Катализаторы каталитического крекинга и каталитического риформинга
Процесс каталитического крекинга как один из наиболее распространенных крупнотоннажных процессов углубленной нефтепереработки. Цеолиты как алюмосиликаты с трехмерной кристаллической структурой. Рассмотрение целевого назначения каталитического риформинга.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 15.11.2012 |
Размер файла | 446,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
"Катализаторы каталитического крекинга и каталитического риформинга"
риформинг крекинг кристаллический
1. Описание процессов
1.1 Процесс каталитического крекинга
Процесс каталитического крекинга является одним из наиболее распространенных крупнотоннажных процессов углубленной нефтепереработки и в значительной мере определяет технико-экономические показатели современных и перспективных НПЗ топливного профиля.
Основное целевое назначение каталитического крекинга - производство с максимально высоким выходом (до 50% и более) высокооктанового бензина и ценных сжиженных газов - сырья для последующих производств высокооктановых компонентов бензинов изомерного строения: алкилата и метил-трет-бутилового эфира, а также сырья для нефтехимических производств. Получающийся в процессе легкий газойль используется обычно как компонент дизтоплива, а тяжелый газойль с высоким содержанием полициклических ароматических углеводородов - как сырье для производства технического углерода или высококачественного электродного кокса (например, игольчатого).
Процессы каталитического крекинга получили наибольшее развитие в США, где удельный вес их в 1999 г. составил 34,2% от первичной нефтепереработки, причем на некоторых НПЗ этот показатель достигает свыше 50%. Доля этого процесса на НПЗ других развитых капиталистических стран составляет 10-15%.
В настоящее время сырьем каталитического крекинга служит вакуумный газойль - прямогонная фракция с пределами выкипания 350-500°С. Конец кипения определяется, в основном, содержанием металлов и коксуемостью сырья, которая не должна превышать 0,3%. Фракция подвергается предварительной гидроочистке для удаления сернистых соединений и снижения коксуемости.
Количество и качество продуктов каталитического крекинга зависят от характеристики перерабатываемого сырья и катализаторов, а также от режима процесса. На установках каталитического крекинга получают жирный газ, нестабильный бензин, легкий и тяжелый каталитические газойли. Иногда предусмотрен отбор легроина.
Оптимальные технологические параметры каталитического крекинга зависят от выбранной схемы процесса. В большинстве технологических схем температура в реакторе составляет порядка 510-540 0С, давление поддерживается практически постоянным и составляет 0,5-2 атм. Повышение давления несколько ухудшает селективность процесса и приводит к росту газо- и коксообразования.
1.2 Процесс каталитического риформинга
Назначение - получение высокооктанового компонента автомобильных бензинов, ароматизированного концентрата для производства индивидуальных ароматических углеводородов и технического водорода в результате каталитических превращений бензиновых фракций.
Сырье и продукция. В качестве сырья риформинга обычно используются прямогонные бензиновые фракции. Также в качестве сырья могут использоваться бензины вторичных процессов - гидрокрекинга, термического крекинга и т.д., при условии их специальной подготовки. При получении высокооктанового компонента автомобильного бензина используются широкие фракции, выкипающие в пределах от 60-90°С до 180°С; при получении бензола, толуола, ксилолов - узкие фракции, выкипающие соответственно в интервалах 62-85°С, 85-105°С, 105-140°С. Для предотвращения дезактивации катализатора в сырье ограничивается содержание серы (не более 0,00005?0,0010 % в зависимости от типа катализатора) и азота (не более 0,0001%).
Основными технологическими параметрами, в значительной степени определяющими процесс каталитического риформинга и характеристики получаемых продуктов, являются качество сырья, температура, давление, объемная скорость подачи сырья и кратность циркуляции водородсодержащего газа. Однако в эксплуатационных условиях основным регулируемым параметром является температура на входе в реактор. Давление, скорость подачи сырья и кратность циркулирующего газа обычно поддерживаются постоянными, оптимальными для переработки данного сырья. Изменением температуры процесса компенсируют потери активности катализатора, обеспечивая тем самым приемлемую глубину ароматизации сырья и требуемое качество риформинг-бензина (величину октанового числа).
