Структура современной аналитической химии
Понятие и значение количественного анализа. Классификация качественного и количественного методов. Отличие весового анализа от объемного. Скорость химических реакций. Константа химического равновесия. Практическое значение ионного произведения воды.
Рубрика | Химия |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 25.02.2012 |
Размер файла | 377,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Гравиметрический анализ (весовой анализ) -- важнейший метод количественного химического анализа, в котором взвешивание является не только начальной, но и конечной стадией определения. Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Измерительным прибором служат аналитические весы. Результаты анализа выражают обычно в процентах. Гравиметрический анализ сыграл большую роль при становлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др., применяется при определении химического состава различных объектов (горных пород и минералов), при установлении качества сырья и готовой продукции и т. д.
Титриметрический анализ (титрование) -- методы количественного анализа в аналитической и фармацевтической химии, основанные на измерении объема раствора реактива известной концентрации, расходуемого для реакции с определяемым веществом. Титриметрический -- от слова титр.
23. Сущность титриметрического анализа. Основные понятия
Титриметрический (объёмный) анализ является одним из важнейших видов количественного анализа. Его основными достоинствами являются точность, быстрота исполнения и возможность применения для определения самых разнообразных веществ. Определение содержания вещества в титриметрическом анализе осуществляется в результате проведения реакции точно известного количества одного вещества с неизвестным количеством другого, с последующим расчётом количества определяемого вещества по уравнению реакции. Реакция, которая при этом протекает должна быть стехиометрической, т.е. вещества должны реагировать строго количественно, согласно коэффициентам в уравнении. Только при соблюдении этого условия реакция может быть использована для количественного анализа.
Основной операцией титриметрического анализа является титрование - постепенное смешивание веществ до полного окончания реакции. Обычно в титриметрическом анализе используются растворы веществ. В ходе титрования раствор одного вещества постепенно приливается к раствору другого вещества до тех пор, пока вещества полностью не прореагируют. Раствор, который приливают, называется титрантом, раствор, к которому приливается титрант, называется титруемым раствором. Объём титруемого раствора, который подвергается титрованию, называется аликвотной частью или аликвотным объёмом.
Точкой эквивалентности называется момент, наступающий в ходе титрования, когда реагирующие вещества полностью прореагировали. В этот момент они находятся в эквивалентных количествах, т.е. достаточных для полного, без остатка, протекания реакции.
Для титрования применяются растворы с точно известной концентрацией, которые называются стандартными или титрованными. Различают несколько типов стандартных растворов.
Первичным стандартом называется раствор с точно известной концентрацией, приготовленный по точной навеске вещества. Вещество для приготовления первичного стандарта должно иметь определённый состав и быть определённой степени чистоты. Содержание в нём примесей не должно превышать установленных норм. Зачастую для приготовления стандартных растворов вещество подвергается дополнительной очистке. Перед взвешиванием вещество высушивается в эксикаторе над осушающим веществом или выдерживается при повышенной температуре. Навеску взвешивают на аналитических весах и растворяют в определённом объёме растворителя. Полученный стандартный раствор не должен изменять своих свойств при хранении. Стандартные растворы хранят в плотно закрытой посуде. При необходимости их предохраняют от попадания прямых солнечных лучей и воздействия высокой температуры. Стандартные растворы многих веществ (HCl, H2SO4, Na2B4O7 и др.) могут храниться годами без изменения концентрации.
Ввиду того, что подготовка вещества для приготовления стандартного раствора является длительным и трудоёмким процессом, химической промышленностью выпускаются т. наз. фиксаналы. Фиксанал представляет собой стеклянную ампулу, в которой запаяна определённая навеска вещества. Ампулу разбивают, и вещество количественно переносят в мерную колбу, доводя затем объём жидкости до метки. Применение фиксаналов значительно облегчает процесс и сокращает время приготовления стандартного раствора.
Некоторые вещества трудно получить в химически чистом виде (например, KMnO4). Из-за содержания примесей взять точную навеску вещества часто бывает невозможно. Кроме этого, растворы многих веществ при хранении изменяют свои свойства. Например, растворы щелочей способны поглощать углекислый газ из воздуха, в результате чего их концентрация со временем меняется. В этих случаях используют вторичные стандарты.
Вторичным стандартом называется раствор вещества с точно известной концентрацией, которая устанавливается по первичному стандарту. Вторичные стандарты (например, растворы KMnO4, NaOH и т.д.) хранятся при тех же условиях, что и первичные стандарты, но их концентрацию периодически проверяют по стандартным растворам так называемых установочных веществ.
24. Закон эквивалентов. точка эквивалентности. конечная точка тетрирования
закон эквивалентов.
один из законов химии, устанавливающий, что отношения масс веществ, вступающих в химическое взаимодействие, равны или кратны их химическим эквивалентам. В общей форме сформулирован У. Волластоном в 1807.
Точка эквивалентности (в титриметрическом анализе) -- момент титрования, когда число эквивалентов добавляемого титрантаэквивалентно или равно числу эквивалентов определяемого вещества в образце. В некоторых случаях наблюдают несколько точек эквивалентности, следующих одна за другой, например, при титровании многоосновных кислот или же при титровании раствора, в котором присутствует несколько определяемых ионов.
На графике кривой титрования присутствует одна или несколько точек перегиба, соответствующих точкам эквивалентности.
Точкой окончания титрования (подобна точке эквивалентности, но не то же самое) считают момент, при котором индикатор изменяет свой цвет при колориметрическом титровании.
конечная точка титрирования.
Способы определения конечной точки титрования Конечную точку титрования определяют различными способами, например визуально, наблюдая за изменением окраски раствора (титрование с индикатором), за появлением осадка (осадительное титрование) или измеряя потенциал индикаторного электрода.
25. Реакции, используемые в объемном анализе. Требования предявленые в анализе. Требования в объемном анализе
Реакции, используемые в объемном анализе
Титриметрический анализ использует различные типы химических реакций:нейтрализации (кислотно-основное титрование) -- нейтрализация -- это реакции с изменением pH растворов.окисления-восстановления (перманганатометрия, иодометрия, хроматометрия) -- реакции, которые происходят с изменением окислительно-восстановительных потенциалов в системе титрования.осаждения (аргентометрия) -- реакции, протекающие с образованием малорастворимого соединения, при этом изменяются концентрации осаждаемых ионов в растворе. комплексообразования (комплексонометрия) -- реакции, основанные на образовании прочных комплексных соединений ионов металлов (всех, кроме одновалентных) с комплексоном III (двунатриевой солью этилендиаминтетрауксусной кислоты), при этом изменяются концентрации ионов металлов в титруемом растворе.
