Характеристика веществ и материалов
Изучение свойств и общая классификация веществ как физических субстанции со специфическим химическим составом. Исследование состава и свойств неметаллических материалов. Анализ структуры полимеров. Выявление особенностей строения металлов и их свойств.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 30.03.2012 |
Размер файла | 43,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
КОНТРОЛЬНАЯ РАБОТА
на тему: «Характеристика веществ и материалов»
Оглавление
1. Вещество и материалы
2. Неметаллические материалы. Структура полимерных материалов
3. Особенности строения металлов и их свойств
1. Вещество и материалы
Вещество (в химии) -- физическая субстанция специфическим химическим составом.
Согласно современной теории, в том числе квантовой, вещество -- разновидность материи, которая содержит число химических частиц от 1015 и более. Структурные единицы макроскопического вещества -- электроны и ядра. Отсюда следует, что определение «вещество состоит из атомов и молекул» не совсем верно. Не во всех макроскопических веществах мы можем выделить молекулы. А электроны и ядра мы можем выделить при любых условиях. Поэтому все вещества и частицы состоят из электронов и ядер. Тогда, атом -- это одноядерная, в целом нейтральная система, а молекула -- неодноядерная, в целом нейтральная система.
Свойства вещества.
Каждому веществу присущ набор специфических свойств -- объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ. К наиболее характерным физико-химическим свойствам относятся константы -- плотность, температура плавления, температура кипения, термодинамические характеристики, параметры кристаллической структуры. К основным характеристикам вещества принадлежат его химические свойства. свойство вещество материал полимер метал
Классификация веществ.
В химии принято разделять все объекты изучения на индивидуальные вещества (иначе -- соединения) и их смеси. Под индивидуальным веществом понимают абстрактное понятие, обозначающее набор атомов, связанных друг с другом по определённому закону. Граница между индивидуальным веществом и смесью веществ довольно расплывчата, так как существуют вещества непостоянного состава, для которых, вообще говоря, нельзя предложить точной формулы. Кроме того, индивидуальное вещество остаётся абстракцией в силу того, что практически достижима лишь конечная чистота вещества. Это значит, что любой конкретный, реально существующий образец представляет собой смесь веществ, пусть и с подавляющим преобладанием одного из них. Несмотря на кажущуюся надуманность этого ограничения, зачастую чистота вещества играет ключевую роль в его свойствах. Так, знаменитая прочность титана проявляется только после того, как он очищен от кислорода до определённого предела (менее сотых долей процента).
Неорганические вещества
- Соли
- Кислоты
- Основания
Органические вещества
- Амиды
- Амины
- Кетоны и альдегиды
- Кислоты и ангидриды
- Нитрилы
- Сераорганические соединения
- Спирты
- Углеводороды
- Замещенные углеводороды
- Простые эфиры
- Сложные эфиры
- Аминокислоты
- Тривиальные названия неорганических соединений
Физическая классификация
Агрегатные состояния
Все химические вещества в принципе могут существовать в трёх агрегатных состояниях -- твёрдом, жидком и газообразном. Так, лёд, жидкая вода и водяной пар -- это твёрдое, жидкое и газообразное состояния одного и того же химического вещества -- воды H2O. Твёрдая, жидкая и газообразная формы не являются индивидуальными характеристиками химических веществ, а соответствуют лишь различным, зависящим от внешних физических условий состояниям существования химических веществ. Поэтому нельзя приписывать воде только признак жидкости, кислороду -- признак газа, а хлориду натрия -- признак твёрдого состояния. Каждое из этих (и всех других веществ) при изменении условий может перейти в любое другое из трёх агрегатных состояний.
При переходе от идеальных моделей твёрдого, жидкого и газообразного состояний к реальным состояниям вещества обнаруживается несколько пограничных промежуточных типов, общеизвестными из которых являются аморфное (стеклообразное) состояние, состояние жидкого кристалла и высокоэластичное (полимерное) состояние. В связи с этим часто пользуются более широким понятием «фаза».
В физике рассматривается четвёртое агрегатное состояние вещества -- плазма, частично или полностью ионизированное состояние, в котором плотность положительных и отрицательных зарядов одинакова (плазма электронейтральна).
Материал -- вещество или смесь веществ, из которых изготавливается что-либо или которые способствуют каким-либо действиям. В последнем случае уточняют, что это вспомогательный или расходный материал.