Технологически процесс проводят обычно в 3-х реакторном блоке, в котором на входе и на выходе задается различный градиент температур. Поскольку процесс связан с различными реакциями, протекающими как с увеличением, так и с уменьшением парциального давления в системе, перспективным является использование в этом процессе т.н. радиальных реакторов, реализующих направление потоков в реакторах по схемам «от центра к периферии» или «от периферии к центру».
2. Катализаторы процессов
2.1 Катализаторы каталитического крекинга
Катализаторы современных крупнотоннажных процессов каталитического крекинга, осуществляемых при высоких температурах (500-800 °С) в режиме интенсивного массо- и теплообмена в аппаратах с движущимся или псевдоожиженным слоем катализатора, должных обладать не только высокими активностью, селективностью и термостабильностью, но и удовлетворять повышенным требованиям к ним по регенерационным, механическим и некоторым другим эксплуатационным свойствам. Промышленные Катализаторы крекинга представляют собой в этой связи сложные многокомпонентные системы, состоящие из:
1) матрицы (носителя);
2) активного компонента -- цеолита;
3) вспомогательных активных и неактивных добавок.
Матрица катализаторов крекинга выполняет функции как носителя -- поверхности, на которой затем диспергируют основной активный компонент -- неолит и вспомогательные добавки, так и слабого кислотного катализатора предварительного (первичного) крекирования высокомолекулярного исходного нефтяного сырья. В качестве материала матрицы современных катализаторов крекинга преимущественно применяют синтетический аморфный алюмосиликат с высокой удельной поверхностью и оптимальной поровой структурой, обеспечивающей доступ для крупных молекул крекируемого сырья.
Аморфные алюмосиликаты являлись основными промышленными катализаторами крекинга до разработки цеолитсодержащих катализаторов. Синтезируются они при взаимодействии растворов, содержащих оксиды алюминия и кремния, например жидкого стекла Na2O*3SiO2и сернокислого алюминияAl2(SO4)3. Химический состав аморфного алюмосиликата может быть выражен формулойNa2O(Al2O3*x SiO2), где х -- число молей SiO2на 1 мольAl2O3. Обычно в промышленных аморфных алюмосиликатах содержание оксида алюминия находится в пределах 6-30% мас.
Аморфные алюмосиликаты обладают ионообменными свойствами, а для придания каталитической активности обрабатывают их раствором сернокислого алюминия для замещения катионов Na+на Al3+. Высушенные и прокаленные аморфные алюмосиликаты проявляют протонную и апротонную кислотности. При этом по мере повышения температуры прокаливания происходит превращение протонных кислотных центров в апротонные.
Активным компонентом катализаторов крекинга является цеолит, который позволяет осуществлять вторичные каталитические превращения углеводородов сырья с образованием конечных целевых продуктов.
Цеолиты (от греческого слова цео -- кипящий, литос -- камень) представляют собой алюмосиликаты с трехмерной кристаллической структурой.
где n - валентность катионов металла Ме; х - мольное соотношение оксидов кремния и алюминия, называемое силикатным модулем; у - число молей воды.
В зависимости от значения силикатного модуля х выделяют низкомодульные (<2,0), нормальные (2,0-3,5) и высокомодульные (>3,5) цеолиты.
В настоящее время насчитывается несколько десятков разновидностей природных и синтетических цеолитов, отличающихся структурой, типом катионов Ме, силикатным модулем и числом молекул кристаллизационной воды. Структура цеолитов характеризуется наличием большого числа полостей, соединенных между собой окнами, или микроканалами, размеры которых сравнимы с размерами реагирующих молекул. Обычно полости имеют больший диаметр, чем каналы (или окна). Например, в цеолите типа шабазит имеется 3*1020 полостей диаметром 11,4A, в каждую полость которого может вместиться 24 молекулы воды. Диаметр окон шабазита составляет 4,9A. При нагреве цеолита вода удаляется, и образуется ячеистая структура. Удельная поверхность цеолитов достигает 700-1000 м2/г. Обезвоженные цеолиты способны избирательно адсорбировать молекулы различных веществ в зависимости от размеров каналов. Разумеется, если диаметр адсорбируемого вещества больше, чем сечение канала, то оно не может проникнуть во внутренние поры цеолита (ситовой эффект). Так, при диаметре канала (окна) 4A цеолит не может адсорбировать углеводороды нормального строения, диаметр молекул которых равен ?4,9A.