при объемном-титрометрическом. анализе., предъявляются следующие требования: вещества должны реагировать в строго количественных (стехиометрических) отношениях без побочных реакций, реакции должны протекать быстро и практически до конца; для установления точки эквивалентности необходимо применять достаточно надежные способы, влияние посторонних веществ на ход реакции должно быть исключено. Кроме того, желательно, чтобы при титриметрическом анализе реакции протекали при комнатной температуре.
26. Реагенты применимые для титрирования
Йодометрическое определение воды по методу Фишера основано на использовании реакции окисления-восстановления, протекающей между диоксидом серы и йодом в присутствии воды в среде метилового спирта.
Для этого анализируемый объект (например, органический растворитель, содержащий примеси воды) растворяют в безводном метиловом спирте. Метанольный раствор подвергают прямому титрованию стандартным раствором реагента, представляющим собой смесь йода, диоксида серы и пиридина в безводном метиловом спирте.
1 моль йода эквивалентен 1 моль воды. Вода непосредственно не реагирует с йодом или йодидами, а, наряду с метанолом, служит источником ионов кислорода, необходимых для образования группы -OSO2OCH3. Окисление серы происходит за счет элементарного иода, который восстанавливается до I- -ионов.
Метод Фишера применим также для определения воды, поглощаемой или выделяемой при многочисленных реакциях. Конечную точку титрования фиксируют по появлению в титруемом растворе избытка иода, обнаруживаемого по изменению желтой окраски титруемого раствора в красновато-коричневую.
Наряду с визуальным методом определения конечной точки титрования применяют также физико-химические (инструментальные) методы (в частности, биамперометрическое титрование). Сейчас определение воды методом Карла Фишера в основном производят на автоматических титраторах.
27. Значение титриметрического метода анализа. Классификация методов объемного анализа
ТИТРИМЕТРИЧЕСКИЙ АНАЛИЗ, совокупность методов количественного химического анализа, заключающихся в измерении объема раствора реактива известной концентрации, расходуемого на реакцию с данным количеством (объемом) определяемого вещества. В титриметрическом анализе используются реакции нейтрализации, окисления-восстановления, осаждения, комплексообразования. Титриметрический анализ осуществляется путем титрования, конечную точку которого находят при помощи химических индикаторов или по резкому изменению какой-либо физической характеристики (электропроводности, оптической плотности) исследуемого раствора.
Классификация методов объемного анализа.
Определение и классификация методов объёмного анализа
Титриметрический (объёмный) метод анализа основан на регистрации объёма реагента, расходуемого на реакцию с определяемым веществом.
Титриметрические методы анализа подразделяют по типу реакции, лежащей в основе метода на четыре большие группы.
1. Протолитометрия
Методы кислотно-основного титрования основаны на протолитической реакции в водном растворе:
H3O+ + ОН- - 2H2O
В соответствии с природой титранта (реагента) методы протолитометрии делят на:
ацидометрию (титрант кислота);
алкалиметрию (титрант щелочь).
Например, определение титра раствора соляной кислоты, раствора гидроксида калия, титруемой кислотности молока, определение кислотности хлеба и т.д.
2. РедоксометрияМетоды окислительно-восстановительного титрования основаны на реакциях, протекающих с изменением степеней окисления реагирующих веществ. Вещество может существовать в двух формах - окисленной (Ox) и восстановленной (Red), которые образуют сопряженную редокс -- пару. В растворе протекает окислительно-восстановительная реакция:
Ox1 + Red2 - Red1 + Ox2,
Ox1 + е > Red1 ¦восстановление
Red2- е > Ox2 ¦окисление
Методы редоксометрии классифицируют в зависимости от названия титранта:
Перманганатометрия (титрант КMnO4);
Иодометрия (титрант J2, Na2S2O3);
Дихроматометрия (титрант K2Cr2O7);Броматометрия (титрант KBrO3); Аскорбинометрия (титрант вит.С).Например, определение содержания железа (II и III) в питьевой воде, остаточного хлора в воде, витамина С в фруктовых соках и т.д.
3. Комплексонометрия Метод анализа основан на взаимодействии ионов металлов с моно- или полидентантными лигандами с образованием комплексных соединений. К пробе добавляют индикатор. Раствор приобретает винно-красную окраску вследствие образования комплекса металла с индикатором:
Окрашенный раствор титруют раствором комплексона III (HY3-). Комплекс металла с индикатором разрушается вследствие образования комплексоната металла. Окраска раствора становится синий благодаря выделению индикатора в свободном виде, например:
Например, определение жесткости воды, содержания кальция и магния в различных средах
.4. Осадительный анализ (седиметрия)Метод анализа основан на реакциях осаждения определяемого компонента пробы. Согласно вида титранта различают следующие методы: Аргентометрия (титрант AgNO3); Роданометрия (титрант NH4SCN - роданид аммония); Меркурометрия (титрант Hg2Cl2); Сульфатометрия (титрант H2SO4).Например, определение хлоридов в колбасных изделиях.
28. СУЩНОСТЬ ВЕСОГО АНАЛИЗА. КЛАСИФИКАЦИЯ МЕТОДА НАЛИЗА. РАСЧЕТЫ ВЕСОГО АНАЛИЗА
Сущность гравиметрического анализа
Гравиметрическим анализом называют метод количественного химического анализа, основанный на точном измерении массы определяемого вещества или его составных частей, выделяемых в виде соединений точно известного постоянного состава. Гравиметрические определения можно разделить на три группы: методы осаждения, отгонки и выделения.
Методы осаждения основаны на осаждении определяемого компонента в виде малорастворимого химического соединения, фильтровании, прокаливании до постоянной массы и последующем определении массы полученного вещества. При этом различают осаждаемую форму - форму, в виде которой определяемое вещество осаждают, и гравиметрическую форму - форму, в виде которой определяемое вещество взвешивают.
Методы отгонки основаны на отгонке определяемого компонента в виде летучего соединения с последующим определением массы отогнанного вещества (прямое определение) или массы остатка (косвенное определение).
Методы выделения основаны на количественном выделении определяемого компонента из анализируемого раствора путем химической реакции с последующим определением массы выделенного вещества. Этот принцип положен в основу электрогравиметрического метода анализа, в котором определяемый компонент выделяется из раствора в результате электрохимических реакций, протекающих на электродах.
Среди гравиметрических методов анализа наиболее широко применяют метод осаждения.
