следующие пути:

нейтрализацию кислых продуктов в работавшем масле;

замедление процессов окисления масла;

создание на металле защитной плёнки.

По первому пути применяют высокощелочные присадки, нейтрализующие кислые продукты. При этом в отработавшем полностью срок службы масле ещё остаётся некоторый запас щелочных свойств.

По второму пути применяют в маслах присадки, замедляющие окисление масла, разрушающие гидроперекиси и превращающие активные радикалы в неактивное состояние.

По третьему пути в масло вводят присадки, образующие прочные защитные плёнки на поверхности подшипников. При этом необходимо учитывать, что чрезмерный запас моющих свойств у масла при повышенных температурах может привести к разрушению противокоррозионных плёнок на металле и вызвать повышенную коррозию подшипников.

Уменьшение износа и повышение надёжности работы двигателя достигается конструктивными мерами. Например, хромирование или покрытие молибденом поршневых колец, изменение числа колец и их формы, использование вставок в гильзе из жаропрочного твёрдого материала, изменение конструкции поршня и т.д.

Однако изменением состава масла можно так же добиться уменьшение износа сопряжённых деталей. Для этого к маслу добавляют противоизносные противозадирные присадки. Действие противоизносных присадок заключается в следующем:

в адсорбции присадок на поверхности металла и создании граничных плёнок;

в химическом взаимодействии присадок с металлом в зонах контакта и создании прочных сульфидных и фосфидных плёнок;

в сглаживании и полировке микровыступов трущихся поверхностей, приводящем к снижению удельных нагрузок и уменьшению износов.

Понятие цетанового и октанового чисел. Влияние данных показателей на качество топлива. Какие виды топлива выделяют на основе данных показателей

Цетановое число -- характеристика воспламеняемости дизельного топлива, определяющая период задержки воспламенения смеси (промежуток времени от впрыска топлива в цилиндр до начала его горения). Чем выше цетановое число, тем меньше задержка и тем более спокойно и плавно горит топливная смесь.

Цетановое число численно равно объёмной доле цетана (С16Н34, гексадекана), цетановое число которого принимается за 100, в смеси с б-метилнафталином (цетановое число которого, в свою очередь, равно 0).Когда дизельное топливо характеризуется такой же воспламеняемостью, определённой на опытном двигателе (ASTM D 613, EN 5165, ISO 5165, ГОСТ 3122), что и модельная смесь этих двух углеводородов, цетановое число данного топлива считается равным % доли цетана в этой смеси. Чем оно больше, тем лучше воспламеняемость смеси при сжатии.Оптимальную работу стандартных двигателей обеспечивают дизельные топлива с цетановым числом 40--55. При цетановом числе меньше 40 резко возрастает задержка воспламенения (время между началом впрыска и воспламенением топлива) и скорость нарастания давления в камере сгорания, увеличивается износ двигателя. Стандартное топливо характеризуется цетановым числом 40--45, а топливо высшего качества (премиальное) имеет цетановое число 45--50. Согласно российским стандартам, цетановое число летнего и зимнего дизтоплива должно быть не менее 45 единиц. Кроме того, технические условия для зимних сортов с депрессорными присадками разрешают выпуск арктического топлива с цетановым числом не менее 40.

Премиальное дизельное топливо более лёгкое, содержит больше легковоспламеняющихся лёгких фракций и поэтому более пригодно для запуска двигателя в холодную погоду, кроме того, отношение водорода к углероду в лёгких фракциях выше, поэтому при сгорании такого дизельного топлива образуется меньше дыма.

При цетановом числе больше 60 снижается полнота сгорания топлива, возрастает дымность выхлопных газов, повышается расход топлива.В некоторой степени цетановое число зависит от группового состава топлива (доли парафинов, олефинов, нафтенов, ароматики). Парафины, способные к самовоспламенению при низких температурах, являются полезным компонентом дизельного топлива.

Октамновое числом -- показатель, характеризующий детонационную стойкость топлива (способность топлива противостоять самовоспламенению при сжатии) для двигателей внутреннего сгорания. Число равно содержанию (в процентах по объёму) изооктана (2,2,4-триметилпентана) в его смеси с н-гептаном, при котором эта смесь эквивалентна по детонационной стойкости исследуемому топливу в стандартных условиях испытаний.

Изооктан трудно окисляется даже при высоких степенях сжатия, и его детонационная стойкость условно принята за 100 единиц. Сгорание в двигателе н-гептана даже при невысоких степенях сжатия сопровождается детонацией, поэтому его детонационная стойкость принята за 0. Для бензинов с октановым числом выше 100 создана условная шкала, в которой используют изооктан с добавлением различных количеств тетраэтилсвинца. Характерный металлический звон при детонации создаётся детонационной волной, многократно отражающейся от стенок цилиндра. При детонации снижается мощность двигателя и ускоряется его износ.