Механические свойства физических материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала.
Методы проверки механических свойств
Следует отметить следующие основные методы проверки механических свойств:
- Статическое растяжение;
- Статическое сжатие;
- Кручение;
- Изгиб;
- Ударная вязкость;
- Усталость;
- Трещиностойкость (вязкость разрушения);
- Ползучесть;
- Твёрдость;
Важным фактором является влияние термической обработки на механические свойства. Механические свойства должны рассматриваться в комплексе, с учётом конструкции, технологии и условий нагружения.
Существуют ещё параметры материала, связанные с изменением механических свойств при изменении температуры:
- Термостойкость
- Хладноломкость
2. Неметаллические материалы. Структура полимерных материалов
Понятие неметаллические материалы включает большой ассортимент материалов таких, как пластические массы, композиционные материалы, резиновые материалы, клеи, лакокрасочные покрытия, древесина, а также силикатные стекла, керамика и др.
Неметаллические материалы являются не только заменителями метал лов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.
Применение неметаллических материалов обеспечивает значительную экономическую эффективность.
Основой неметаллических материалов являются полимеры, главным образом синтетические. Создателем структурной теории химического строения органических соединений является великий русский химик А.М. Бутлеров. Промышленное производство первых синтетических пластмасс (фенопластов) явилось результатом глубоких исследований, проведенных Г.С. Петровым (1907--'1914 гг.). Блестящие исследования позволили С.В. Лебедеву впервые в мире осуществить промышленный синтез каучука (1932 г.). Н.Н. Семеновым разработана теория цепных реакций (1930--1940 гг.) и распространена на механизм цепной полимеризации.
Успешное развитие химии и физики полимеров связано с именами видных ученых: П.П.. Кобеко, В.А. Каргина, А.П. Александрова, С.С. Медведева, С.Н. Ушакова, В. В. Коршака и др. Важный вклад внесен К.А. Андриановым в развитие химии кремнийорганических полимеров, широко применяемых в качестве термостойких материалов.
Классификация полимеров.
Полимерами называют вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры. Молекулярная масса их составляет от 5000 до 1000 000. При таких больших размерах макромолекул свойства веществ определяются не только химическими составами этих молекул, но и их взаимным расположением и строением.
Макромолекулы полимера представляют собой цепочки, состоящие из отдельных звеньев. Поперечное сечение цепи несколько ангстрем, а длина несколько тысяч ангстрем, поэтому макромолекулам полимера свойствен на гибкость (которая ограничена размером сегментов -- жестких участков, состоящих из нескольких звеньев). Гибкость макромолекул является одной из отличительных особенностей полимеров.
Атомы, входящие в основную цепь, связаны прочной химической (ковалентной) связью. Энергия химических связей (в ккал/моль) составляет вдоль цепи 80 для С -- С, 79 для С -- О, 66 для С -- N. Силы межмолекулярного взаимодействия, имеющие обычно физическую природу, значительно (в 10 -- 50 раз) меньше. Например, прочность межмолекулярных связей электростатического характера не превышает 9 ккал/моль. Однако в реальных полимерах такие суммарные силы имеют значение вследствие большой протяженности цепевидных макромолекул. Наиболее сильные межмолекулярные взаимодействия осуществляются посредством водородных связей (только в 4--10 раз слабее ковалентных). Таким образом, молекулы полимеров характеризуются прочными связями в самих макромолекулах и относительно слабыми между ними. В некоторых полимерах между звеньями, входящими в состав соседних макромолекул, действуют силы химической связи. Такие вещества характеризуются высокими свойствами во всех направлениях.
Макромолекулы полимеров, имея одинаковый химический состав, обычно отличаются по размерам. Это явление, вызывающее рассеяние физико-механических характеристик материала, называется полидисперсностью.
Макромолекулы могут быть построены из одинаковых по химическому строению мономеров или разнородных звеньев. В первом случае соединения называются гомоиоимерами (или полимерами), во втором -- сополимерами. Иногда макромолекула вещества состоит из чередующихся крупных химически однородных отрезков (блоков) разного состава (блок-сополимеры).
Можно в процессе синтеза к главной молекулярной цепи, состоящей из одних мономеров, «привить» отрезки из других мономеров, тогда полу чают так называемые привитые сополимеры.