Гравиметрический анализ (весовой анализ) -- важнейший метод количественного химического анализа, в котором взвешивание является не только начальной, но и конечной стадией определения. Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Измерительным прибором служат аналитические весы. Результаты анализа выражают обычно в процентах. Гравиметрический анализ сыграл большую роль при увпррстановлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др., применяется при определении химического состава различных объектов (горных пород и минералов), при установлении качества сырья и готовой продукции
29. ОСНОВЫ ПЕРМАГОНАТОМЕТРИ. ИНДИКАТОРЫ КИСЛОТНОСТИ ОСНОВНОГО ТИТРИРОВАНИЯ. ОСНОВЫ ЯДОМЕТРИИ
ПЕРМАНГАНАТОМЕТРИЯ
титриметрич. метод анализа, основанный на р-циях: + 8H+ + 5е 4H2O + Mn2+ и + 4H2O + Зе MnO2 + 4OH Ч (стандартные электродные потенциалы соотв. +1,52 и +0,57 В). Титрантом служит водный р-р KMnO4, к-рый в чистом виде очень устойчив и долго хранится. Однако в присут. Mn(II) происходит р-ция: + 3Mn2+ + 2H2O5MnO2 + 4H+, к-рая ускоряется диоксидом марганца и при понижении кислотности р-ра. Поскольку перманганат калия всегда содержит трудно удаляемые примеси, свежеприготовленный р-р KMnO4 кипятят в течение часа, фильтруют через стеклянный фильтр и хранят в темных склянках, в защищенных от прямого солнечного света местах (т. к. на свету ускоряется разложение KMnO4 на MnO2 и O2).
Для определения концентрации титранта используют р-ры с точно известным содержанием (стандартные р-ры) Na2C2O4, As2O3 (в присут. ICl или KIO3 в качестве катализатора), FeS04
Кислотно-основные индикаторы -- органические соединения, способные изменять цвет в растворе при изменении кислотности (pH). Индикаторы широко используют в титровании в аналитической химии и биохимии. Их преимуществом является дешевизна, быстрота и наглядность исследования. Однако из-за субъективности определения цвета и невысокой точности индикаторы pH не всегда удобны; поэтому для точного измерения pH используют pH-метры с цифровой индикацией.
Измерение pH с помощью индикаторной бумаги
Ks:
30. Методы тетрометрического титрования
В титриметрическом анализе используют реакции различного типа - кислотно-основное взаимодействие, комплексообразование и т.д., - удовлетворяющие тем требованиям, которые предъявляются к титриметрическим реакциям. Отдельные титриметрические методы получили название по типу основной реакции, протекающей при титровании, или по названию титранта (например, в аргентометрических методах титрантом является AgNO3, в перманганатометрических - раствор KMnO4 и т.д.). По способу фиксированияточки эквивалентности выделяют методы титрования с цветными индикаторами, методы потенциометрического титрования, фотометрического и т.д.
При классификации по типу реакции, протекающей при титровании, обычно выделяют следующие методы титриметрического анализа.
1 Методы кислотно-основного титрования (ацидиметрия, алкалиметрия) основаны на процессах передачи протона, например,
H+ + OH- > H2O,
CH3COOH + OH- > CH3COO- + H2O.
2 В методах комплексообразования используют реакции образования координационных соединений, например,
Hg2+ + 2Cl- > HgCl2 (меркуриметрия),
Mg2+ + H2Y2- > MgY2- + 2H+ (комплексонометрия)
3 Методы осаждения основаны на реакциях образования малорастворимых соединений:
Ag+ + Cl- > AgCl (аргентометрия),
Hg22+ + 2Cl- > Hg2Cl2 (меркурометрия).
4 Методы окисления-восстановления объединяют многочисленную группу окислительно-восстановительных реакций, например,
MnO4-+5Fe2++8H+ > Mn2++5Fe3++4H2O (перманганатометрия),
2S2O32- + I2 > S4O62- + 2I- (иодометрия).
Характеристика каждого метода включает наиболее существенные его особенности: приготовление и свойства рабочих растворов, виды кривых титрования, погрешности определения, способы индикации точки эквивалентности и практическое применение.
31. скорость химических реакций. Закон действия масс. Константа химического равновесия
Скорость химической реакции - это изменение концентрации реагирующих веществ в единицу времени.
При гомогенных реакциях пространством реакции обозначается объем реакционного сосуда, а при гетерогенных - поверхность, на которой протекает реакция. Концентрацию реагирующих веществ обычно выражают в моль/л - количестве молей вещества в 1 литре раствора.
Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, давления, поверхности соприкосновения веществ и ее характера, присутствия катализаторов.
Увеличение концентрации веществ, вступающих в химическое взаимодействие, приводит к увеличению скорости химической реакции. Это происходит потому, что все химические реакции проходят между некоторым количеством реагирующих частицами (атомами, молекулами, ионами). Чем больше этих частичек в объеме реакционного пространства, тем чаще они соударяются и происходит химическое взаимодействие. Химическая реакция может протекать через один или несколько элементарных актов ( соударений). На основании уравнения реакции можно записать выражение зависимости скорости реакции от концентрации реагирующих веществ. Если в элементарном акте участвует лишь одна молекула (при реакции разложения), зависимость будет иметь такой вид:
Это уравнение мономолекулярной реакции. Когда в элементарном акте происходит взаимодействие двух разных молекул, зависимость имеет вид:
n = k*[A]*[B]
Реакция называется бимолекулярной. В случае соударения трех молекул справедливо выражение:
n = k*[A]*[B]*[C]
Реакция называется тримолекулярной. Обозначения коэффициентов:
n - скорость реакции;
[А], [В], [С] - концентрации реагирующих веществ;
k - коэффициент пропорциональности; называется константой скорости реакции.
Если концентрации реагирующих веществ равны единице ( 1 моль/л) или их произведение равно единице, то v = k.. Константа скорости зависит от природы реагирующих веществ и от температуры. Зависимость скорости простых реакций (т. е. реакций, протекающих через один элементарный акт) от концентрации описывается законом действующих масс: скорость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ, возведенных в степень их стехиометрических коэффициентов.
Для примера разберем реакцию 2NO + O2 = 2NO2.
В ней v = k*[NO]2*[O2]
В случае, когда уравнение химической реакции не соответствует элементарному акту взаимодействия, а отражает лишь связь между массой вступивших в реакцию и образовавшихся веществ, то степени у концентраций не будут равны коэффициентам, стоящим перед формулами соответствующих веществ в уравнении реакции. Для реакции, которая протекает в несколько стадий, скорость реакции определяется скоростью самой медленной ( лимитирующей) стадии.
