Состав, строение и свойства катализаторов риформинга
Значение носителя активного вещества - матрицы - в каталитических системах. Группы используемых для промотирования металлов. Упрощенное изображение химической структуры основы катализатора после хлорирования. Промышленные катализаторы риформинга.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 09.09.2012 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Состав, строение и свойства катализаторов риформинга
Катализатор для процесса риформинга должен обладать способностью, с одной стороны, осуществлять реакции дегидрирования шестичленных нафтеновых углеводородов, а, с другой стороны, ускорять реакции циклизации и изомеризации. То есть он должен быть бифункциональным.
В настоящее время подавляющее большинство установок каталитического риформинга работает с использованием би- и полиметаллических катализаторов. Их основными составными частями являются носитель и активный компонент.
Важное значение в каталитических системах играет носитель активного вещества или как его еще называют - матрица. Матрица должна обеспечивать сохранение каталитических свойств катализатора в условиях высоких температур, предохранять его от воздействия каталитических ядов, создавать определенную форму, гранулометрический состав и необходимую механическую прочность частиц, обеспечивать доступность активных металлов для молекул сырья. Вещество матрицы способствует равномерному распределению активных металлов в порах катализатора и интенсивному протеканию массо- и теплообменных процессов. Оно существенно влияет на термическую стабильность катализатора.
Матрица у катализаторов риформинга должна быть активной, выполняющей не только функции подвода к активным металлам молекул сырья и отвода от него продуктов реакций, но и обладать кислотностью, необходимой для протекания изомеризации и циклизации углеводородов. Наиболее часто в качестве матрицы в катализаторах риформинга бензиновых фракций используется активный оксид алюминия. Молекулы оксида алюминия, соединяясь между собой, образуют частицы твердой фазы преимущественно сферической формы с эффективным диаметром порядка 3-8 нм. Срастаясь, они формируют гидрогель, в котором в промежутках между частицами твердой фазы находится вода или водные растворы не прореагировавших исходных компонентов. При сушке гидрогеля вода удаляется, а структурная сетка из связанных между собой сферических частиц сохраняется. Поры этой структуры рассматриваются как зазоры между частицами. Матрица может быть мелкопористой (рис. 5.1, а), крупнопористой (рис. 5.1, б), а также содержать весь набор пор. Ее пористую структуру можно регулировать условиями осаждения компонентов (температура, скорость ее изменения, рН среды и т.д.). На химические и адсорбционные свойства матрицы в значительной мере оказывает влияние наличие гидроксильных групп (=Al-OH). Они занимают в основном положения, выходящие на ее внутреннюю и внешнюю поверхность. Количество этих групп можно регулировать температурой прокалки оксида алюминия. Чем выше ее значения, тем больше вероятность протекания реакции дегидроксилирования ( 2НО- ® Н2О + О2- ).
Достоинством оксида алюминия являются его термическая стабильность, относительная легкость получения и доступность сырья. Оксид алюминия получают прокаливанием гидроксидов алюминия: гиббсита, бойерита (тригидраты) и бемита, диаспора (моногидраты). Термическая обработка гидроксидов алюминия приводит к образованию различных форм оксида алюминия. Структура оксида алюминия зависит от типа исходного гидроксида, остаточного содержания воды, присутствия оксидов щелочных и щелочноземельных металлов, а также условий термической обработки. Существует более десятка форм оксида алюминия. Прокалкой до 600о С получают г-, з-, с - модификации, при 900-1000оС у-, ч, и- модификации; при температуре выше 1000оС Ь-оксид ( ко-рунд ). В промышленности обычно используется г- (реже з- и с -) Аl2O3. Первичные кристаллические частицы размером 2-8 нм упакованы так, что образующиеся поры имеют либо щелевидную, либо бутылкообразную форму.
Дегидрирование шестичленных нафтеновых и дегидроциклизация парафиновых углеводородов - основное направление их превращения в условиях каталитического риформинга. Скорости дегидрирования шестичленных нафтеновых углеводородов на платиновых катализаторах риформинга весьма велики и намного превышают скорости их дегидрирования на других металлических и оксидных катализаторах (табл. 5.4).
