Металлы побочной подгруппы VII группы. Общая характеристика подгруппы. Марганец и его свойства
Марганец как элемент побочной подгруппы седьмой группы четвёртого периода периодической системы химических элементов Д.И. Менделеева, с атомным номером 25. Распространённость его в природе. Получение марганца, его физические и химические свойства.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 06.07.2012 |
Размер файла | 16,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки РФ
ФГОУ СПО
Екатеринбургский колледж транспортного строительства
Реферат по химии
На тему: Металлы побочной подгруппы VII группы.
Общая характеристика подгруппы. Марганец и его свойства.
2012
Содержание
1. Основные понятия
2. Распространённость в природе
2.1 Минералы марганца
3. Получение
4. Физические свойства
4.1 Химические свойства
5. Применение в промышленности
6. Биологическая роль и содержание в живых организмах
7. Литература
1. Основные понятия
Мамрганец -- элемент побочной подгруппы седьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 25. Обозначается символом Mn (лат. Manganum, мамнганум, в составе формул по-русски читается как марганец, например, KMnO4 -- калий марганец о четыре; но нередко читают и как манган). Простое вещество марганец (CAS-номер: 7439-96-5) -- металл серебристо-белого цвета. Известны пять аллотропных модификаций марганца -- четыре с кубической и одна с тетрагональной кристаллической решёткой.
2. Распространённость в природе
Марганец -- 14-й элемент по распространённости на Земле, а после железа -- второй тяжёлый металл, содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Весовое количество марганца увеличивается от кислых (600 г/т) к основным породам (2,2 кг/т). Сопутствует железу во многих его рудах, однако встречаются и самостоятельные месторождения марганца. В чиатурском месторождении (район Кутаиси) сосредоточено до 40 % марганцевых руд. Марганец, рассеянный в горных породах вымывается водой и уносится в Мировой океан. При этом его содержание в морской воде незначительно (10?7--10?6%), а в глубоких местах океана его концентрация возрастает до 0,3 % вследствие окисления растворённым в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO2·xH2O) и опускается в нижние слои океана, формируя так называемые железо-марганцевые конкреции на дне, в которых количество марганца может достигать 45 % (также в них имеются примеси меди, никеля, кобальта). Такие конкреции могут стать в будущем источником марганца для промышленности.
В России является остродефицитным сырьём, известны месторождения: «Усинское» в Кемеровской области, «Полуночное» в Свердловской, «Порожинское» в Красноярском крае, «Южно-Хинганское» в Еврейской автономной области, «Рогачёво-Тайнинская» площадь и «Северо-Тайнинское» поле на Новой Земле.
2.1 Минералы марганца
Пиролюзит MnO2·xH2O, самый распространённый минерал (содержит 63,2 % марганца);
манганит (бурая манганцевая руда) MnO(OH) (62,5 % марганца);
браунит 3Mn2O3·MnSiO3 (69,5 % марганца);
гаусманит (MnIIMn2III)O4
родохрозит (марганцевый шпат, малиновый шпат) MnCO3 (47,8 % марганца);
псиломелан mMnO * MnO2 * nH2O (45-60 % марганца);
пурпурит (Mn3+[PO4]), 36,65 % марганца.
3. Получение
1. Алюминотермическим методом, восстанавливая оксид Mn2O3, образующийся при прокаливании пиролюзита:
4MnO2 > 2Mn2O3 + О2
Mn2O3 + 2Al > 2Mn + Al2O3
2. Восстановлением железосодержащих оксидных руд марганца коксом. Этим способом в металлургии обычно получают ферромарганец (?80 % Mn).
3. Чистый металлический марганец получают электролизом
4. Физические свойства
Некоторые свойства приведены в таблице. Другие свойства марганца:
Работа выхода электрона: 4,1 эВ
Коэффициент линейного температурного расширения: 0,000022 см/см/°C (при 0 °C)
Электропроводность: 0,00695·106 Ом?1·см?1
Теплопроводность: 0,0782 Вт/см·K
Энтальпия атомизации: 280,3 кДж/моль при 25 °C
Энтальпия плавления: 14,64 кДж/моль
Энтальпия испарения: 219,7 кДж/моль
Твёрдость
по шкале Бринелля: Мн/м?