Виды октановых чисел: ОЧИ и ОЧМ

Исследовательское октановое число (ОЧИ) определяется на одноцилиндровой установке с переменной степенью сжатия, называемой УИТ-65 или УИТ-85, при частоте вращения коленчатого вала 600 об/мин, температуре всасываемого воздуха 52°С и угле опережения зажигания 13 град. Оно показывает, как ведёт себя бензин в режимах малых и средних нагрузок.

Моторное октановое число (ОЧМ) определяется так же на одноцилиндровой установке, при частоте вращения коленчатого вала 900 об/мин, температуре всасываемой смеси 149°С и переменном угле опережения зажигания. ОЧМ имеет более низкие значения, чем ОЧИ. ОЧМ характеризует поведение бензина на режимах больших нагрузок. Оказывает влияние на высокую скорость и детонацию при частичном дроссельном ускорении и работе двигателя под нагрузкой, движении в гору и т. д.

По крайней мере в 1950-х годах использовалось также октановое число по температурному методу.

Распределение октанового числа

Поскольку при эксплуатации полноразмерного двигателя при переменных режимах происходит фракционирование бензина, необходимо раздельно оценивать детонационную стойкость его различных фракций. Октановое число бензина, с учётом его фракционирования в двигателе, получило название «распределение октанового числа» (ОЧР). В связи со сложностью определения октанового числа на двигателях, разработаны методы косвенной оценки детонационной стойкости по физико-химическим показателям и характеристикам низкотемпературной реакции газофазного окисления, имитирующего предпламенные процессы.

Углеводороды, которые содержатся в топливах, значительно различаются по детонационной стойкости: наибольшее октановое число имеют ароматические углеводороды и парафиновые углеводороды (алканы) разветвлённого строения, наименьшее октановое число имеют парафиновые углеводороды нормального строения. Топлива нефтяного происхождения, полученные каталитическим риформингом и крекингом, имеют более высокие октановые числа, чем полученные при прямой перегонке.

Для повышения октанового числа топлив используются высокооктановые компоненты и антидетонационные присадки. Многие из них (например, МТБЭ) испаряются легче, чем бензин, что приводит к интересному эффекту у машин с негерметичным бензобаком -- по мере расходования топлива и испарения присадки октановое число бензина, оставшегося в баке, уменьшается на несколько единиц. Это приводит к лёгкому звону при полной мощности мотора (необорудованного датчиком детонации). Подавляющее большинство современных инжекторных двигателей имеют датчики детонации, позволяющие использовать любой бензин с октановым числом 91--98, в двигатели с высокой степенью сжатия можно заливать бензин с октановым числом не ниже 95 или даже 98.

Состав и ассортимент товарных пластичных смазок, свойства пластичных смазок на основе минерального и синтетических масел

Пластичные смазки

Состав

Пластичные смазки - распространённый вид смазочных материалов, представляющих собой высококонцентрированные дисперсии твёрдых загустителей в жидкой среде. Чаще всего смазки - трёхкомпозитные коллоидные системы, содержащие дисперсионную среду - жидкую основу (70...90 %) дисперсную фазу - загуститель (10...15 %), модификаторы структуры и добавки - присадки, наполнители (1...15 %).

В качестве дисперсной среды используют масла нефтяного и синтетического происхождения, реже их смеси. К синтетическим маслам относят кремнийорганические жидкости - полисилкосаны, эфиры, полигликоли, фтор- и хлорорганические жидкости. Их применяют в основном для высокоскоростных подшипников, работающих в широких диапазонах температур и контактных нагрузок. Смеси синтетических и нефтяных масел применяют для более эффективного использования смазок и регулирования их эксплуатационных свойств.

Загустителями служат соли высокомолекулярных, жирных кислот - мыла, твёрдые углеводороды - церезины, петролатумы и некоторые продукты неорганического (бентонит, силикагель) или органического (кристаллические полимеры, производные карбамида) происхождения. Наиболее распространены мыла и твёрдые углеводороды. Концентрация мыльного и неорганического загустителя обычно не превышает 15 %, а концентрация твёрдых углеводородов доходит до 25 %.Для регулирования структуры и улучшения функциональных свойств в смазки вводят добавки.

По сравнению с маслами смазки обладают следующими достоинствами:

- малый удельный расход;

- более простая конструкция машин и механизмов, следовательно, меньшая масса, более высокая надежность и ресурс;

- более продолжительный период замены;

- меньшие эксплуатационные затраты при ТО.