Достаточно отметить, что скорость дегидрирования циклогексана на платиновых катализаторах в 500-1300 раз больше скорости той же реакции на алюмомолибденовом. В связи с этим во всех современных катализаторах риформинга в качестве основного активного компонента используется платина в металлической форме. Обычно содержание платины колеблется в в них от 0,3 до 0,7% мас. При меньшем содержании платины уменьшается стабильность и устойчивость катализатора к действию ядов. При большем - обнаруживается тенденция к ускорению реакций деметилирования, раскрытия нафтеновых колец.
Введение рения ( до 0,5% ) - модификатора, позволяет уменьшить содержание платины в катализаторе до 0,25-0.4%. Рений способствует стабилизации катализатора, который может полностью восстанавливать свои свойства даже после многократных регенераций. Предполагается, что рений, имея более высокую температуру плавления, чем платина, препятствует укрупнению частиц платины с течением времени. К недостаткам платинорениевых катализаторов следует отнести их высокую чувствительность к каталитическим ядам. Поэтому в сырье ограничивается содержание (в ррm) серы - до 1, азота - до 1, воды - до 5 и металлов - до 5. Кроме рения модифицирующее действие на алюмоплатиновый катализатор оказывают (содержание - десятые доли %) такие металлы, как: германий, паладий, олово, иридий, вольфрам, рутений и др. Для промотирования алюмоплатинового катализатора можно использовать многие металлы I-VIII групп периодической системы элементов, исключая щелочные и щелочноземельные. Однако по количеству имеющихся патентов резко выделяются палладий, германий, олово, иридий и, особенно, рений, что указывает на использование этих металлов для промотирования промышленных катализаторов риформинга. Вероятно, нашли также практическое применение медь, кадмий, свинец, титан, а может быть и некоторые другие металлы.
Используемые для промотирования металлы можно разделить на две группы. К первой из них принадлежат иридий и рений, хорошо известные как катализаторы гидродегидрогенизации и гидрогенолиза. Другая, более обширная группа, промоторов, включает металлы, которые практически не активны в указанных реакциях. Такими металлами являются медь, кадмий, германий, олово, свинец и др. Некоторые из этих металлов (например, медь, свинец) давно известны как каталитические яды для платины. Однако их использование позволяет уменьшить необратимую дезактивация платины сернистыми соединениями, присутствующими в сырье процесса.
На протяжении последних лет патентная литература отразила стремление улучшить катализаторы риформинга за счет перехода от биметаллических к полиметаллическим каталитическим системам. Большей частью такие системы содержат, наряду с платиной, еще два элемента, из которых один принадлежит к первой группе Периодической системы, а другой ко второй. Так, если алюмоплатиновый катализатор промотируют рением, то в катализатор вводят еще один из следующих металлов: медь, серебро, кадмий, цинк, индий, редкоземельные элементы (лантан, церий, неодим и др.).
Для максимальной активности катализатора металл должен быть хорошо распределен (рассеян) на носителе и иметь возможно минимальный размер частиц (около 1 10-6 мм). Высокая дисперсность и нанометровый размер частиц поддерживаются в течение службы катализатора и во время регенерации.
Кислотных свойств матрицы катализатора недостаточно для повышения скорости реакций циклизации и изомеризации алканов. Для их усиления очень часто в катализатор вводят кислотный промотор. В качестве его в полиметаллических катализаторах используется только хлор. Причем он может наноситься на матрицу как при синтезе и после регенерации, так и в процессе эксплуатации установки. При этом в сырье добавляют небольшое количество хлорсодержащих углеводородов (дихлорэтан, дихлорметан). Использование такой добавки к сырью позволяет компенсировать потерю кислотного промотора за счет вымывания его с поверхности матрицы. Массовое содержание хлора в современных катализаторах риформинга обычно составляет 0,8-1,1%.
Упрощенное изображение химической структуры основы катализатора после хлорирования таково:
Оптимальный уровень кислотности (который варьируется в зависимости от требуемых показателей) является функцией отношения связей -OH к связям Cl- на поверхности катализатора. Это соотношение, в свою очередь, определяется содержанием воды и HCl в водородсодержащем газе (ВСГ). Оптимальный уровень кислотности достигается при содержании воды в ВСГ 15 - 25 ppm об.