Когда основная цепь построена из одинаковых атомов, полимер называют гомоцепным, из разных гетероцепным. Большое значение имеет стерео регулярность полимера, когда все звенья и заместители расположены в пространстве в определенном порядке. Это придает материалу повышенные физико-Механические свойства (по сравнению с нерегулярными полимерами).
Полимеры встречаются в природе -- натуральный каучук, целлюлоза, слюда, асбест, природный графит. Однако ведущей группой являются синтетические полимеры, получаемые в процессе химического синтеза из низкомолекулярных соединений. Возможности создания, новых полимеров и изменения свойств уже существующих очень велики. Синтезом можно получать полимеры с разнообразными свойствами и даже создавать материалы с заранее заданными характеристиками.
Классификация полимеров. Для удобства изучения связи состава, структуры со свойствами полимеров их можно классифицировать по различным признакам (составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву). По составу все полимеры подразделяют на органические, элементоорганические, неорганические.
Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами. Углеродные атомы соединены с атомами - водорода или органическими радикалами.
В гетероцепных полимерах атомы других элементов, присутствующие в основной цепи, кроме углерода, существенно изменяют свойства полимера. Так, в макромолекулах атомы кислорода способствуют повышению гибкости цепи, что приводит к увеличению эластичности полимеров (на пример, для волокон, пленок), атомы фосфора и, хлора повышают огне стойкость, атомы серы придают газонепроницаемость (для герметиков, резин), атомы фтора, даже в виде радикалов, сообщают полимеру высокую химическую стойкость и т. д.
Некоторые карбоцепные и гетероцепные полимеры могут иметь сопряженную систему связей, например: ... сн = сн - сн = сн - сн = сн ...
Энергия сопряженной связи 100 -- 110 ккал/моль выше одинарной, .по этому такие полимеры более устойчивы при нагреве.
Органическими полимерами являются смолы и каучуки.
Элементоорганические соединения содержат в составе, основной цепи неорганические атомы кремния, титана, алюминия и других элементов, которые сочетаются с органическими радикалами (метальный, фенильный, этильный). Органические радикалы придают материалу прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. В природе таких соединений не встречается. Представителями этой группы являются кремнийорганические соединения, разработанные советским ученым К.. А. Андриановым. Строение этих соединений в основном имеет вид:
Между атомами кремния и кислорода существует прочная химическая связь; энергия силоксановой связи Si -- О равна 89,3 ккал/моль. Отсюда и более высокая теплостойкость кремнийорганических смол, каучуков, хо тя их упругость и эластичность меньше, чем у органических. Полимеры, содержащие в основной цепи титан и кислород, называются полититаноксанами.
К неорганическим полимерам относятся силикатные стекла, керамика, слюда, асбест. В составе - этих соединений углеродного скелета нет. Основу неорганических материалов составляют окислы кремния, алюминия, магния, кальция и др.
В силикатах существуют два типа связей: атомы в цепи соединены ковалентными связями (Si - О), а цепи между собой - ионными связями. Свойства этих веществ можно изменять в широких пределах, получая, например, из минерального стекла волокна и эластичные пленки. Неорганические полимеры отличаются более высокой плотностью, высокой дли тельной теплостойкостью. Однако стекла и керамика хрупкие, плохо переносят динамические нагрузки. К неорганическим полимерам относится также графит, представляющий собой карбоцепной полимер.
В конкретных технических материалах используются как отдельные виды полимеров, так и сочетание различных групп полимеров; такие мате риалы называют композиционными (например, стеклопластики).
Своеобразие свойств полимеров обусловлено структурой их макромолекул. По форме макромолекул полимеры делятся на линейные (цеповидные), разветвленные, плоские, ленточные (лестничные), пространственные или сетчатые. Линейные макромолекулы полимера представляют собой длинные зигзагообразные или закрученные в спираль цепочки.
Гибкие макромолекулы с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала, способность его размягчаться при нагревании, а при охлаждении вновь затвердевать. Многие такие полимеры растворяются в растворителях. На физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При плотной упаковке возникает более сильное межмолекулярное притяжение, что приводит к повышению плотности, прочности, температуры размягчения и уменьшению растворимости.
3. Особенности строения металлов и их свойств
Металлы - один из классов конструкционных материалов, характеризующийся определенным набором свойств:
- «металлический блеск» (хорошая отражательная способность);
- пластичность;
- высокая теплопроводность;
- высокая электропроводность.
Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.