По назначению смазки разделяют на:

- антифрикционные - для снижения трения и износа; и в свою очередь, антифрикционные общего назначения и антифрикционные технологические (для облегчения технологических процессов обработки материалов);

- консервационные - для предохранения металлических изделий от коррозии;

- уплотнительные - для герметизации трущихся поверхностей, сальников, зазоров и др.;

- специального назначения, например, фрикционные - для увеличения трения с целью предотвращения проскальзывания, приработочные - для улучшения приработки трущихся поверхностей и др.

Подавляющее большинство относится к первым двум группам. Следует отметить условность такого разделения смазок, т.к. антифрикционные должны одновременно защищать от коррозии, консервационные должны обладать хорошими антифрикционными свойствами, а уплотнительные должны иметь хорошие смазочные и защитные свойства.

Кроме вышеперечисленных классификаций по назначению или функциональному действию, известна классификация смазок по составу. По типу загустителя смазки подразделяют на органические и неорганические. К органическим загустителям относятся мыла, твёрдые углеводороды, пигменты и некоторые кристаллические полимеры. Неорганические загустители - силикагель, бентонит, технический углерод (сажа) и некоторые другие.

Мыльные смазки в свою очередь делят на кальциевые, натриевые, литиевые, бариевые, алюминиевые и др. В зависимости от состава жиров, употребляемых для приготовления мыльных загустителей, выделяют смазки на синтетических, жирных кислотах, природных жирах и технических, жирных кислотах.

Как уже отмечалось, пластичные смазки при малых нагрузках ведут себя как твёрдые тела, не растекаются под действием собственной массы, не сбрасываются инерционными силами с поверхностей, удерживаются на вертикальных поверхностях. Под действием нагрузок, превышающих предел их прочности, смазки начинают течь подобно вязким жидкостям.

Таким образом можно сформулировать принципиальные отличия смазок от жидких смазочных материалов:

- хорошее удерживание на наклонных и вертикальных поверхностях, отсутствие выдавливания из узлов трения под действием значительных нагрузок;

- высокая смазочная способность, т.е. лучшие показатели противоизносных и противозадирных свойств, особенно при больших нагрузках;

- лучшая защита металлических поверхностей от коррозионного воздействия окружающей среды;

- высокая герметизация узлов трения, предохранение их от проникновения нежелательных продуктов;

- более широкий температурный диапазон работоспособности и лучшие вязкостно-температурные характеристики;

- более надёжная и эффективная работа в жёстких условиях эксплуатации (одновременное воздействие высоких температур, давлений, ударных нагрузок, переменный режим скоростей и т.д.);

- экономичность в применении за счёт более продолжительной работоспособности и меньшего расхода.

К недостаткам следует отнести следующее:

- отсутствие отвода тепла смазываемых деталей;

- несовершенную систему подачи пластичного материала;

- низкую химическую стабильность мыльных смазок.

Основные свойства смазок

Прочностные свойства. Частицы загустителя образуют в масле структурный каркас, благодаря которому смазки в состоянии покоя обладают пределом прочности на сдвиг. Предел прочности - это минимальная нагрузка, при которой начинается разрушение каркаса и происходит необратимая деформация смазки - сдвиг. При приложении нагрузки, превышающей предел прочности, смазки деформируются, а при нагрузке ниже предела прочности они проявляют упругость подобно твёрдым телам. Благодаря пределу прочности смазки удерживаются на наклонных и вертикальных поверхностях, не вытекают из негерметизированных узлов трения. Кроме того, предел прочности определяет стартовые характеристики узлов трения, например, усилие, которое необходимо приложить к подшипнику в начале его вращения.

Все факторы, влияющие на формирование структуры смазок, влияют и на их прочность. К ним относятся:

- тип и концентрация загустителя;

- химический состав и свойства дисперсионной среды;

- состав и концентрация модификатора;

- режим приготовления смазок (температура и продолжительность нагревания, скорость охлаждения и т.д.).

При повторных нагружениях с уменьшением промежутка времени между этими нагружениями значение последовательно замеряемого предела прочности уменьшается.

С повышением температуры предел прочности смазок уменьшается. Температура, при которой предел прочности приближается к нулю, является истинной температурой перехода смазки из пластичного в жидкое состояние.

Для большинства смазок предел прочности при 20 0С лежит в пределах 100...1000 Па.

Измеряют предел прочности на пластометре К-2 или прочномере СК и др. приборах.