Избыток воды в газе рецикла приводит к нарушению баланса OH- относительно Cl- за счет вымывания хлора водой, избытку OH- и ослаблению активно-
И, наоборот, если количество воды в газе рецикла слишком низкое, катализатор становится слишком сухим и баланс -OH относительно -Cl сдвигается к Cl-. Иными словами, катализатор перехлорирован (или пересушен). Перехлорирование катализатора может произойти из-за неконтролируемой добавки хлорорганического соединения. Если катализатор пересушен (он эксплуатировался некоторое время с дефицитом воды в ВСГ), то он будет проявлять очень высокую кислотную функцию, что проявится в повышенной активности в реакциях гидрокрекинга
При переувлажнении катализатора (количество воды в ВСГ выше 50 ppm об.) может возникнуть ситуация, когда вода вытеснит хлор из первых реакторов в последний с последующим временным усилением кислотной функции и увеличением вклада реакций гидрокрекинга в этом реакторе.
Считается, что введение хлора активирует кислотные свойства катализатора риформинга. В то же время установлено, что от количества хлора на катализаторе экстремально зависит активность последнего. В зависимости от типа катализатора оптимальное количество хлора колеблется от 0,5 (для АП-64) до 1,1% (для КР-104, R-56, RG-582). При содержании хлора более 1,2% резко увеличивается доля реакций гидрокрекинга, снижается доля ароматизации и возрастает количество кокса на катализаторе. В последние годы появились сообщения об использовании в качестве матрицы катализаторов риформинга высококислотных цеолитов типа морденита. В этом случае от добавки кислотного промотора можно будет отказаться.
Каталитические яды классифицируются по двум категориям: временные и постоянные.
К временным ядам относятся те, которые можно удалить из катализатора без его выгрузки из реакторов риформинга. Наиболее распространенными из них являются сера, азот, вода, органические оксиды, галогены.
Сера является наиболее распространенным загрязнителем, находящимся в сырье. Максимально допустимая концентрация в сырье риформинга - 0,5 ppm масс.. в пересчете на чистую серу.
Отравление вызывается сероводородом, либо образующимся при разложении на катализаторе сернистыми соединениями, которые содержатся в сырье. Сероводород реагирует с платиной с образованием сульфида:
понижает активность катализатора, уменьшая общее количество активного металла.
Такая же реакция происходит между сероводородом и другими металлами катализатора, еще больше подавляя его активность. Это выражается в уменьшении выходов катализата, водорода, увеличении выхода газов и понижении перепада температуры в реакторах. При содержании сероводорода в газе ВСГ 5 ppm об. температура на входе в реактор должна быть снижена до 480 єС. Соответственно должен быть уменьшен расход сырья в реакторы риформинга для поддержания заданного уровня октанового числа катализата.
Азот встречается в сырье риформинга реже, чем сера. Его содержание в прямогонных бензинах незначительно. Максимально допустимая концентрация в сырье риформинга - 1,0 ppm масс. в пересчете на N2. Отравление катализатора происходит аммиаком, который образуется при разложении соединений, содержащих органический азот. Аммиак, имеющий щелочную природе, реагирует с хлором, понижая кислотную функцию катализатора и образуя хлорид аммония (NH4Cl). В результате происходит потеря хлора. Азотное загрязнение уменьшает кислотную функцию катализатора, что проявляется следующим образом:
понижается октановое число катализата;
увеличивается выход водорода;
увеличивается перепад температуры в реакторах.
Кроме того, отложения хлорида аммония скапливаются в АВО, сепараторах.
Удаление азота осуществляется предварительной гидроочисткой сырья риформинга, поэтому его присутствие обычно вызвано низкой активностью катализатора предварительной гидроочистки.
При обнаружении азотного загрязнения необходимо:
увеличить впрыск хлорорганического соединения в регенератор для увеличения уровня хлора в регенерируемом катализаторе CR 201 до 1,4 ч 1,5 % масс;
не повышать октановое число катализата путем увеличения температуры на входе в реакторы. Это только увеличит потерю хлора.
Органические оксиды в условиях процесса риформинга превращаются в воду и углеводороды. Вода не является в полном смысле ядом, поскольку некоторое ее количество необходимо для активирования кислотной функции катализатора. Однако ее избыток ведет к снижению активности катализатора. Удаление лишней воды обычно достигается в отпарной колонне блока предварительной гидроочистки и адсорберах. Оптимальное ее содержание в ВСГ - 15 ч 25 ppm об.