Такая зависимость скорости реакции от концентрации реагирующих веществ справедлива для газов и реакций, проходящих в растворе. Реакции с участием твердых веществ не подчиняются закону действующих масс, так как взаимодействие молекул происходит лишь на поверхности раздела фаз. Следовательно, скорость гетерогенной реакции зависит еще и от величины и характера поверхности соприкосновения реагирующих фаз. Чем больше поверхность - тем быстрее будет идти реакция.
Констамнта равновемсия -- величина, определяющая для данной химической реакции соотношение между термодинамическимиактивностями (либо, в зависимости от условий протекания реакции, парциальными давлениями, концентрациями или фугитивностями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.
Способы выражения константы равновесия
Для реакции в смеси идеальных газов константа равновесия может быть выражена через равновесные парциальные давлениякомпонентов pi по формуле[1]:
где ?i -- стехиометрический коэффициент (для исходных веществ принимается отрицательным, для продуктов -- положительным). Kpне зависит от общего давления, от исходных количеств веществ или от того, какие участники реакции были взяты в качестве исходных, но зависит от температуры [2].
Например, для реакции окисления монооксида углерода:
2CO + O2 = 2CO2
константа равновесия может быть рассчитана по уравнению:
Если реакция протекает в идеальном растворе и концентрация компонентов выражена через молярность ci, константа равновесия принимает вид:
Для реакций в смеси реальных газов или в реальном растворе вместо парциального давления и концентрации используют соответственно фугитивность fi и активность ai:
Многое удается узнать о химических реакциях, изучая скорость их протекания и факторы, от которых она зависит. Этим занимается раздел химии, называемый ХИМИЧЕСКОЙ КИНЕТИКОЙ.
Вспомним уже известное нам определение скорости химической реакции:
Скоростью химической реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.
Количество вещества выражают в МОЛЯХ, а объем в ЛИТРАХ. В этом случае мы получаем удобную для работы величину - КОНЦЕНТРАЦИЮ вещества в моль/л, которая ИЗМЕНЯЕТСЯ в ходе реакции.
Таким образом, скоростью реакции называют изменение концентрации какого-нибудь вещества, участвующего в реакции, за единицу времени (например, за секунду или за минуту). Отсюда другое определение скорости реакции:
Скоростью химической реакции называется ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ реагента или продукта в единицу времени.
Разницу между тем, что было и тем, что стало, часто обозначают буквой греческого алфавита ? (дельта) Следовательно, только что приведенное определение математически можно выразить так:
где v - скорость реакции, ?C - изменение концентрации (в моль/л), а ?? - интервал времени, в течение которого это изменение произошло (сек). Следовательно, размерность у скорости реакции такая: "моль/л.сек".
За скоростью реакции А + Б = В можно следить по расходованию одного из реагентов (А или Б), либо по накоплению продукта (В). Здесь мы сталкиваемся с серьезной проблемой: скорость реакции может постоянно МЕНЯТЬСЯ. Действительно, в начале реакции, когда молекул А и Б еще много, столкновения между ними происходят гораздо чаще, чем в конце реакции, когда молекул А и Б уже намного меньше. Как мы знаем, столкновения молекул являются поводом для реакции между ними. На рис. 1-9 показана упрощенная модель реакции А + Б = В, в которой каждое столкновение приводит к химической реакции между двумя частицами. Впрочем, такие реакции тоже есть. Например, практически каждое столкновение ионов Н+ и ОН- в растворе приводит к образованию молекулы Н2О (у этой реакции низкая энергия активации).
Образование продукта (В) происходит быстро в начале реакции и замедляется ближе к концу реакции. На графике накопления продукта (В) в смеси хорошо видно, что при одном и том же интервале времени ?? изменение концентрации ?C в начале реакции больше, чем в конце реакции. Таким образом, скорость химического превращения может постоянно меняться в ходе реакции.
Как же быть в таком случае? Что принимать за истинную скорость реакции? К счастью, существует подход, который позволяет устранить эту трудность в изучении скоростей химических реакций.
Чем больше концентрация молекул (А) или (Б) в смеси, тем больше вероятность столкновения между ними. Если обозначить буквами А и Б (в квадратных скобках) молярные концентрации этих веществ, то скорость реакции будет пропорциональна произведению этих молярных концентраций:
v = [А моль/л][Б моль/л] (1)
В дальнейшем обозначения "моль/л" в квадратных скобках мы уже писать не будем. Заметим, что в полученном нами выражении (1) для скорости химической реакции размерности левой и правой части не совпадают. Действительно, размерность скорости реакции, как мы уже знаем, "моль/л.сек", а размерность произведения в правой части уравнения другая: "моль2/л2". Для того чтобы выровнять размерности в правой и левой частях уравнения, нужен коэффициент пропорциональности. Обозначим его буквой k и присвоим ему размерность "л/моль.сек". Тогда уравнение (1) примет такой вид:
v = k[А][Б] (2)
Оказалось, что коэффициент пропорциональности k способен выполнять гораздо более полезную функцию, чем простое выравнивание размерностей в левой и правой частях уравнения (2). Коэффициент k НЕ ЗАВИСИТ от концентраций [А] и [Б]. Эти концентрации (как и скорость) могут изменяться в ходе реакции, но значение k сохраняется ПОСТОЯННЫМ для данной реакции в выбранных условиях. Поэтому коэффициент k называют КОНСТАНТОЙ СКОРОСТИ РЕАКЦИИ. Уравнение (2) называется КИНЕТИЧЕСКИМ УРАВНЕНИЕМ для реакций типа А + Б = В (или А + Б = В + Г + ...).
Интересно, что в кинетическом уравнении скорость реакции не зависит от количества ПРОДУКТОВ реакции и их концентраций. Это и понятно: ведь скорость реакции в данном случае определяется только столкновениями молекул реагентов (А) и (Б).
Константу скорости k можно определить экспериментально: она численно равна скорости реакции в тот момент, когда концентрации исходных веществ равны 1 моль/л:
v = k[А][Б] = k[1][1], следовательно, в этот момент v = k.
Константа скорости k дает химикам возможность КОЛИЧЕСТВЕННО обсуждать вопросы, связанные с изучением скоростей реакций.
Измеренные константы скоростей приведенных реакций позволяют уже не просто говорить о том, что реакция нейтрализации (H+ + OH-) протекает намного быстрее реакции разложения иона аммония. Можно рассуждать количественно: при 20 оС реакция нейтрализации протекает в 6.109 раз быстрее, чем реакция распада иона аммония на аммиак и ион водорода.