Вязкостные свойства. Вязкость определяет прокачиваемость смазок при низких температурах, стартовые характеристики и сопротивление вращению при установившихся режимах, а так же возможность заправки узлов трения. В отличии от масел вязкость смазок зависит не только от температуры, но и от градиента скорости сдвига. Поэтому при определении вязкости смазки необходимо знать не только температуру, при которой она определялась, но и скорость, с которой она продавливалась через капилляр. Поэтому вязкость смазки при определенной скорости перемещения и температуре называют эффективной вязкостью.

При увеличении скорости деформации вязкость резко снижается. С повышением температуры вязкость смазки так же резко снижается. Изменение вязкости от скорости деформации выражается вязкостно-температурной характеристикой, а от температуры - вязкостно-температурной характеристикой. При этом первая определяется при постоянной температуре, а вторая при постоянной скорости сдвига. По вязкостно-температурным свойствам смазки превосходят масла, поскольку значительная доля сопротивления течения смазок приходится на разрушение структурного каркаса, прочность которого мало зависит от температуры. Увеличение концентрации и степени дисперсности загустителя приводит к повышению вязкости смазки. На вязкость смазки влияет также вязкость дисперсионной среды и технология приготовления. Определяют вязкость с помощью капиллярных вискозиметров - АКВ-2 или АКВ-4, ротационного вискозиметра - ПВР-1 и др. приборов. Механическая стабильность (тиксотропные превращения смазок). Изменение реологических свойств смазок при механическом разрушении и в процессе последующего отдыха - одна из важных характеристик. Тиксотропия - это способность дисперсных систем обратимо разжижаться при механическом воздействии и отвердевать при относительно длинном их пребывании в покое. Положительным качеством, обусловливаемым тиксотропией, является то, что при выбрасывании частиц разжиженной смазки из зоны трения и отложения их на неподвижных поверхностях они увеличивают вязкость и автоматически герметизируют узел трения от вытекания смазки. Однако сильно разупрочняющиеся при механическом воздействии смазки не способны удерживаться в узлах трения и вытекают из них при сравнительно небольших нагрузках. Чрезмерное упрочнение смазки после разрушения также является нежелательным, так как затрудняется запуск узла трения и поступления смазки к контактным поверхностям. Механическая стабильность смазок зависит от типа загустителя, размеров, формы и прочности связи между дисперсными частицами. Уменьшение размеров частиц загустителя (до определенных пределов) способствует улучшению механической стабильности смазок. Смазки, имеющие мыльные волокна с большим отношением длины к диаметру, более стабильны. Увеличение концентрации загустителя также повышает механическую стабильность смазок. На тиксотропные превращения смазок влияют состав и свойства дисперсной среды, присутствие наполнителей и добавок.

Механическую стабильность определяют в ротационном приборе - тиксометре. Оценивают механическую стабильность специальными коэффициентами, которые рассчитывают по изменению прочности смазки на разрыв: Кр - индекс разрушения, Кв - индекс тиксотропного восстановления.

Пенетрация. Этот показатель до сих пор используется для оценки прочности и сравнения смазок друг с другом. Однако смазки, обладающие разными реологическими свойствами, могут иметь одинаковые числа пенетрации, и это приводит к неверным представлениям об эксплуатационных свойствах смазок. В таблице 4.1 классификация пластичных смазок по консистенции, предлагаемая Национальной ассоциацией пластичных смазок США NLGI.

Написать возможные изомеры C4H10

CH2=CH-CH2-CH2-CH3 бутен-1

CH3-CH=CH-CH2-CH3 бутен-2-цис и бутен-2-транс

CH2=C(CH3)-CH2-CH3 2-метилбутен-1

CH3-C(CH3)=CH-CH3 2-метилбутен-2

CH3-CH(CH3)-CH=CH2 3-метилбутен-1

C4H10 - БУТАН

1) СН3

Н3С - СН - СН3

2) С2Н5

Н3С - СН2

Что такое цитановое число и что положено в его основу

Цетановое число -- характеристика воспламеняемости дизельного топлива, определяющая период задержки воспламенения смеси (промежуток времени от впрыска топлива в цилиндр до начала его горения). Чем выше цетановое число, тем меньше задержка и тем более спокойно и плавно горит топливная смесь.Цетановое число численно равно объёмной доле цетана (С16Н34, гексадекана), цетановое число которого принимается за 100, в смеси с б-метилнафталином (цетановое число которого, в свою очередь, равно 0).