Дефекты кристаллического строения. Точечные дефекты. Аллотропия. Полиморфные превращения. Магнитные превращения.
Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».
Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком - периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка. Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.
Элементарная ячейка - элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл. Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:
- размеры ребер элементарной ячейки. a, b, c - периоды решетки - расстояния между центрами ближайших атомов (в одном направлении выдерживаются строго определенными);
- углы между осями (б, в, ч);
- координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке;
- базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки;
- плотность упаковки атомов в кристаллической решетке - объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки - 0,68, для гранецентрированной кубической решетки - 0,74).
Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа:
- примитивный - узлы решетки совпадают с вершинами элементарных ячеек;
- базоцентрированный - атомы занимают вершины ячеек и два места в противоположных гранях;
- объемно-центрированный - атомы занимают вершины ячеек и ее центр;
- гранецентрированный - атомы занимают вершины ячейки и центры всех шести граней.
Аллотропия. Полиморфные превращения. Магнитные превращения.
Анизотропия. Анизотропия кристаллов. Анизотропия свойств. Изотропия.
Основными типами кристаллических решеток являются:
1. Объемно - центрированная кубическая (ОЦК) , атомы располагаются в вершинах куба и в его центре (V, W, Ti, Feб)
2. Гранецентрированная кубическая (ГЦК), атомы располагаются в вершинах куба и по центру каждой из 6 граней (Ag, Au, Feг)
3. Гексагональная, в основании которой лежит шестиугольник:
- простая - атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);
- плотноупакованная (ГПУ) - имеется 3 дополнительных атома в средней плоскости (цинк).
Размещено на Allbest.ru
Подобные документы
Исследование физических и химических свойств металлов, особенностей их взаимодействия с простыми и сложными веществами. Роль металлов в жизни человека и общества. Распространение элементов в природе. Закономерность изменения свойств металлов в группе.
презентация [1,7 M], добавлен 08.02.2013Определение понятия и свойств полимеров. Рассмотрение основных видов полимерных композиционных материалов. Характеристика пожарной опасности материалов и изделий. Исследование особенностей снижения их горючести. Проблема токсичности продуктов горения.
презентация [2,6 M], добавлен 25.06.2015Исследование физических и механических свойств смесей полимеров. Изучение основных способов формования резиновых смесей. Смешение полимерных материалов в расплаве и в растворе. Оборудование для изготовления смесей полимеров. Оценка качества смешения.
реферат [274,9 K], добавлен 20.12.2015Причины и характер изменения свойств полимеров при их переработке, хранении и эксплуатации. Старение полимеров и основные факторы, на него влияющие. Роль веществ-стабилизаторов в замедлении данных процессов. Типы антиоксидантов и оценка их эффективности.
реферат [44,5 K], добавлен 22.11.2010Общие сведения о неметаллических материалах, их классификация и маркировка. Русский химий А.М. Бутлеров - создатель структурной теории химического строения органических соединений. Сравнение неметаллических материалов по свойствам и по назначению.
презентация [2,9 M], добавлен 16.01.2015Особенности строения и свойств. Классификация полимеров. Свойства полимеров. Изготовление полимеров. Использование полимеров. Пленка. Мелиорация. Строительство. Коврики из синтетической травы. Машиностроение. Промышленность.
реферат [19,8 K], добавлен 11.08.2002Изучение атома и его состава и радиоактивности. Характеристика ядерной модели атома. Зависимость свойств элементов и свойств образуемых им веществ от заряда ядра. Анализ квантовой теории света, фотоэлектрического эффекта, электронной оболочки атома.
реферат [31,3 K], добавлен 18.02.2010Распространенные способы физического модифицирования полимеров с целью придания им специфических свойств. Термогравиметрический анализ магнитопластов. Сравнительные характеристики материалов на основе каолина. Свойства теплоизоляционных материалов.
статья [32,3 K], добавлен 26.07.2009Характеристика строения атома, аллотропии, способа получения, окислительных и восстановительных свойств серы. Исследование истории открытия химических элементов теллура, полония, селена, физических свойств и работы с ними, основных областей применения.
презентация [4,4 M], добавлен 27.11.2011Закономерности трансформации состава, свойств бентонита в процессе модифицирования. Исследование сорбционной активности природных и модифицированных форм бентонита. Определение закономерностей модифицирования бентонита Кабардино-Балкарского месторождения.
магистерская работа [9,2 M], добавлен 30.07.2010