** Интересен вопрос о том, почему в кинетическом уравнении (2) фигурирует именно ПРОИЗВЕДЕНИЕ молярных концентраций реагентов? Почему, например, не сумма? Ответ можно получить экспериментально и теоретически. Эксперимент подтверждает правильность кинетического уравнения, но к нему можно прийти и из теории вероятностей.
Для того чтобы столкнуться, молекулы (А) и (Б) должны оказаться одновременно в какой-то точке пространства. Вероятность того, что два независимых события произойдут одновременно (молекулы А и Б окажутся в одно время в одном и том же месте) равна ПРОИЗВЕДЕНИЮ вероятностей каждого из этих событий по отдельности. Это положение теории вероятностей легко проверяется. Наибольшую вероятность обозначают единицей. Например, вероятность того, что подброшенная вверх монета упадет плашмя, практически равна 1. Вероятность того, что монета упадет орлом вверх, равна 1/2. Если мы подбросим одновременно две монеты, то вероятность того, что обе они упадут орлом вверх, составляет 1/2.1/2 = 1/4. Это означает, что в серии из 4-х опытов с подбрасыванием монет только один раз выпадут два орла. Если в маленькой серии опытов и произойдет отклонение от теории, то в большой серии (например, из 100 опытов), таких отклонений уже практически не наблюдается. Можете проверить сами.
Вероятность для молекул А одновременно оказаться в одном и том же месте прямо пропорциональна молярной концентрации этих молекул [А]. Это же можно сказать о молекулах Б. Следовательно, вероятность их столкновения должна быть пропорциональна ПРОИЗВЕДНИЮ молярных концентраций [А][Б].
Бывают случаи, когда реакция происходит в результате одновременного столкновения трех частиц. Например, для реакции 2А + Б = В (или 2А + Б = В + Г +…) кинетическое уравнение должно выглядеть так:
v = k[А][А][Б] или v = k[А]2[Б]
В общем случае, для реакции
aA +bB + cC = dD + eE + fF + …
кинетическое уравнение для скорости реакции записывается следующим образом:
v = k[A]a[B]b[C]c (3)
Оно представляет собой произведение концентраций реагентов, каждая из которых взята в степени, равной числу молей соответствующего вещества в полном уравнении реакции. Это не что иное, как математическая запись ЗАКОНА ДЕЙСТВИЯ МАСС.
Часто встречается и термин ЗАКОН ДЕЙСТВУЮЩИХ МАСС, причем можно использовать любое из этих названий. Закон действующих масс и его математическое выражение - кинетическое уравнение - называют основным законом химической кинетики. Этот закон можно сформулировать так:
При постоянной температуре скорость химической реакции прямо пропорциональна произведению молярных концентраций реагентов.
Название основного закона химической кинетики связано с работами норвежских ученых Гульдберга и Вааге, опубликованными в 1864 и 1867 гг. Этими исследователями было экспериментально показано, что скорость реакции пропорциональна произведению "масс реагентов в реакции", то есть "действующих масс", откуда и возникло название.
Общее уравнение (3) потребуется нам только для обсуждения в последующих параграфах вопросов, связанных с химическим равновесием. В реальных химических реакциях одновременное столкновение между собой уже трех реагирующих частиц - редкое событие, поэтому таких реакций немного. Большинство химических реакций происходит либо при распаде одной частицы (А = Б + В + Г…), либо при столкновении между собой двух частиц (А + Б = В + Г…). Если уравнение реакции сложное, то, скорее всего, она включает в себя несколько более простых реакций, каждая из которых происходит путем попарных столкновений, либо путем распада одной частицы. Эти простые реакции называют элементарными реакциями. Только для таких - элементарных реакций - справедливо кинетическое уравнение (3).
Приведем пример. Для окислительно-восстановительной реакции:
K2Cr2O7 + 14 HI = 3 I2 + 2 CrI3 + 2 KI + 7 H2O
не следует торопиться записать кинетическое уравнение:
v = k[K2Cr2O7][HI]14 (неправильно!)
Эта сложная реакция на самом деле включает в себя несколько простых (элементарных) реакций. Трудно представить, что для образования продуктов должны одновременно столкнуться между собой одна молекула K2Cr2O7 и 14 молекул HI. Это совершенно невероятное событие! Кроме того, оба исходных соединения распадаются в растворе на ионы, поэтому трудно даже ожидать, что между собой должны столкнуться частицы восстановителя (I-) и окислителя (Cr2O72-) в виде анионов (ведь они отталкиваются друг от друга). Ион Cr2O72- должен претерпеть ряд сложных превращений, прежде чем превратится в частицу, столкновение которой с ионом иода действительно приведет к химической реакции. Для этого должно произойти несколько элементарных реакций, каждая из которых описывается своим собственным (простым) кинетическим уравнением и имеет свою константу скорости.
В итоге общую скорость реакции определяет какая-то самая медленная элементарная реакция. Такая реакция называется лимитирующей стадией. Как же найти общее кинетическое уравнение для нашей окислительно-восстановительной реакции? Сделать это можно только экспериментально. Оказалось, что скорость данной реакции при 25 оС зависит только от концентрации бихромата калия и НЕ ЗАВИСИТ от концентрации иодоводородной кислоты HI:
v = k[K2Cr2O7]
** Следовательно, лимитирующая стадия связана с каким-то превращением бихромата калия. Так кинетика помогает узнать механизм реакции. Если написать не просто уравнение реакции, включающее только исходные вещества и конечные продукты, но и все промежуточные вещества в этой реакции (часто они неустойчивы и выделить их невозможно), то мы получим запись механизма реакции. Именно промежуточные вещества определяют выбор того или иного возможного направления реакции. Поэтому знание механизма позволяет управлять реакцией по желанию химика. Для выяснения механизма требуются дополнительные исследования.
Приведем другой пример. Изучение реакции окисления NO кислородом показало, что в этом случае кинетическое уравнение соответствует полному химическому уравнению:
2 NO + O2 = 2 NO2
v = k[NO]2[O2]
Это редкий пример тримолекулярной реакции. Молекулярность реакции - это число исходных частиц, одновременно взаимодействующих друг с другом в одном элементарном акте реакции. Молекулярность реакции может составлять 1, 2 или 3. Соответственно различают мономолекулярные, бимолекулярные и тримолекулярные реакции. Например, реакция NH4+ = NH3 + H+является мономолекулярной, а реакция H+ + OH- = H2O - бимолекулярной.