Когда дизельное топливо характеризуется такой же воспламеняемостью, определённой на опытном двигателе (ASTM D 613, EN 5165, ISO 5165, ГОСТ 3122), что и модельная смесь этих двух углеводородов, цетановое число данного топлива считается равным % доли цетана в этой смеси. Чем оно больше, тем лучше воспламеняемость смеси при сжатии.Оптимальную работу стандартных двигателей обеспечивают дизельные топлива с цетановым числом 40--55. При цетановом числе меньше 40 резко возрастает задержка воспламенения (время между началом впрыска и воспламенением топлива) и скорость нарастания давления в камере сгорания, увеличивается износ двигателя. Стандартное топливо характеризуется цетановым числом 40--45, а топливо высшего качества (премиальное) имеет цетановое число 45--50. Согласно российским стандартам, цетановое число летнего и зимнего дизтоплива должно быть не менее 45 единиц. Кроме того, технические условия для зимних сортов с депрессорными присадками разрешают выпуск арктического топлива с цетановым числом не менее 40.Премиальное дизельное топливо более лёгкое, содержит больше легковоспламеняющихся лёгких фракций и поэтому более пригодно для запуска двигателя в холодную погоду, кроме того, отношение водорода к углероду в лёгких фракциях выше, поэтому при сгорании такого дизельного топлива образуется меньше дыма.

При цетановом числе больше 60 снижается полнота сгорания топлива, возрастает дымность выхлопных газов, повышается расход топлива.

В некоторой степени цетановое число зависит от группового состава топлива (доли парафинов, олефинов, нафтенов, ароматики). Парафины, способные к самовоспламенению при низких температурах, являются полезным компонентом дизельного топлива.

Что такое реакция димеризации, и в каких целях она используется для получения топлив внутреннего сгорания

Димеризация олефинов Реакция димеризации олефинов - важный этап переработки олефинов. Помимо олефинового сырья для основного органического синтеза реакция димеризации олефинов С3, С4 дает непосредственно продукты С6 и С8, которые можно использовать в качестве высокооктановых добавок в бензин. Катализаторами димеризации являются кислотные, основные (нуклеофильные) и металлокомплексные катализаторы. Рассмотрим механизмы соответствующих каталитических реакций и продукты, определяемые этими механизмами. Кислотный катализ Процесс с участием растворенных или твердых кислотных катализаторов протекает с образованием ионов карбения или контактных ионных пар. Процесс трудно остановить на стадии димеризации, поэтому всегда есть тримеры и олигомеры. Нуклеофильный катализ Более селективным является процесс димеризации C3H6 и содимеризации C2H4 и C3H6, катализируемый аллильными производными Na и K. Активный катализатор образуется в ходе процесса из K/CaCO3 и Na/CaCO3 при 150оС и 30 - 80 атм. Например, Аллил калия реагирует с пропиленом как мягкое основание и мягкий нуклеофил вследствие делокализации электронов: Образовавшийся карбанион (III) является сильным основанием и жестким нуклеофилом и практически не способен присоединяться далее к пропилену, но зато способен оторвать относительно кислый Н+ из СН3-группы С3Н6 с образованием продукта реакции и исходного катализатора К нуклеофильному типу катализа можно отнести и катализ димеризации олефинов гидридами алюминия R2Al+dH-d, однако в этом случае несомненно имеет место и электрофильное содействие алюминиевого центра процессу нуклеофильного присоединения Н-. По сути дела, в этом случае реализуется бифункциональный тип катализатора (нуклеофильно-электрофильный). При 140оС HAlR2 катализирует димеризацию пропилена с образованием 2-Ме-П-1. Селективность процесса не бывает высокой, так как возможны дальнейшие стадии внедрения олефина по связи Al-C. Металлокомплексные катализаторы В качестве катализаторов используют циглеровские системы MXn-Et3R с добавками третичных фосфиновых лигандов, комплексы Ni(0) с протонными кислотами NiL4-HX (HX - BF3OEt2 - C2H5OH, CF3COOH и др.) комплексы Rh(I) в водных растворах кислот. На металлсодержащих центрах в случае пропилена получаются линейные гексены, метилпентены и диметилбутены в зависимости от способа встраивания олефина в растущую цепь, определяемого природой металла, фосфиновых лигандов и условиями процесса. Так, например, в случае HNiLn+X- из пропилена получается 70% 2-М-П-1, 21% н-гексенов и 5% 2,3-диметилбутена-1 (ДМБ) в случае L = PPh3, но 70% ДМБ и 30% 2-М-П-1 в случае L = PPr3i. В системе Pd(acac)2 - AlEt2Cl - PR3 получается 95% линейных гексенов при L = PBu3 и 68% метилпентенов, 23% линейных гексенов и 8% ДМБ при L = P(OPh)3. Имеет место сложное влияние стерических и электронных свойств лиганда на региоселективность первой (HM~ + C3H6) и второй (M-R + C3H6) стадий процесса. Димеризация олефинов может протекать в растворах комплексов родия в водно-спиртовой хлористоводородной кислоте. Исходный хлорид Rh(III) восстанавливается олефином (например, этиленом) до активного в процессе комплекса Rh(I) - это стадия формирования катализатора. Стадии процесса: Скорость процесса определяется первыми стадиями 1) и 2) . Среди реакций димеризации a-олефинов большой интерес вызывает реакция содимеризации стирола (и его производных) с этиленом Производные продукта содимеризации 3-арилбутена-1 являются исходным сырьем для синтеза современных противовоспалительных средств - напроксена и ибупрофена. Катализаторы - комплексы никеля. Синтез высших a-олефинов из этилена (SHOP-процесс фирмы Shell) В растворах комплексов переходных металлов, особенно комплексов никеля, возможна также олигомеризация этилена с образованием высших a-олефинов С10-С30.