Обычно тип структуры синтетического цеолита обозначают буквами латинского алфавита A,X,Y,…L и т.д. перед буквами ставят химическую формулу катиона металла, компенсирующего отрицательный заряд алюминия в алюмосиликате. Например, CaX означает цеолит типа Х в кальциевой обменной форме; LaY,ReY - соответственно лантановая и редкоземельная форма цеолита Y.
Принято подразделять цеолиты в звисимости от величины силикатного модуля х на следующие структурные типы:
х Тип цеолита
1,8-2,0 цеолит А
2,3-3,0 цеолит Х
3,0-6,0 цеолит Y
6,0-7,0 эрионит (цеолит Т)
8,3-10,7 морденит
10-35,0 цеолит L
За рубежом цеолиты классифицируют иначе: перед буквой, обозначающей тип цеолита, ставят цифру, соответствующую максимальному диаметру молекул (в ангстремах), адсорбируемых данным цеолитом. По этой классификации цеолиту NaA соответствует цеолит 4А, цеолиту CaA - 5А, цеолиту NaX - 13Х, цеолиту CaX - 10Х и т.д.
Ниже приведен размер полостей и окон для некоторых синтетических цеолитов:
Цеолиты типа А, имеющие малые размеры окон (3,5-5A) и небольшой силикатный модуль (1,8-2,0) как правило, не используются в каталитических процессах и применяются в качестве адсорбентов. В каталитических процессах, в том числе крекинга нефтяного сырья, наибольшее применение нашли цеолиты типа Х и Y - оба аналоги природного фожазита. В последние годы широкое распространение получают высококремнеземные трубчатые цеолиты L с силикатным модулем более 30 (например, ZSM).
Первичной основой (структурной единицей) кристаллической решетки цеолитов Х и Y является тетраэдр, состоящий из четырех анионов кислорода, которые окружены значительно меньшими по размерам ионами кремния и алюминия (рис.2.1а).
24 тетраэдра образуют вторичную структурную единицу - усеченный октаэдр (кубооктаэдр, который содержит 8 шестиугольных и 6 квадратных поверхностей), так называемую содалитовую клетку (рис.2.1б). на следующей ступени структурирования четыре кубооктаэдра объединяются в тетраэдрическую конфигурацию вокруг пятого при помощи шестиугольных призм, образуя суперклетку (рис.2.1в). в результате объединения множества суперклеток (в фожазите их 8) в регулярную систему формируется элементарная ячейка цеолита (рис.2.1г).
Рисунок 2.1 - Строение цеолитов типа фожазита: а - тетраэдр; б - содалитовая клетка; в - суперклетка; г -элементарная ячейка
Тетраэдры из оксидов кремния и алюминия расположены так, что цеолиты имеют открытые участки структуры. Это и создает систему пор с высокой удельной поверхностью. Химическую формулу первичной структурной единицы - тетраэдров кремния и алюминия можно представить в виде:
Тетраэдры с ионами Si4+ электрически нейтральны, а тетраэдры с ионами трехвалентного алюминия Al3+ имеют заряд минус единица, который нейтрализуется положительным зарядом катиона Ме+ (сначала катионом Na+, поскольку синтез чаще ведется в щелочной среде, затем в результате катионного обмена - катионами других металлов, катионом NH4+ или протоном Н+).
Наличие заряженных ионов алюминия на поверхности цеолита (центры Бренстеда) и обуславливает кислотные свойства и, следовательно, его каталитическую активность.
Натриевая форма цеолитов каталитически малоактивна и наименее термостабильна. Оба эти показателя существенно улучшаются при увеличении силикатного модуля цеолитов, а также степени ионного обмена на двухвалентные и особенно на трехвалентные металлы. Среди них наиболее термостабильны цеолиты типа ReY, обладающие к тому же важным свойством - высокой каталитической активностью. Благодаря этим достоинствам цеолиты серии ReY как активный компонент катализаторов крекинга получили исключительно широкое применение в мировой нефтепереработке.