по шкале Мооса: 4[2]
Давление паров: 121 Па при 1244 °C
Молярный объём: 7,35 см?/моль
4.1 Химические свойства
Характерные степени окисления марганца:
+2, +3, +4, +6, +7 (+1, +5 мало характерны).
При окислении на воздухе пассивируется. Порошкообразный марганец сгорает в кислороде (Mn + O2 > MnO2). Марганец при нагревании разлагает воду, вытесняя водород (Mn + 2H2O >(t) Mn(OH)2 + H2^), образующийся гидроксид марганца замедляет реакцию.
Марганец поглощает водород, с повышением температуры его растворимость в марганце увеличивается. При температуре выше 1200 °C взаимодействует с азотом, образуя различные по составу нитриды.
Углерод реагирует с расплавленным марганцем, образуя карбиды Mn3C и другие. Образует также силициды, бориды, фосфиды.
C соляной и серной кислотами реагирует по уравнению:
Mn + 2H+ > Mn2+ + H2^
С концентрированной серной кислотой реакция идёт по уравнению:
Mn + 2H2SO4(конц.) > MnSO4 + SO2^ + 2H2O
С разбавленой азотной кислотой реакция идёт по уравнению:
3Mn + 8HNO3(разб.) > 3Mn(NO3)2 + 2NO^ + 4H2O
В щелочном растворе марганец устойчив.
Марганец образует следующие оксиды: MnO, Mn2O3, MnO2, MnO3 (не выделен в свободном состоянии) и марганцевый ангидрид Mn2O7.
Mn2O7 в обычных условиях жидкое маслянистое вещество тёмно-зелёного, очень неустойчивое; в смеси с концентрированной серной кислотой воспламеняет органические вещества. При 90 °C Mn2O7 разлагается со взрывом. Наиболее устойчивы оксиды Mn2O3 и MnO2, а также комбинированный оксид Mn3O4 (2MnO·MnO2, или соль Mn2MnO4).
При сплавлении оксида марганца (IV) (пиролюзит) со щелочами в присутствии кислорода образуются манганаты:
2MnO2 + 4KOH + O2 > 2K2MnO4 + 2H2O
Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция:
3K2MnO4 + 3H2SO4 > 3K2SO4 + 2HMnO4 + MnO(OH)2v + H2O
Раствор окрашивается в малиновый цвет из-за появления аниона MnO4? и из него выпадает коричневый осадок гидроксида марганца (IV).
Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более, чем до 20 %. Сама кислота и её соли (перманганаты) -- сильные окислители. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде -- до соединений марганца (II), в нейтральной -- до соединений марганца (IV), в сильно щелочной -- до соединений марганца (VI).
При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия):
2KMnO4 >(t) K2MnO4 + MnO2 + O2^
Под действием сильных окислителей ион Mn2+ переходит в ион MnO4?:
2MnSO4 + 5PbO2 + 6HNO3 > 2HMnO4 + 2PbSO4 + 3Pb(NO3)2 + 2H2O
Эта реакция используется для качественного определения Mn2+ (см. в разделе «Определение методами химического анализа»).
При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окисления. Подробное описание реакции см. в разделе «Определение методами химического анализа».
Соли MnCl3, Mn2(SO4)3 неустойчивы. Гидроксиды Mn(OH)2 и Mn(OH)3 имеют основной характер, MnO(OH)2 -- амфотерный. Хлорид марганца (IV) MnCl4 очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора:
MnO2 + 4HCl >(t) MnCl2 + Cl2^ + 2H2O.
5. Применение в промышленности
Марганец в виде ферромарганца применяется для «раскисления» стали при её плавке, то есть для удаления из неё кислорода. Кроме того, он связывает серу, что также улучшает свойства сталей. Введение до 12-13 % Mn в сталь (так называемая Сталь Гадфильда), иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твердой и сопротивляющейся износу и ударам (эта сталь резко упрочняется и становится тверже при ударах). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. В «зеркальный чугун» вводится до 20 % Mn.
Сплав 83 % Cu, 13 % Mn и 4 % Ni (манганин) обладает высоким электросопротивлением, мало изменяющимся с изменением температуры. Поэтому его применяют для изготовления реостатов и пр.
Марганец вводят в бронзы и латуни.