При росте содержания воды в ВСГ более 50 ppm об. температура на входе реакторы должна быть понижена с целью уменьшения вымывания хлора из катализатора. Приняты следующие значения:
50 ppm воды -- температура не более 480 єС 100 ppm воды -- температура не более 460 єС
В случае увеличения содержания воды в ВСГ также необходимо отрегулировать впрыск хлорорганического соединения для компенсации потерь хлора.
Иногда хлор и фтор присутствуют в сырой нефти из-за особенностей методов нефтедобычи. Максимально допустимые количества их в сырье риформинга: 0,5 ppm масс.. для фтора и 1,0 ppm масс.. для хлора.
Повышенное присутствие хлора в сырье меняет кислотную функцию катализатора и ускоряет реакции гидрокрекинга. Фтор обладает подобным действием. Хлор и фтор удаляются на этапе предварительной гидроочистки.
Постоянные яды это загрязнители, которые необратимо разрушают катализатор. Они вызывают потерю активности, которая не может быть восстановлена даже регенерацией. При этом требуется замена катализатора. К ним относятся: мышьяк, свинец, медь, ртуть, железо, кремний, никель, хром. Металлы улавливаются на катализаторах предварительной гидроочистки.
Регенерация катализатора риформинга включает следующие этапы: выжиг кокса, оксихлорирование, прокалка, восстановление и сульфидирование (в случае необходимости).
На практике потеря активности катализатора происходит, главным образом, в результате отложений кокса на повержности и в порах его носителя (матрицы). Регенерация катализатора проводится путем их выжига в потоке, содержащем кислород, при повышенных температурах. Это способствует миграции и соответственно слиянию частиц металла. В результате этого активность катализатора полностью не восстанавливается. Выжиг кокса во время регенерации приводит к еще большему вымыванию хлора из катализатора. Поэтому требуется этап его оксихлорирования. Он катализаторов риформинга осуществляется подачей хлорорганического соединения (дихлорэтана).
Прокалку катализаторов проводят для достижения более равномерного распределения хлора на поверхности матрицы.
Для перевода металла катализатора из оксидной в металлическую форму проводят восстановление (циркуляцией водородсодержащего газа при повышенных температурах).
Целью сульфидирования является подавление высокой активации свежего или регенерированного катализатора в нежелательных реакциях гидрогенолиза. Сульфидирование проводят только для современных катализаторов рифоминга с периодической регенерацией, например RG 582, R-56, R86.
В настоящее время в мире существует большое число промышленных катализаторов риформинга. Основные фирмы производящие катализаторы риформинга - ЮОП, ФИН, Критерион, Акзо-Нобель и др. Первые две из перечисленных выше являются наиболее значимыми в настоящее время.
Достаточно значительными производителями катализаторов являются в последние годы Китай, Япония и Россия.
Технология синтеза катализаторов риформинга постоянно развивается. Их свойства все более и более оптимизируются. Каждый год производящие их фирмы заявляют об освоении выпуска улучшенных промышленных образцов. Это неудивительно, так как катализатор является одной из наиболее важных составляющих процесса.
Каталитический риформинг
Назначение - получение высокооктанового компонента автомобильных бензинов, ароматизированного концентрата для производства индивидуальных ароматических углеводородов и технического водорода в результате каталитических превращений бензиновых фракций.
Сырье и продукция. В качестве сырья риформинга обычно используются прямогонные бензиновые фракции. Также в качестве сырья могут использоваться бензины вторичных процессов - гидрокрекинга, термического крекинга и т.д., при условии их специальной подготовки. При получении высокооктанового компонента автомобильного бензина используются широкие фракции, выкипающие в пределах от 60-90°С до 180°С; при получении бензола, толуола, ксилолов - узкие фракции, выкипающие соответственно в интервалах 62-85°С, 85-105°С, 105-140°С. Для предотвращения дезактивации катализатора в сырье ограничивается содержание серы (не более 0,00005ч0,0010 % в зависимости от типа катализатора) и азота (не более 0,0001%).