Важным этапом в области дальнейшего совершенствования цеолитных катализаторов крекинга явилась разработка (в 1985 г. фирмой «Юнион карбаид») нового поколения цеолитов, не содержащих редкоземельных элементов - так называемых химически стабилизированных цеолитов.
В условиях воздействия высоких температур и водяного пара цеолиты ReY даже при полном редкоземельном обмене подвергаются частичной деалюминации:
В результате гидродеалюминации в суперклетке образуется пустота, что является причиной постепенного разрушения кристалла цеолита. Гидроксид алюминия, который не выводится из кристалла, а откладывается внутри суперклетки цеолита, обладает, кроме того, нежелательной каталитической активностью (кислотностью Льюиса, ускоряющей реакции образования легких газов и кокса).
Химическая стабилизация цеолитов заключается в низкотемпературной химической обработке их фторосиликатом аммония по реакции:
В результате обмена ионов Al на ионы Si образуется более прочный и термостабильный цеолит с повышенным силикатным модулем и кристаллической решеткой без пустот. Еще одно достоинство этого процесса, обозначенного как процесс LZ-210, - это то, что фтороалюминат аммония растворим и полностью выводится из кристаллической решетки цеолита. Цеолиты LZ-210 (торговые марки Альфа, Бета, Эпсилон и Омега) характеризуются повышенной гидротермической стабильностью и селективностью, повышенной стабильностью по отношению к дезактивации металлами, но пониженной активностью в реакциях переноса водорода, что способствует повышению выхода изоолефинов в газах крекинга и октановых чисел бензинов.
Недостатком всех цеолитов является их не очень высокая механическая прочность в чистом виде, и поэтому они в качестве промышленного катализатора не используются. Обычно их вводят в диспергированном виде в матрицу катализаторов в количестве 10-20% мас.
Вспомогательные добавки улучшают или придают некоторые специфические физико-химические и механические свойства цеолитсодержащих алюмосиликатных катализаторов (ЦСК) крекинга. ЦСК без вспомогательных добавок не могут полностью удовлетворять всему комплексу требований, предъявляемых к современным промышленным Катализаторам крекинга. Так, матрица и активный компонент - цеолит, входящий в состав ЦСК, обладают только кислотной активностью, в то время как для фирмы интенсивной регенерации закоксованного катализатора требуется наличие металлических центров, катализирующих реакции окислительно-восстановительного типа. Современные и перспективные процессы каталитического крекинга требуют улучшения и оптимизации дополнительно таких свойств ЦСК, как износостойкость, механическая прочность, текучесть, стойкость к отравляющему воздействию металлов сырья и т.д., а также тех свойств, которые обеспечивают экологическую чистоту газовых выбросов в атмосферу.
Ниже приводится перечень наиболее типичных вспомогательных добавок:
а) в качестве промоторов, интенсифицирующих регенерацию закоксованного катализатора, применяют чаще всего платину, нанесенную в малых концентрациях (<0,1 % масс.) либо непосредственно на ЦСК, или на окись алюминия с использованием как самостоятельной добавки к ЦСК. Применение промоторов окисления на основе Pt позволяет значительно повысить полноту и скорость сгорания кокса катализатора и, что не менее важно, существенно понизить содержание монооксида углерода в газах регенерации, тем самым предотвратить неконтролируемое загорание СО над слоем катализатора в регенераторе, приводящее к прогару циклонов, котлов-утилизаторов и другого оборудования ( из отечественных промоторов окисления можно отметить КО-4, КО-9, Оксипром-1 и Оксипром-2);
б) с целью улучшения качества целевых продуктов в последние годы стали применять октаноповышающие добавки на основе ZSM-5, повышающие октановое число бензинов на 1-2 пунктов;
в) для снижения дезактивирующего влияния примесей сырья на ЦСК в последние годы весьма эффективно применяют технологию каталитического крекинга с подачей в сырье специальных пассиваторов металлов, представляющих собой металлоорганические комплексы сурьмы, висмута, фосфора или олова. Сущность эффекта пассивации заключается в переводе металлов, осадившихся на катализаторе, в неактивное (пассивное) состояние, например, в результате образования соединения типа шпинели. Пассивирующий агент вводят в сырье в виде водо- или малорастворимой добавки. Подача пассиваторов резко снижает выход кокса и водорода, увеличивает выход бензина и производительность установки (в настоящее время пассиваторы примняют на 80% установок каталитического крекинга остатков в США и около 50% установок в Западной Европе).