Начиная с 1993 г этим методом производят a-олефины С11 - С14 - сырье синтеза высших спиртов С12-С15 (оксосинтез), используемых в производстве детергентов (ПАВ). Процесс проводят при 80-120оС и 70 - 140 атм этилена в растворах комплексов никеля, содержащих P,O-лиганды (L - растворитель). Смесь четных a-олефинов С10 - С18 изолируют для получения ПАВ. Низшие и высшие a-олефины подвергают реакции позиционной изомеризации С=С-связей. С изомерными олефинами с внутренней двойной связью проводят процесс метатезиса, а полученную новую смесь подвергают сометатезису с этиленом (этенолиз), и все внутренние С=С-связи превращаются в a-олефины меньшей длины С11 - С14, которые и используются для синтеза высших спиртов. Линейные a-олефины составляют 94-97%. Приведем еще несколько примеров удачного сочетания процессов димеризации с процессом метатезиса. Фирма Arco (с 1985 г) использует процесс получения чистого пропилена из этилена: Перспективным является процесс получения изопентенов, рассмотренный выше. Вопросы для самоконтроля Назовите катализаторы реакции метатезиса олефинов. Что означает термин “вырожденный метатезис”? Какие продукты получаются при кросс-метатезисе циклогексена и пропилена? Какие эксперименты обосновали карбеновый механизм метатезиса.

Предложите карбеновый механизм полимеризации ацетиленов. Назовите промышленные процессы с использованием метатезиса. В чем суть SHOP-процесса фирмы Shell? Представить механизмы димеризации пропилена на катализаторах Na/CaCO3 и R2AlH. Основные стадии процесса димеризации олефинов в растворах металлокомплексных катализаторов. Рассмотрим некоторые пути формирования активных карбеновых центров:

1) a-элиминирование в ряду алкильных производных 2) присоединение гидрид-ионов к катионным h3-аллильным комплексам 3) окислительное присоединение олефинов по С-Н связи к металлу 4) окислительное присоединение H2, кислот и фенолов к металлу 5) образование металлациклопентанов Процессы диспропорционирования олефинов привлекли внимание химиков-технологов, поскольку позволяют менятьсостав олефинового сырья в зависимости от потребностей рынка. “Триолефин” процесс (фирма Phillips Petr.) по реакции (1) (этилен, пропилен, бутилены) позволяет получать все три олефина в необходимых количествах. В реакции кросс-метатезиса пропилена и изобутилена на катализаторе WO3/SiO2 при 420оС максимальный выход изоамиленов получается при соотношении C3H6 : C4H8 @ 1. В реакции изобутилена и смеси бутенов-2 получается смесь пропилена и изоамилена.

Особенно интересно сочетание в одной технологической схеме реакций метатезиса и димеризации олефинов Изопентен-1 используется для получения изопрена. Наличие кратных связей в продуктах полимеризации циклических олефинов (полиалкенамерах) позволяет использовать их как вулканизируемые эластомеры в резинотехнической промышленности. Например, полиоктенамер получает фирма Hüls (c 1989 г) в количестве 12000 т/г по следующей схеме: Фирма CDF-Chemie выпускает полинорборнен (5000 т/г, с 1976 г) с использованием вольфрамовых катализаторов . Активно развиваются малотоннажные процессы синтеза лекарств, ускорителей роста растений, ферромонов, душистых веществ, основанные на сометатезисе олефинов и ненасыщенных функционально замещенных соединений, например, . В заключение этого раздела отметим, что ацетиленовые углеводороды на Mo,W-содержащих катализаторах также участвуют в реакции метатезиса.