Продукция:
Углеводородный газ - содержит в основном метан и этан, служит топливом нефтезаводских печей;
Головка стабилизации (углеводороды С3 - С4 и С3 - С5) - применяется как бытовой газ или сырье газофракционирующих установок;
Катализат - используется в качестве компонента автомобильных бензинов или сырья блоков экстракции ароматических углеводородов; ниже приводится характеристика катализатов, полученных риформированием фракций 62-105°С (I), 62-140°С (II), 85-180°С (III) в жестком режиме:
|
I |
II |
III |
|
Плотность, с(20/4) |
0,729 |
0,770 |
0,796 |
|
Октановое число (исследовательский метод) |
74 |
90 |
95 |
|
Содержание углеводородов, % (масс.) |
|
|
|
|
ароматических |
39,4 |
49,3 |
65,5 |
|
парафиновых и нафтеновых |
60,1 |
49,6 |
33,7 |
|
непредельных |
0,5 |
1,1 |
0,8 |
Водородсодержащий газ - содержит 75-90 % (об.) водорода, используется в процессах гидроочистки, гидрокрекинга, изомеризации, гидродеалкилирования.
Катализаторы. Катализаторы риформинга относятся к классу металлических катализаторов, приготовленных нанесением небольшого количества металла на огнеупорный носитель. На первом этапе развития процесса применялись монометаллические катализаторы - алюмоплатиновые. Современные катализаторы - полиметаллические, представляют собой оксид алюминия, промотированный хлором, с равномерно распределенными по всему объему платиной и металлическими промоторами (рений, кадмий и/или др.). На отечественных установках риформинга применяются, как отечественные катализаторы: типа KP, ПР, REF, РБ, так и зарубежные типа R (выпускается фирмой ЮОП, США) и типа RG (производится французской фирмой Прокатализ). Для обеспечения долговременного цикла работы эти катализаторы требуют тщательной подготовки сырья. Сырье должно быть очищено от сернистых, азотистых и кислородосодержащих соединений, что обеспечивается включением в состав установок риформинга блоков гидроочистки; циркулирующий в системе водородосодержащий газ должен быть тщательно осушен.
Технологическая схема. Установки каталитического риформинга подразделяются по способу осуществления окислительной регенерации катализатора на:
Установки со стационарным слоем, где регенерация проводится 1-2 раза в год и связана с остановкой производства;
Установки с движущимся слоем катализатора, где регенерация проводится в специальном аппарате
Большинство российских установок относится к первой группе.
Технологический режим. Режим установок каталитического риформинга зависит от типа катализатора, назначения установки, типа сырья. Ниже приводятся эксплуатационные показатели установок каталитического риформинга, со стационарной регенерацией катализатора, вырабатывающих компонент высокооктанового бензина:
Температура,°С |
480-520 |
|
Давление в реакторах, кгс/см2 |
15-35 |
|
Объемная скорость подачисырья,ч-1 |
1,5-2 |
|
Мольное соотношение водород/сырье |
(5:1)-(9:1) |
|
Кратность циркуляции водородсодержащего газа, м3/м3 |
1200ч1800 |
|
Соотношение загрузки катализатора по реакторам, |
1:2:4 |
Материальный баланс. В России и других странах б. СССР эксплуатируются установки каталитического риформинга со стационарным и движущимся слоем катализатора по лицензии ЮОП), установки дуалформинга, установки каталитического риформинга, скомбинированные с блоками выделения ароматических углеводородов.
Материальный баланс установок каталитического риформинга, работающих с применением монометаллического (I) и полиметаллического (II) катализаторов, приводятся ниже:
|
I |
II |
|
Поступило |
|
|
|
Сырье (фракция 85-180°С или 105-180°С) |
100,0 |
100,0 |
|
Получено |
|
|
|
Углеводородный газ |
13,2 |
7,4 |
|
Головка стабилизации |
4,5 |
4,5 |
|
Водородсодержащий газ |
5,4 |
5,8 |
|
в том числе водород |
(1,0) |
(1,3) |
|
|
|
|
|
Всего |
100,0 |
100,0 |
Расходные показатели (на 1 т сырья):
Пар водяной, Гкал |
0,15-0,19 |
|
Электроэнергия, кВт·ч |
20-30 |
|
Вода оборотная, м3 |
3-10 |
|
Топливо, кг |
80-100 |
|
Катализатор, кг |
0,01-0,03 |
Каталитический реформинг
катализатор риформинг
Каталитический реформинг, каталитическая переработка бензиновых фракций (в основном прямогонных) под давлением Н2 с целью получения высокооктановых автомобильных бензинов, ароматических углеводородов (бензола, толуола. ксилолов и др.) и водородсодержащего газа. Каталитический реформинг - один из важнейших процессов нефтеперерабатывающей и нефтехимической промышленности. Первые промышленные установки (40-е гг. 20 в., США), на которых использовали алюмомолибденовый катализатор, называли установками гидроформинга. при переходе на платиновые катализаторы последние практически полностью заменены т. наз. установками платформинга. мощность которых обычно составляет 0,3-1,0 млн. т/год перерабатываемого сырья.