Значительное количество диоксида марганца потребляется при производстве марганцево-цинковых гальванических элементов, MnO2 используется в таких элементах в качестве окислителя-деполяризатора.
Соединения марганца также широко используются как в тонком органическом синтезе (MnO2 и KMnO4 в качестве окислителей), так и промышленном органическом синтезе (компоненты катализаторов окисления углеводородов, например, в производстве терефталевой кислоты окислением p-ксилола, окисление парафинов в высшие жирные кислоты).
Цены на металлический марганец в слитках чистотой 95 % в 2006 году составили в среднем 2,5 долл/кг.
Арсенид марганца обладает гигантским магнитокалорическим эффектом, усиливающимся под давлением. Теллурид марганца перспективный термоэлектрический материал(термо-э.д.с 500 мкВ/К).
6. Биологическая роль и содержание в живых организмах
Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом. Марганец оказывает влияние на рост, образование крови и функции половых желёз. Особо богаты марганцем листья свёклы -- до 0,03 %, а также большие его количества содержатся в организмах рыжих муравьёв -- до 0,05 %. Некоторые бактерии содержат до нескольких процентов марганца. марганец периодический химический элемент
Избыточное накопление марганца в организме сказывается, в первую очередь, на функционировании центральной нервной системы. Это проявляется в утомляемости, сонливости, ухудшении функций памяти. Марганец является политропным ядом, поражающим также легкие, сердечно-сосудистую и гепатобиллиарную системы, вызывает аллергический и мутагенный эффект.
Литература
1) Сайт «Википедия» (http://ru.wikipedia.org/wiki/%CC%E0%F0%E3%E0%ED%E5%F6)
Размещено на Allbest.ru
Подобные документы
Знакомство с основными особенностями металлов побочной подгруппы VI группы. Общая характеристика физических и химических свойств хрома. Перманганат калия KMnO4 как наиболее широко применяемая соль марганцовой кислоты. Способы получения марганца.
контрольная работа [51,4 K], добавлен 18.01.2014Элемент главной подгруппы второй группы, четвертого периода периодической системы химических элементов Д. И. Менделеева. История и происхождение названия. Нахождение кальция в природе. Физические и химические свойства. Применение металлического кальция.
реферат [21,9 K], добавлен 01.12.2012Молибден — элемент побочной подгруппы шестой группы пятого периода периодической системы химических элементов Д.И. Менделеева. Биологическая роль молибдена, его достоинства и недостатки. Нахождение молибдена в природе, содержание его в земной коре.
презентация [465,2 K], добавлен 11.03.2014Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.
презентация [1,8 M], добавлен 23.04.2014История и происхождение названия меди, ее нахождение в природе. Физические и химические свойства элемента, его основные соединения. Применение в промышленности, биологические свойства. Нахождение серебра в природе и его свойства. Сведения о золоте.
курсовая работа [45,1 K], добавлен 08.06.2011Магний как элемент главной подгруппы второй группы, третьего периода с атомным номером 12, его основные физические и химические свойства, строение атома. Распространенность магния, соединения и сферы их практического применения. Регенерация клеток.
реферат [475,5 K], добавлен 18.04.2013Металлы. Методы получения металлов. Химические свойства металлов. Характеристика металлов главной подгруппы I группы. Характеристика элементов главной подгруппы II группы. Характеристика элементов главной подгруппы III группы. Алюминий. Переходные металлы
реферат [24,0 K], добавлен 18.05.2006Общая характеристика элементов VIA подгруппы, их получение, физические и химические свойства, распространение в природе. Водородные и кислородные соединения халькогенов. Обоснование степеней окисления +IV, +VI. Основные области применения серной кислоты.
презентация [6,3 M], добавлен 11.08.2013Атомные, физические и химические свойства элементов подгруппы меди и их соединений. Содержание элементов подгруппы меди в земной коре. Использование пиро- и гидрометаллургическиех процессов для получения меди. Свойства соединений меди, серебра и золота.
реферат [111,9 K], добавлен 26.06.2014Открытие периодического закона и разработка периодической системы химических элементов Д.И. Менделеевым. Поиск функциональных соответствий между индивидуальными свойствами элементов и их атомными весами. Периоды, группы, подгруппы Периодической системы.
реферат [44,5 K], добавлен 21.11.2009