В последние годы внедряется ЦСК с твердой добавкой - ловушкой никеля и ванадия, содержащей оксиды Ca,Mg, титанат бария и др., адсорбирующие в 6-10 раз больше металлов, чем сам катализатор.
г) при каталитическом крекинге негидроочищенного сырья образуется (в регенераторе) оксиды серы и азота, отравляющие атмосферу. В связи с возросшими требованиями к экологической безопасности промышленных процессов исключительно актуальной становится проблема улавливания вредных компонентов газовых выбросов. Если в составе ЦСК ввести твердую добавку MgO или CaO, то такой катализатор становится переносчиком оксидов серы из регенератора в реактор по схеме:
Образующийся сероводород, выводимый из реактора вместе с продуктами крекинга, будет извлекаться затем из газов аминной очисткой;
д) для повышения механической прочности ЦСК в состав аморфной матрицы дополнительно вводят тонкодисперсную окись алюминия (б-форму). Кроме того, для снижения потер катализатора от испарения и уменьшения коррозии аппаратуры в системах катализатора в циркулирующий катализатор вводят смазывающие порошки из смеси окиси магния, карбоната и фосфата кальция, иногда титанат бария. Эти добавки взаимодействуют при высокой температуре с поверхностью катализатора, в результате чего на ней образуется глянец, способствующий снижению истирания.
Промышленные катализаторы крекинга. На отечественных установках с движущимся слоем шарикового катализатора применялись и продолжают пока применяться шариковые катализаторы АШНЦ-3 (без РЗЭ), АШНЦ-6,Цеокар-2 и Цеокар-4 (все в РЗЭ La2O3). Из микросферических ЦСК применение находят: КМЦР-2 (2% La2O3),МЦ-5 и РСГ-6Ц (по 4% La2O3), КМЦР-4 (с промотором дожига) и др. из зарубежных ЦСК более известны следующие марки катализаторов: Дюрабед (5,6,8,9), Супер (Д, экстра Д), MZ (1-7), CBZ (1-4), Октакэт-11, Резидкэт(20,30) и другие.
Мировое производство катализаторов крекинга в настоящее время составляет около 400 тыс. т в год. По объему производства наиболее крупными катализаторными фабриками владеют фирмы «Грейс Девисон» (США, Германия -43%), «Энегльгард» (США, Нидерланды -27%) и «Акзо Нобель» (США, Нидерланды, Бразилия - 26%).
Подавляющую часть катализаторов крекинга производят по традиционной технологии « со связующим», используя в стадии нанесения синтезированного цеолита на поверхность носителя (алюмосиликата) связующий компонент. Затем осуществляют стадии распылительной сушки, ионного обмена термохимической обработкой, нанесения промоторов, вспомогательных добавок, прокалки, компаундирования и т.д.
2.2 Катализаторы каталитического риформинга
Процесс каталитического риформинга осуществляется на бифункциональных катализаторах, сочетающих кислотную и гидрирующую-дугидрирующую функции. Гомолитические реакции гидрирования и дегидрирования протекают на металлических центрах платины или платины, промотированной добавками рения, иридия, олова, галлия, германия и др., тонко диспергированных на носителе.
Кислотную функцию в промышленных катализаторах риформинга выполняет носитель, в качестве которого используют оксид алюминия. Для усиления и регулирования кислотной функции носителя в состав катализатора вводят галоген: фтор или хлор. В настоящее время применяют только хлорсодержащие катализаторы. Содержание хлора составляет от 0,4-0,5 до 2,0 % масс.
Бифункциональный механизм доказан на примере использования катализаторов, содержащих только кислотные центры или только металлические центры, которые оказались исключительно малоактивными, в то время как даже механическая их смесь была достаточна активна. Благодаря бифункциональному катализу удается коренным образом преобразовать углеводородный состав исходного бензина и повысить его октановую характеристику на 40-50 пунктов.
На рис. 2.2 на примере н-гексана схематически представлены реакции, которые протекают последовательно на бифункциональном катализаторе риформинга.