О кинетическом уравнении v = k[A]a[B]b[C]c говорят, что оно имеет порядок по каждому из входящих в него веществ. Порядок реакции по данному веществу - это показатель степени при концентрации данного вещества в кинетическом уравнении. Например, уравнение v = k[NO]2[O2] имеет второй порядок по NO и первый порядок по О2. Сумма порядков по всем веществам (a + b + c) называется общим или суммарным порядком реакции. Например, кинетическое уравнение v = k[H+][OH-] имеет общий второй порядок. Уравнение v = k[NO]2[O2] имеет общий третий порядок. Уравнения типа v = k[NH4+] или v = k[K2Cr2O7] - первого порядка.
Для элементарных реакций порядок реакции - целочисленная величина, совпадающая с молекулярностью реакции. Для всех других (не элементарных, сложных) реакций их порядки МОЖНО ОПРЕДЕЛИТЬ ТОЛЬКО ЭКСПЕРИМЕНТАЛЬНО. Причем они могут иметь как целочисленные, так и дробные и (даже нулевое!) значение. В реальных кинетических исследованиях редко встречается порядок реакции выше третьего.
33. ЭЛЕКТРИЧЕСКИЕ ДИССОЦИАЦИЯ. сильные слабые электролиты
Электролитическая диссоциация -- процесс распада электролита на ионы при растворении его в полярном растворителе или при плавлении. Диссоциация в растворах
Диссоциация на ионы в растворах происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя -- его диэлектрическая проницаемость (Схема электролитической диссоциации).
Диссоциация при плавлении
Под действием высоких температур ионы кристаллической решётки начинают совершать колебания, кинетическая энергия повышается, и наступит такой момент (при температуре плавления вещества), когда она превысит энергию взаимодействия ионов. Результатом этого является распад вещества на ионы.
Классическая теория электролитической диссоциации
Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.
Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации ?, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс . Например, электролитическая диссоциация бинарного электролита KA выражается уравнением типа:
Константа диссоциации Kd определяется активностями катионов , анионов и недиссоциированных молекул следующим образом:
Значение Kd зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (?) может быть рассчитана при любой концентрации электролита с помощью соотношения:
,
где -- средний коэффициент активности электролита.
Сильные электролиты
Классическая теория электролитической диссоциации применима лишь к разбавленным растворам слабых электролитов. Сильные электролиты в разбавленных растворах диссоциированы практически полностью, поэтому представления о равновесии между ионами и недиссоциированными молекулами лишено смысла. Согласно представлениям, выдвинутым в 20--30-х гг. 20 в. В. К. Семенченко (СССР), Н. Бьеррумом (Дания), Р. М. Фуоссом (США) и др., в растворах сильных электролитов при средних и высоких концентрациях образуются ионные пары и более сложные агрегаты. Современные спектроскопические данные показывают, что ионная пара состоит из двух ионов противоположного знака, находящихся в контакте («контактная ионная пара») или разделённых одной или несколькими молекулами растворителя («разделённая ионная пара»). Ионные пары электрически нейтральны и не принимают участия в переносе электричества. В сравнительно разбавленных растворах сильных электролитов равновесие между отдельными сольватированными ионами и ионными парами может быть приближённо охарактеризовано, аналогично классической теории электролитической диссоциации, константой диссоциации (или обратной величиной -- константой ассоциации). Это позволяет использовать вышеприведённое уравнение для расчёта соответствующей степени диссоциации, исходя из экспериментальных данных.
В простейших случаях (большие одноатомные однозарядные ионы) приближённые значения константы диссоциации в разбавленных растворах сильных электролитов можно вычислить теоретически, исходя из представлений о чисто электростатическом взаимодействии между ионами в непрерывной среде -- растворителе.
34. Что такое кислота, соль, основание с точки зрения электрическарй диссациации . Произведения активности ионов
Кислоты, основания, соли с точки зрения теории электрической диссоциации».
Электролитическая диссоциация -- процесс распада электролита на ионы при растворении его в воде или при плавлении.
Кислоты - это электролиты при диссоциации которых образуются катионы водорода.
Растворы, в которых есть избыток катионов водорода, называются кислыми.
Основания - это электролиты, которые при растворении в воде образуют анионы гидроксидной группы и катионы металла.
Соль - это электролит, который при растворение в воде распадается на металлы и анионы кислотного остатка.
35. ДИХРОМАТРОМЕТРИЯ. ДИХРОМАТОМЕТРИЯ (бихроматометрия, хроматометрия), титриметрич. метод определения восстановителей, а также катионов металлов, образующих малорастворимые хроматы
Основана на применении стандартного р-ра К2Сr2O7. При титровании восстановителей дихромат восстанавливается по схеме: Сr2О72- + 14Н+ + 6е D 2Сr3+ + 7Н2О (стандартный электродный потенциал + 1,33 В). Реальный потенциал системы Cr(VI)/Cr(III) меняется в широких пределах в зависимости от состава среды - от 0,93 (0,1 М НСl) до 1,66 В (13 М Н3РО4).Во всех случаях, когда не требуется очень высокий окислит. потенциал титранта, дихроматометрия предпочтительнее перманганатометрии, т. к. титрант - водный р-р К2Сr2О7 -готовят по точной навеске, концентрация его практически не меняется длит. время, он не восстанавливается Сl и следами орг. в-в, обычно присутствующих в дистиллированной воде. Процесс проводят в кислой среде. Конечную точку титрования устанавливают с помощью внутр. окислит.-восстановит. индикаторов (напр., дифениламина, дифениламиносульфокислоты, N-фенилантраниловой к-ты), реже - с помощью внеш.индикаторов, напр. AgNO3, K3[Fe(CN)6], образующих окрашенные осадки с избытком титранта, или по появлению окраски ионов Cr(VI). Последний способ наим. точный. Дихроматометрию применяют для определения Fe(II), Te(IV), W(III), Mo(III), Sn(II), Ti(III), V(IV), SO32-, Fe(CN)64-, орг. в-в (гидрохинона, аскорбиновой к-ты и др.). Дихроматометрию используют также для определения необратимо восстанавливающихся окислителей (напр., хлоратов, нитратов), к-рые предварительно восстанавливают известным объемом стандартного р-ра Fe(II). Избыток Fe(II) оттитровывают дихроматом с индикаторамидифениламином, дифениламиносульфокислотой (в присут. Н3РО4) или N-фенилантраниловой к-той. Этот вариант дихроматометрии иногда наз. обратным феррометрич. титрованием. Дихроматометрич. определениекатионов таких металлов, как Ag(I), Ba, Pb(II), основано на их взаимодействии с К2Сr2О7 с образованием малорастворимых в воде хроматов (т. наз. осадительное титрование). Конечную точку устанавливают с помощью внеш. индикатора AgNO3. При обратном титровании избыток ионов Сr2О72- после осаждениях роматов оттитровывают р-ром соли Fe(II) с ферроином в качестве индикатора или р-ром Na2S2O3 с KI и крахмалом. Т. М. Малютина.