Промежуточными в этой реакции являются карбиновые комплексы металлов (MºCR) и металлациклобутадиеновые соединения (R.Schrock, 1981): (15) Обнаружено также, что карбеновые комплексы металлов катализируют полимеризацию ацетилена (синтез полиацетилена) и сометатезис олефинов и алкинов с образованием диенов (ениновый метатезис, T.J.Katz, 1985 г). (16) “Триолефин” процесс (фирма Phillips Petr.) по реакции (1) (этилен, пропилен, бутилены) позволяет получать все три олефина в необходимых количествах. В реакции кросс-метатезиса пропилена и изобутилена на катализаторе WO3/SiO2 при 420оС максимальный выход изоамиленов получается при соотношении.

Что такое изомерия, какие виды изомерии вы знаете

Изомерия (от др.-греч. ?упт -- «равный», и мЭспт -- «доля, часть») -- явление, заключающееся в существовании химических соединений (изомеров), одинаковых по составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Изомерия углеводородной цепи (углеродного скелета)

Изомерия углеродного скелета, обусловленная различным порядком связи атомов углерода. Простейший пример -- бутан СН3--СН2--СН2--СН3 и изобутан (СН3)3СН. Другие примеры: антрацен и фенантрен (формулы I и II, соответственно), циклобутан и метилциклопропан (III и IV).

Валентная изомерия

Валентная изомерия -- особый вид структурной изомерии, при которой изомеры можно перевести друг в друга лишь за счёт перераспределения связей. Например, валентными изомерами бензола (V) являются бицикло[2.2.0]гекса-2,5-диен (VI, «бензол Дьюара»), призман (VII, «бензал Ладенбурга»), бензвален (VIII).

Изомерия функциональной группы

Различается характером функциональной группы; например, этанол (CH3--CH2--OH) и диметиловый эфир (CH3--O--CH3)

Изомерия положения

Тип структурной изомерии, характеризующийся различием положения одинаковых функциональных групп или кратных связей при одинаковом углеродном скелете. Пример: 2-хлорбутановая кислота и 4-хлорбутановая кислота.

Почему у углеводородов по сравнению с другими классами органических веществ Ткип. ниже

Органические вещества в своем составе наряду с другими элементами всегда содержат углерод. Изучение соединений углерода - их строения, химических превращений - и составляет предмет органической химии.

Вещества органические и неорганические

Наряду с углеродом в состав органических веществ чаще всего входят водород, кислород и азот, сравнительно реже - сера, фосфор, галогены и другие элементы. Известно несколько миллионов органических соединений, неорганических же веществ значительно меньше. Из всех химических элементов только углерод образует такое большое число органических соединений.

С органическими веществами мы встречаемся на каждом шагу. Они содержатся во всех растительных и животных организмах, входят в состав нашей пищи, служат материалом для изготовления одежды, образуют различные виды топлива, используются нами в качестве лекарств, красителей, средств защиты урожая и т. д.

Резкой грани между органическими и неорганическими веществами не существует. Оксиды углерода, угольная кислота, ее соли и некоторые другие вещества по наличию в них углерода должны считаться органическими, но по свойствам они близки к неорганическим соединениям подобного типа и изучаются обычно в неорганической химии. С органическими веществами человек знаком с давних времен. Наши далекие предки применяли природные красители для окраски тканей, использовали в качестве продуктов питания растительные масла, животные жиры, тростниковый сахар, получали уксус брожением спиртовых жидкостей. В настоящее время синтезированы многие органические вещества, не только имеющиеся в природе, но и не встречающиеся в ней: многочисленные пластмассы, различные виды каучуков, всевозможные красители, взрывчатые вещества, лекарственные препараты.

Синтетически полученных веществ сейчас известно даже больше, чем найденных в природе, и число их быстро растет. Осуществляются синтезы самых сложных органических веществ - белков.

Название науки «органическая химия», утратив первоначальный смысл, приобрело в связи с этим более широкое толкование.

Можно сказать, что такое название получило и новое подтверждение, так как ведущей познавательной задачей современной органической химии является глубокое изучение процессов, происходящих в клетках организмов на молекулярном уровне, выяснение тех тонких механизмов, которые составляют материальную основу явлений жизни.

Изучение химии органических веществ, таким образом, расширяет наши знания о природе.

Написать формулу 3-метилпентана

CH3-CH=C(CH3)-CH2-CH3 (3-метилпентен-2) изомерия положения кратной связи

CH2=CH-C(CH3)3 (3,3-диметилбутен-1) изомерия скелета

Список литературы

1. Стуканов, В.А. Автомобильные эксплуатационные материалы: Учеб. пособие. Лабораторный практикум. - М.: ФОРУМ: ИНФРА - М., 2003. - 208 с.