Рисунок 2.2 - Последовательные реакции углеводородов С6 на бифункциональном катализаторе
Реакции (изомеризации, циклизации) представлены на рис. 2.2 параллельно оси абсцисс, протекают на кислотных центрах, а изображенные параллельно оси ординат - на металлических центрах гидрирования-дегидрирования. Согласно этой схеме, н-гексан сначала дегидрируется на металлических центрах с образованием н-гексена, который мигрирует к соседнему кислотному центру, где протонизируется с образованием вторичного карбениевого иона, затем изомеризуется в изогексен или циклизуется в метилциклопентан с последующей изомеризацией в циклогексан (возможна циклизация изогексена сразу в циклогексан). Последний на металлических центрах дегидрируется с образованием конечного продукта - бензола. Возможны и другие маршруты образования ароматических углеводородов.
Схему реакций дегидроциклизации н-гептана можно представить в следующем виде:
1) через образование алкена
2) через образование диалкена
3) или через образование триена
Платина на катализаторе риформинга не только ускоряет реакции гидрирования-дегидрирования, но и замедляет образование кокса на его поверхности. Обуславливается это тем, что адсорбированный на платине водород сначала диссоциируется, затем активный (атомарный) водород диффундирует на поверхности катализатора к кислотным центрам, ответственным за образование коксовых отложений. Коксогены гидрируются и десорбируются с поверхности. В этой связи скорость образования кокса при прочих равных условиях симбатно зависит от давления водорода. Поэтому минимальная концентрация платины в катализаторах риформинга определяется необходимостью прежде всего поддерживать их поверхность в «чистом» виде, а не только с целью образования достаточного числа активных металлических центров на поверхности носителя.
В монометаллических алюмоплатиновых катализаторах риформинга содержание платины составляет 0,3-0,8 % масс. Очень важно, чтобы платина была достаточно хорошо диспергирована на поверхности носителя. С увеличения дисперсности платины повышается активность катализатора.
Прогресс каталитического риформинга в последние годы был связан с разработкой и применением сначала биметаллических и затем полиметаллических катализаторов, обладающих повышенной активностью, селективностью и стабильностью.
Используемые для промотирования металлы можно разделить на две группы. К первой из них принадлежат металлы VIII ряда: рений и иридий, изветсные как катализаторы гидро-дегидрогенизации и гидрогенолиза. К другой группе модификаторов относятся металлы, практически неактивные в реакциях риформинга, такие, как германий, олово и свинец (IV группа), галлий, индий и редкоземельные элементы (III группа) и кадмий (из II группы). К биметаллическим катализаторам относят платино-рениевые и платино-иридиевые, содержащие 0,3-0,4 % масс. Платины и примерно столько же Re и Ir. Рений или иридий образуют с платиной биметаллический сплав, точнее кластер, типа Pt-Re-Re-Pt-, который препятствует рекристаллизации - укрупнению кристаллов платины при длительной эксплуатации процесса. Биметаллические кластерные кристаллизаторы (получаемые обычно нанесением металлов, обладающих каталитической активностью, особенно благородных, на носитель с высокоразвитой поверхностью) характеризуются, кроме высокой термостойкости, еще одним важным достоинством - повышенной активностью по отношению к диссоциации молекулярного водорода и миграции атомарного водорода (спилловеру). В результате отложения кокса происходит на более удаленных от биметаллических центров катализатора, что способствует сохранению активности при высокой его закоксованности (до 20% масс. кокса на катализаторе). Из биметаллических катализаторов платино-иридиевый превосходит по стабильности и активности в реакциях дегидроциклизации парафинов не только монометаллический, но и платино-рениевый катализатор. Применение биметаллических катализаторов позволило снизить давление риформинга (от 3,5 до 2-1,5 МПа) и увеличить выход бензина с октановым числом по исследовательскому методу до 95 пунктов примерно на 6%.