Физико-химические основы процесса. Каталитический реформинг осуществляют в реакторах с неподвижным или движущимся слоем катализатора. В первом случае процесс проводят под давлением 1,5-4 МПа, что обеспечивает достаточную продолжительность работы катализатора без регенерации. Во втором случае (давление около 1 МПа) катализатор непрерывно выводят из реакторов и подвергают регенерации в отдельном аппарате. Несмотря на разницу в технологическом оформлении и катализаторах, общий характер превращений углеводородов в обоих случаях одинаковый, различаются только скорости отдельных реакций. Основные процессы каталитического реформинга приводят к образованию ароматических и изопарафиновых углеводородов. Ароматические углеводороды получают в результате дегидрирования 6-членных и дегидроизомеризации алкилированных 5-членных нафтеновых углеводородов, а также дегидроциклизации парафиновых углеводородов. Изопарафиновые углеводороды образуются главным образом при изомеризации и гидрокрекинге более высокомолекулярных парафиновых углеводородов. Одновременно происходят побочные реакции - гидрирование и полимеризация непредельных углеводородов. деалкилирование и конденсация ароматических углеводородов, способствующие отложению кокса на поверхности катализатора. При каталитическом реформинге нафтеновые углеводороды на 90-95% превращаются в ароматические; степень конверсии парафинов.х углеводородов зависит от давления (табл. 1). С повышением общего давления и одновременно парциального давления Н2 снижается выход ароматических углеводородов и интенсифицируется разложение парафинов. Кроме того, уменьшается кок-сообразование и увеличивается продолжительность работы катализатора без регенерации.
Повышение температуры и увеличение времени контакта сырья с катализатором (снижение объемной скорости подачи сырья) способствуют повышению степени ароматизации и октанового числа бензина; с возрастанием объемного соотношения водородсодержащий газ : сырье уменьшается коксообразование и увеличивается продолжительность работы катализатора. Суммарный тепловой эффект Каталитический реформинг определяется соотношением глубин протекания отдельных реакций (дегидрогенизация и дегидроизомеризация происходят с поглощением теплоты, гидрокрекинг - с ее выделением) и составляет от --420 до --1260 кДж/кг. Вследствие высокой эндотермичности процесса реакционный объем в промышленных установках разделен, как правило, на три ступени (реактора), причем каждая из них работает в режиме, близком к адиабатическому. Между реакторами устанавливают межступенчатые подогреватели газосырьевой смеси. В первых ступенях поглощение теплоты велико, так как содержание нафтенов в сырье максимальное. С целью равномерного подвода теплоты катализатор размещают по реакторам неравномерно: в первом - наименьшее кол-во, в последнем - наибольшее.
При каталитическом реформинге используют алюмоплатиновые катализаторы - металлическую Pt, нанесенную на поверхность Аl2О3, обработанного хлористыми или фтористыми соединениями (содержание Pt от 0,36 до 0,62%, галогенов от 0,7 до 1,75%). Увеличение активности, селективности действия и стабильности алюмоплатиновых катализаторов достигается введением в них специальных добавок (Re и Ir - для гидрирования соединений, предшествующих образованию кокса на катализаторе, Ge, Sn и Pb-для предотвращения блокирования Pt коксом). Полиметаллические катализаторы по сравнению с алюмоплатиновыми позволяют осуществлять каталитический реформинг в более жестких условиях, что способствует увеличению выхода целевых продуктов. Катализаторы весьма чувствительны к каталитическим ядам. Так, при проведении процесса на полиметаллических катализаторах содержание в сырье. S, N и Н2О не должно превышать соотв. 1, 1,5 и 3 мг/кг, a Pb, As и Сu - соотв. 20,1 и 25 мг/т. Поэтому с целью удаления из сырья сернистых, азотистых, кислородсодержащих и металлоорганических соединений установки каталитического реформинга оборудованы специальными блоками гидроочистки с применением алюмокобальтмолибденового или алюмоникельмолибденового катализатора. Типичные параметры гидроочистки: температура 330-400 °С, давление 2-4 МПа, объемная скорость подачи сырья 6-8 ч-1, объемное соотношение водородсодержащий газ: сырье (100-500): 1. Необходимый для гидроочистки Н2 (расход на 1 м3 сырья-до 50 м3) поступает с установок каталитического реформинга.