36. Буферные системы ионах химии
Буферные системы, буферные растворы, буферные смеси, системы, поддерживающие определённую концентрацию ионов водорода Н+, то есть определённую кислотность среды. Кислотность буферных растворов почти не изменяется при их разбавлении или при добавлении к ним некоторых количеств кислот или оснований.
Примером буферной системы служит смесь растворов уксусной кислоты CH3COOH и её натриевой солиCH3COONa. Эта соль как сильный электролит диссоциирует практически нацело, т. е. даёт много ионовCH3COO-. При добавлении к буферной системе сильной кислоты, дающей много ионов Н+, эти ионы связываются ионами CH3COO- и образуют слабую (то есть мало диссоциирующую) уксусную кислоту:
Наоборот, при подщелачивании буферной системы, то есть при добавлении сильного основания (например, NaOH), ионы OH- связываются Н+-ионами, имеющимися в буферной системе благодаря диссоциации уксусной кислоты; при этом образуется очень слабый электролит -- вода:
По мере расходования Н+-ионов на связывание ионов OH- диссоциируют всё новые и новые молекулыCH3COOH, так что равновесие (1) смещается влево. В результате, как в случае добавления Н+-ионов, так и в случае добавления ОН--ионов, эти ионы связываются и потому кислотность раствора практически не меняется.
Кислотность растворов принято выражать так называемым водородным показателем pH (для нейтральныхрастворов pH=7, для кислых -- pH меньше, а для щелочных -- больше 7). Приливание к 1 л чистой воды 100 мл 0,01 молярного раствора HCl (0,01 М) изменяет pH от 7 до 3. Приливание того же раствора к 1 л буферной системы CH3COOH + CH3COONa (0,1 М) изменит pH от 4,7 до 4,65, то есть всего на 0,05. В присутствии 100 мл 0,01 М раствора NaOH в чистой воде pH изменится от 7 до 11, а в указанной буферной системе лишь от 4,7 до 4,8. Кроме рассмотренного, имеются многочисленные другие буферные системы (примеры см. в табл.). Кислотность (и, следовательно, pH) буферной системы зависит от природы компонентов, их концентрации, а для некоторых буферных систем и от температуры. Для каждой буферной системы pH остаётся примерно постоянным лишь до определённого предела, зависящего от концентрации компонентов.
Буферные системы широко используются в аналитической практике и в химическом производстве, так как многие химические реакции идут в нужном направлении и с достаточной скоростью лишь в узких пределах pH. Буферные системы имеют важнейшее значение для жизнедеятельности организмов; они определяют постоянство кислотности различных биологических жидкостей (крови, лимфы, межклеточных жидкостей). Основные буферные системы организма животных и человека: бикарбонатная (угольная кислота и её соли), фосфатная (фосфорная кислота и её соли), белки (их буферные свойства определяются наличием основных и кислотных групп). Белки крови (прежде всего гемоглобин, обусловливающий около 75% буферной способности крови) обеспечивают относительную устойчивость pH крови. У человека pH крови равен 7,35--7,47 и сохраняется в этих пределах даже при значительных изменениях питания и др. условий. Чтобы сдвинуть pH крови в щелочную сторону, необходимо добавить к ней в 40--70 раз больше щёлочи, чем к равному объёму чистой воды. Естественные буферные системы в почве играют большую роль в сохранении плодородия полей.
37. Классификация ионов
химический анализ количественный реакция
Иомн (др.-греч. ??? -- идущее) -- одноатомная или многоатомная электрически заряженная частица, образующаяся в результате потери или присоединения атомом или молекулой одного или нескольких электронов. Ионизация (процесс образования ионов) может происходить при высоких температурах, под воздействием электрического поля.
В виде самостоятельных частиц ионы встречаются во всех агрегатных состояниях вещества -- в газах (в частности, в атмосфере), в жидкостях (в расплавах и растворах), в кристаллах и в плазме (в частности, в межзвёздном пространстве).
Заряд иона кратен заряду электрона. Понятие и термин «ион» ввёл в 1834 году Майкл Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду) -- анионами.
Являясь химически активными частицами, ионы вступают в реакции с атомами, молекулами и между собой. В растворах ионы образуются в результате электролитической диссоциации и обусловливают свойства электролитов.
Аналитическая классификация катионов В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов, позволяющее отделять (или отличать) одни группы ионов от других. Существуют разные системы группового разделения ионов: сероводородная, кислотно-основная, аммиачно-фосфатная, тиоацетамидная и т. д. Каждая из этих систем имеет свои преимущества и недостатки. Основным недостатком сероводородной системы является необходимость работы с сероводородом, что требует хорошей вентиляции, склонность к образованию коллоидных сульфидных осадков, в результате чего нарушается разделение катионов на группы, и т. д. В кислотно-основной системе при разделении групп можно встретиться с затруднениями, особенно если концентрации разделяемых катионов сильно различаются. С подобными же затруднениями можно встретиться и в других системах разделения. Сознательный подход к групповому разделению позволяет в каждом конкретном случае использовать для этой цели метод, наиболее подходящий для анализируемой смеси ионов. Классический систематический метод качественного анализа катионов основан на сульфидной классификации катионов, в которой катионы подразделяются на пять групп на основании различия в растворимости их сульфидов, хлоридов, карбонатов и гидроксидов (см. табл. 3). Основываясь на приведенных в табл. 3 данных, операцию обнаружения катионов различных аналитических групп проводят следующим образом. 1. Исследуемый раствор подкисляют разбавленной НCl. При этом ионы V группы осаждаются в виде соответствующих хлоридов. 2. Отделив осадок, пропускают через кислый раствор газообразный H2S. При этом катионы IV группы осаждаются в виде сульфидов. Для отделения ионов IVБ подгруппы осадок обрабатывают a2S, после чего в осадке остаются только сульфиды катионов IVА подгруппы. 3. Раствор после отделения осадка сульфидов ионов IV группы нейтрализуют H4OH (с H4C1) и обрабатывают ( H4)2S. При этом осаждаются сульфиды или гидроксиды (в случае А13 ,Сг3 ) катионов III группы. 4. Разрушив избыток ( H4)2S кипячением с уксусной кислотой, на раствор действуют ( H4)2CO3. При этом катионы II группы выпадают в осадок в виде карбонатов, а катионы I группы остаются в растворе, где их и открывают. Обнаружение иона H4 , который в ходе анализа вводят в раствор с реактивами, проводят в отдельной порции исследуемого раствора с помощью специфической реакции (щелочь в газовой камере) или реактива Несслера, представляющего собой смесь K2 и КОН. Реактив Несслера при взаимодействии с солями аммония образует красно-бурый осадок: H4C1 2K2I 7KI KCl 3H2O Связь сульфидной классификации катионов с электронной конфигурацией атомов и ионов Растворимость солей и гидроксидов катионов, лежащая в основе аналитической классификации, как и все другие свойства катионов, функционально связана с положением соответствующих элементов в периодической системе. Катионы s-элементов, обладающие 2- и 8-электронным внешним слоем (Li , a , K , Mg2 , Са2 , Sr2 , Ba2 и др.), являются слабыми поляризаторами и почти не поляризуются сами. При взаимодействии подобных катионов с сульфид-ионами не происходит заметной деформации электронных оболочек.