Полиметаллические кластерные катализаторы обладают стабильность биметаллических, но характеризуются повышенной активностью, лучшей селективностью и обеспечивают более высокий выход риформата. Срок из службы составляет 6-7 лет. Эти достоинства их обусловливаются, по-видимому, тем что модификаторы образуют с платиной ( и промоторами) поверхностные тонкодиспергированные кластеры с кристаллическими структурами, геометрически более соответствующими и энергетически более выгодными для протекания реакций ароматизации через мультиплетную хемосорбцию. Среди других преимуществ полиметаллических катализаторов следует отметить возможность работы при пониженном содержании платины и хорошую регенерируемость.
Успешная эксплуатация полиметаллических катализаторов возможна лишь при выполнении определенных условий:
- содержание серы в сырье риформинга не должно превышать 1*10-4% масс., что требует глубокого гидрооблагораживания сырья в блоке предварительной гидроочистки;
- содержание влаги в циркулирующем газе не должно превышать 2*10-3-3*10-3 % мольных;
- пуск установки на свежем и отрегенерированном катализаторе требует использования в качестве инертного газа чистого азота (полученного, например, ректификацией жидкого воздуха);
- для восстановления катализатора предпочтительно использования электролитического водорода.
В настоящее время отечественной промышленностью вырабатываются три типа катализаторов риформинга: монометаллические (АП-56 и АП-64), биметаллические (КР-101 и КР-102) и полиметаллические (КР-104,КР-106, КР-108 и платиноэрионитовый СГ-ЗП).
Список использованной литературы
1. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем, 2002. 672 с.
Размещено на Allbest.ru
Подобные документы
Понятие, общая характеристика и предназначение процесса каталитического риформинга. Химические основы процесса риформинга: превращение алканов, циклоалканов, аренов. Катализаторы и макрокинетика процесса. Промышленные установки каталитического процесса.
курсовая работа [1,2 M], добавлен 13.10.2011Процесс каталитического риформинга, его сущность и особенности, место в производстве неэтилированных высокооктановых бензинов. Главные недостатки каталитического риформинга. Риформирование прямогонных бензинов в высокооктановые, его этапы и особенности.
реферат [37,7 K], добавлен 17.02.2009Исследование технологии установки каталитического крекинга с прямоточным лифт-реактором. Характеристика продуктов секции "Каталитического крекинга" комбинированной установки глубокой переработки мазута КТ-1 ТОО "ПНХЗ", оценка их выходных свойств.
дипломная работа [258,6 K], добавлен 31.05.2014Технические подробности каталитического риформинга: особенности и этапы, химизм данного процесса, кинетические схемы, платформинг. Ретроспектива совершенствования: оксидные, монометаллические и биметаллические катализаторы. Действие каталитических ядов.
реферат [941,2 K], добавлен 16.05.2015Основные представления о катализе и свойствах катализаторов. Сырье и продукты каталитического крекинга. Технологический режим и материальный баланс процесса. Установка каталитического крекинга с шариковым катализатором. Контроль и регулирование процесса.
курсовая работа [292,4 K], добавлен 26.11.2011Современные катализаторы, используемые в процессах нефтепереработки, критерии оценки их эффективности и особенности использования. Методологические основы процесса каталитического крекинга. Определение непредельных углеводородов в нефтяных фракциях.
курсовая работа [508,1 K], добавлен 20.04.2016Промышленные катализаторы крекинга. Основное назначение процесса. Недостатки системы Гудри. Материалы, используемые для изготовления реактора и регенератора. Десорберы различных установок каталитического крекинга. Концевые устройства лифт-реактора.
презентация [2,2 M], добавлен 12.11.2015Суть производства неэтилированных высокооктановых бензинов. Главные недостатки каталитического риформинга. Определение фракционного и компонентного состава сырья. Требования Евро-4 для бензинов. Повышение октанового числа прямогонных бензиновых фракций.
реферат [873,0 K], добавлен 17.02.2009Характеристика физических и химических свойств нефти, ее добыча, состав и виды фракций при перегонке. Особенности переработки нефти, сущность каталитического крекинга и коксования. Применение нефти и экологические проблемы нефтеперерабатывающих заводов.
презентация [329,5 K], добавлен 16.05.2013Углубляющие, облагораживающие и прочие химические способы переработки нефти. Сущность процесса термического и каталитического крекинга. Процесс переработки твёрдого топлива нагреванием без доступа кислорода (коксование). Каталитический риформинг.
презентация [241,6 K], добавлен 20.12.2012