Сырье и характеристики целевых продуктов. Сырьё - бензиновые фракции, выкипающие в пределах 60-190°С. Для получения автомобильных бензинов обычно применяют фракции 85-180°С. Выход и качество бензина (табл. 2) и состав водородсодержащего газа (табл. 3) зависят от свойств сырья, используемого катализатора и режима процесса. Для установок с неподвижным слоем катализатора выходы бензина (с октановым числом 95 по исследовательскому методу) и Н2 в зависимости от содержания ароматических и нафтеновых углеводородов и фракционного состава сырья показаны на рис. 1.
Рис. 1. Влияние углеводородного состава сырья на выходы бензина с октановым числом 95 по исследовательскому методу (а) и водорода (б): 1 - фракция, выкипающая в пределах 85-180°С; 2 - то же в пределах 105-180°C; B6, BH2 - выходы соотв. бензина и водорода; Са+м суммарное содержание в сырье ароматических и нафтеновых углеводородов; Са- содержание в сырье нафтеновых углеводородов.
При получении ароматических углеводородов в качестве сырья применяют узкие бензиновые фракции: 62-85 °С - для производства бензола, 95-120 °С - толуола. 120-140 °С- ксилолов (см. табл. 4). При одновременном получении нескольких ароматических углеводородов фракц. состав сырья должен быть расширен.
Для выделения ароматических углеводородов из жидких продуктов используют специальные методы, так как парафиновые и нафтеновые углеводороды близки по температурам кипения к ароматическим углеводородам и образуют с ними азеотропные смеси. Бензол, толуол и смесь ксилолов выделяют жидкостной экстракцией с помощью полиэтиленгликолей или сульфолана, индивидуальные углеводороды С8 и С9 - адсорбцией и кристаллизацией (м- и n-ксилолы) или сверхчеткой ректификацией (этилбензол, о-ксилол, 1,2,4-триметилбензол). Некоторые свойства указанных углеводородов приведены в табл. 5.
Схемы промышленных установок. Принципиальная технологическая схема Каталитический реформинг: предварит, гидроочистка сырья; смешение очищенного сырья с водородсодержащим газом и подогрев смеси в теплообменнике; собственно Каталитический реформинг смеси последовательно в трех (иногда в четырех) реакторах - стальных цилиндрических аппаратах; охлаждение полученного гидрогенизата; отделение последнего от водородсодержащего газа в сепараторе высокого давления и от углеводородных газов в сепараторе низкого давления с послед, ректификацией на целевые продукты и их стабилизацией; выделение ароматических углеводородов (только при целевом получении индивидуальных соединений); осушка газов и их очистка от примесей.
На установке каталитического реформинга с неподвижным слоем катализатора (рис. 2) гидроочищенное сырье подвергают предварит, стабилизации и ректификации в специальной колонне. Из ее верхней части отводятся легкие фракции, выкипающие до 80-190°С, и H2S. Для переработки отбирают фракцию, выкипающую в пределах 80-190 °С; последняя в смеси с циркулирующим водородсодержащим газом поступает в три последовательно соединенных реактора. Жидкие продукты стабилизируются в специальной колонне, газообразные подаются в компрессор для циркуляции водородсодержащего газа. Типичные параметры процесса: температура 490-530°С, давление 2-3,5 МПа, объемная скорость подачи сырья 1,5-2,5 ч-1, объемное соотношение водородсодержащий газ : сырье 1500:1.
Рис. 2. Схема промышленной установки каталитического риформинга с неподвижным слоем катализатора: 1 - сырьевой насос; 2 - теплообменники; 3 - рибойлеры; 4 колонна для предварит, стабилизации и ректификации сырья; 5, 13 холодильники; 6 емкости для орошения колонн; 7 - печь для нагрева сырья и циркулирующего водородсодержащего газа; 8, 10, 11 реакторы; 9 - печь для межреакторного нагрева газосырьевой смеси; 12 колонна для стабилизации жидких продуктов; 14-газосепаратор высокого давления; 15 компрессор для циркуляции водородсодержащего газа.