Такие катионы, как правило, не образуют труднорастворимых в воде сульфидов и относятся к I и II аналитическим группам. Катионы Ag , Hg2 , As(III), As(V), S , Sb(III), Pb2 , Bi3 и др., обладающие многоэлектронным внешним слоем (18 и 18 2), являются сильными поляризаторами и в то же время легко поляризуются сами. При взаимодействии подобных катионов с легко деформируемыми электронными оболочками сульфид-ионов происходит сильная поляризация обоих ионов и значительная деформация их внешних электронных оболочек. В соответствии с этим все катионы, обладающие внешней электронной структурой 18е- или (18 2e-) как правило, образуют сульфиды с очень малыми значениями констант растворимости и потому принадлежат к IV и V аналитическим группам. Катионы с переходной электронной структурой, т. е. с незаконченным 18-электронным внешним слоем (M 2 , Fc2 , Fe3 , Co2 , i2 и др.), занимают промежуточное положение. Являясь сравнительно сильными поляризаторами, они в то же время заметно поляризуются сами и потому при взаимодействии с сульфид-ионами дают труднорастворимые сульфиды. Эти катионы образуют III аналитическую группу. Их сульфиды имеют значительно большие значения констант растворимости, чем катионы IV и V групп. Таким образом, сульфидная классификация катионов, основанная на признаке, имеющем на первый взгляд чисто практический характер, ни в коей мере не случайна, а связана с электронной конфигурацией атомов и ионов. Группа катионов I II III IV V А Б А Б Характеристика группы Сульфиды и карбонаты растворимы в воде Сульфиды растворимы в воде, карбонаты - нет Сульфиды или образующиеся вместо них гидроксиды растворимы в разбавленных кислотых Сульфиды нерастворимы в разбавленных кислотых Гидроксиды амфитерны Гидроксиды неамфотерны Сульфиды нерастворимы в a2S Сульфиды растворимы в a2S Хлориды нерастворимы в воде Катионы a , K , H4 Mg2 , Ca2 , Sr2 , Ba2 Al3 , Cr3 , Z 2 Fe2 , Fe3 , M 2 , Co2 , i2 Cu2 , Bi3 , Cd2 As(III, V), Sb(III, V), S 2 , S (IV), Hg2 Ag , Hg22 , Pb2 Групповой реагент Нет ( H4)2CO3 ( H4)2S в присутствии H4OH и H4Cl H2S в присутствии HCl HCl
Подобные документы
Понятие количественного и качественного состава в аналитической химии. Влияние количества вещества на род анализа. Химические, физические, физико-химические, биологические методы определения его состава. Методы и основные этапы химического анализа.
презентация [59,0 K], добавлен 01.09.2016Теоретическая основа аналитической химии. Спектральные методы анализа. Взаимосвязь аналитической химии с науками и отраслями промышленности. Значение аналитической химии. Применение точных методов химического анализа. Комплексные соединения металлов.
реферат [14,9 K], добавлен 24.07.2008Сущность и предмет аналитической химии как науки. Задачи и методы качественного и количественного анализа химических веществ. Примеры качественных реакций на катионы. Характеристика явлений, сопровождающих реакции мокрым (в растворах) и сухим путями.
презентация [1,0 M], добавлен 27.04.2013Понятие химического анализа. Теоретические основы количественного химического анализа. Требования к химическим реакциям. Понятие и суть эквивалента вещества. Понятие химического равновесия и законы действующих масс. Константы равновесия реакций и их суть.
реферат [36,0 K], добавлен 23.01.2009Понятие и расчет скорости химических реакций, ее научное и практическое значение и применение. Формулировка закона действующих масс. Факторы, влияющие на скорость химических реакций. Примеры реакций, протекающих в гомогенных и гетерогенных системах.
презентация [1,6 M], добавлен 30.04.2012Потенциометрический метод - метод качественного и количественного анализа, основанный на измерении потенциалов, возникающих между испытуемым раствором и погруженным в него электродом. Кривые потенциометрического титрования.
контрольная работа [34,3 K], добавлен 06.09.2006Рассмотрение пособов разделения смесей. Изучение особенностей качественного и количественного анализа. Описание выявления катиона Сu2+. Проведение анализа свойств веществ в предлагаемой смеси, выявление метода очистки и обнаружение предложенного катиона.
курсовая работа [87,8 K], добавлен 01.03.2015Практическое значение аналитической химии. Химические, физико-химические и физические методы анализа. Подготовка неизвестного вещества к химическому анализу. Задачи качественного анализа. Этапы систематического анализа. Обнаружение катионов и анионов.
реферат [65,5 K], добавлен 05.10.2011Понятие рефракции как меры электронной поляризуемости атомов, молекул, ионов. Оценка показателя преломления для идентификации органических соединений, минералов и лекарственных веществ, их химических параметров, количественного и структурного анализа.
курсовая работа [564,9 K], добавлен 05.06.2011Понятие анализа в химии. Виды, этапы анализа и методы: химические (маскирование, осаждение, соосаждение), физические (отгонка, дисцилляция, сублимация) и физико-химические (экстракция, сорбция, ионный обмен, хроматография, электролиз, электрофорез).
реферат [26,4 K], добавлен 23.01.2009