2. Синельников, А.Ф. Автомобильные топлива, масла и эксплуатационные жидкости. Кр. справочник. - М.: ЗАО «КЖИ «За рулем», 2003.- 176 с.

3. Кириченко Н.Б. Автомобильные эксплуатационные материалы: - М.: ИЦ «Академия», 2003. - 208 с.

4. Кириченко, Н.Б. Автомобильные эксплуатационные материалы: Практикум: Учебное пособие. - М.: ИЦ «Академия», 2004. - 96 с.

5. Бобович, Б.Б. и др. Химики - автомобилям: Справочник. - СПб.: Химия, 1992. - 319 с.

6. Васильева, Л.С. Автомобильные эксплуатационные материалы: - М.: Транспорт, 1986. - 279 с.

7. Павлов, В.П., Заскалько П.П. Автомобильные эксплуатационные материалы. - М.: Транспорт, 1982.

8. Мотовилин, Г.В., Масино М.А., Суворов О.М. Автомобильные материалы: Справочник. - М.: Транспорт, 1989.

9. Дробашева, Т.И. Общая химия / Т.И. Дробашева - Ростов-на-Дону.: Изд-во Феникс, 2004 - 448 с.

10.Суворов, А.В. Общая химия: Учебник для вузов. Изд-е 5-е / А.В. Суворов. - М., 2003. - 624 с.

11. Фролов, В.И. Сборник задач и упражнений по общей и неорганической химии / В.И. Фролов, Н.Н. Павлов. - М., 2005. - 239 с.

Размещено на Allbest.ru


Подобные документы

  • Циклоалканы, их химические качества и влияние на эксплуатационные свойства топлив. Свойства жидких топлив, склонность к образованию отложений и коррозионная активность. Виды трения, износ и основные функции смазочных масел (моторных и трансмиссионных).

    реферат [20,7 K], добавлен 11.10.2015

  • Сущность и общая классификация горюче-смазочных материалов. Характеристика топлива, масел. Оценка свойств и сфера применения пластичных смазок. Оптимальные условия хранения различных видов ГСМ. Разработка и применение новых технологий в их производстве.

    реферат [114,8 K], добавлен 25.12.2011

  • Фракционный состав нефти. Характеристика основных показателей качества автомобильных бензинов. Давление насыщенных паров. Способность автомобильных бензинов противостоять самовоспламенению при сжатии. Марки и показатели качества реактивных топлив.

    реферат [39,4 K], добавлен 21.06.2012

  • Детонационная стойкость автомобильного бензина. Моторный и исследовательский методы определения октанового числа. Антидетонационные добавки для повышения октанового числа товарных бензинов. Вредные химические вещества. Ответственность за фальсификацию.

    реферат [108,2 K], добавлен 17.01.2004

  • Смесь жидких органических веществ. Получение различных сортов моторного топлива. Групповой состав нефтей. Углеводный состав нефти. Алканы, циклоалканы, арены, гетероатомные соединения. Влияние химического состава бензинов на их антидетонационные свойства.

    реферат [38,1 K], добавлен 21.06.2015

  • Суть производства неэтилированных высокооктановых бензинов. Главные недостатки каталитического риформинга. Определение фракционного и компонентного состава сырья. Требования Евро-4 для бензинов. Повышение октанового числа прямогонных бензиновых фракций.

    реферат [873,0 K], добавлен 17.02.2009

  • Общие характеристики апельсина, описание растения, упоминание о "солнечном яблоке". Состав апельсинового масла и его получение. Получение эфирных масел способом выжимания. Технология получения пахучих веществ. Лечебные свойства эфирного масла апельсина.

    реферат [216,7 K], добавлен 28.03.2010

  • Свойства, химический состав, области применения, краткая характеристика воздействия на организм человека и технология получения эфирных масел. Понятие ароматерапии как способа лечения запахами, история ее возникновения, проблемы и перспективы развития.

    реферат [33,7 K], добавлен 09.02.2010

  • Эфирные масла в создании ароматов. Сырье для парфюмерии. Получение цитрусового и мятного масла. Теоретические материалы об истории, составе, влиянии и применении ароматических масел на организм человека, о способах их получения и областях применения.

    лабораторная работа [103,7 K], добавлен 23.12.2015

  • Классификация эфирных масел по физическому воздействию, степени летучести растительного сырья. Классические методы получения эфирных масел. Метод инкапсуляции масла. Метод поглощения, или анфлераж. Эфирные масла в парфюмерно-косметической промышленности.

    курсовая работа [48,3 K], добавлен 30.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.