На установке каталитического реформинга с движущимся слоем катализатора (рис. 3) три реактора, выполненных в виде единой конструкции, расположены один над другим. Катализатор из первого (верхнего) реактора перетекает во второй и из второго - в третий, откуда подается в специальный регенератор. Регенерирующий катализатор вновь поступает в первый реактор. Благодаря непрерывному выводу катализатора из реакционных зон активность его значительно выше, чем на установках каталитического реформинга со стационарным слоем катализатора. Типичные параметры процесса: температура 490-540 °С, давление 0,7-1,0 МПа, объемная скорость подачи сырья 2-3 ч-1, объемное соотношение водородсодержащий газ : сырье (500-800); 1.
Литература
Сулимое А. Д., Каталитический риформинг бензинов, 2 изд., М., 1973; его же
Производство ароматических углеводородов из нефтяного сырья, М., 1975; Катализаторы риформинга, Минск, 1976;
Суханов В. П., Каталитические процессы в нефтепереработке, 3 изд., М., 1979;
Промышленные установки каталитического риформинга. Л., 1984;
Эрих В. Н., Расина М. Г., Рудин М. Г., Химия и технология нефти и газа, 3 изд., М., 1985;
Маслянский Г. Н., Шапиро Р. Н., Каталитический риформинг бензинов. Химия и технология. Л., 1985
1. Размещено на www.allbest.ru
Подобные документы
Технические подробности каталитического риформинга: особенности и этапы, химизм данного процесса, кинетические схемы, платформинг. Ретроспектива совершенствования: оксидные, монометаллические и биметаллические катализаторы. Действие каталитических ядов.
реферат [941,2 K], добавлен 16.05.2015Понятие, общая характеристика и предназначение процесса каталитического риформинга. Химические основы процесса риформинга: превращение алканов, циклоалканов, аренов. Катализаторы и макрокинетика процесса. Промышленные установки каталитического процесса.
курсовая работа [1,2 M], добавлен 13.10.2011Значение и области применения катализаторов. Физико-химические и каталитические свойства и реакционная способность наноструктур. Методы синтеза наноструктурированных каталитических систем на основе полимеров. Кобальтовые катализаторы гидрирования.
курсовая работа [2,2 M], добавлен 29.05.2014Применение каталитических систем. Каталитическое окисление. Катализаторы на основе переходных металлов. Катализаторы на основе металлов платиновой группы. Катализаторы на основе металлов платиновой группы, применяемые для окисления фенольных соединений.
реферат [257,5 K], добавлен 16.09.2008Современные методы исследования наноструктурированных катализаторов. Электронная микроскопия, рентгеновская спектроскопия и дифракция. Строение активных центров Со(Ni)MoS2 катализатора. Анализ генезиса катализаторов гидроочистки, их сульфидирование.
контрольная работа [4,7 M], добавлен 01.03.2015Изучение основных функций, свойств и принципа действия катализаторов. Значение катализаторов в переработке нефти и газа. Основные этапы нефтепереработки, особенности применения катализаторов. Основы приготовления твердых катализаторов переработки нефти.
реферат [1,0 M], добавлен 10.05.2010Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.
реферат [19,2 K], добавлен 05.12.2003Процесс каталитического риформинга, его сущность и особенности, место в производстве неэтилированных высокооктановых бензинов. Главные недостатки каталитического риформинга. Риформирование прямогонных бензинов в высокооктановые, его этапы и особенности.
реферат [37,7 K], добавлен 17.02.2009Определение катализа и его роль в промышленности. Селективность и общие представления о понятии "механизм химической реакции". Классификация каталитических систем по фазам и типам реакций. Адсорбция и основные требования к промышленным катализаторам.
реферат [1,2 M], добавлен 26.01.2009Строение металлов в твердом состоянии. Энергетические условия взаимодействия атомов в кристаллической решетке вещества. Атомно-кристаллическое строение. Кристаллические решетки металлов и схемы упаковки атомов. Полиморфные (аллотропические) превращения.
лекция [1,5 M], добавлен 08.08.2009