Квантовые концепции в химии

Рассмотрение периодической системы элементов Д.И. Менделеева с точки зрения квантовой теории. Составление схемы формирования электронных конфигураций атомов. Понятия валентности атома элемента и химической связи. Вероятный характер химических реакций.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 04.01.2012
Размер файла 171,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ПСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

КОНТРОЛЬНАЯ РАБОТА

"Квантовые концепции в химии"

ВЫПОЛНИЛ:

Студентка I курса

заочной формы обучения

Нестерова Татьяна Алексеевна

ПРОВЕРИЛ:

Однобоков В.В.

Псков, 2010

  • План
  • 1. Периодическая система элементов Д.И. Менделеева с точки зрения квантовой теории
  • 2. валентность И Химическая связь
    • 2.1 Валентность
    • 2.2 Химическая связь
    • 3. ВЕРОЯТНЫЙ ХАРАКТЕР ХИМИЧЕСКИХ РЕАКЦИЙ
  • Список используемой литературы

1. Периодическая система элементов Д.И.Менделеева с точки зрения квантовой теории

Теория Периодической Системы была преимущественно создана Н.Бором (1913-21) на базе предложенной им квантовой модели атома. Учитывая специфику изменения свойств элементов в периодической системе и сведения об их атомных спектрах, Бор разработал схему построения электронных конфигураций атомов по мере возрастания Z, положив ее в основу объяснения явления периодичности и структуры периодической системы. Эта схема опирается на определенную последовательность заполнения электронами оболочек (называемых также слоями, уровнями) и подоболочек (оболочек, подуровней) в атомах в соответствии с увеличением Z. Сходные электронные конфигурации внешних электронных оболочек в атомах периодически повторяются, что и обусловливает периодическое изменение химических свойств элементов. В этом состоит главная причина физической природы феномена периодичности. Электронные оболочки, за исключением тех, которые отвечают значениям 1 и 2 главного квантового числа n, не заполняются последовательно и монотонно до своего полного завершения (числа электронов в последовательных оболочках составляют: 2, 8, 18, 32, 50, …); построение их периодически прерывается появлением совокупностей электронов (составляющих определенные подоболочки), которые отвечают большим значениям n. В этом заключается существенная особенность "электронного" истолкования структуры периодической системы.

Схема формирования электронных конфигураций атомов, лежащая в основе теории периодической системы, отражает, таким образом, определенную последовательность появления в атомах по мере роста Z совокупностей электронов (подоболочек), характеризующихся некоторыми значениями главного и орбитального квантовых чисел. Данная схема в общем виде записывается в виде таблицы.

Вертикальными чертами разделены подоболочки, которые заполняются в атомах элементов, составляющих последовательные периоды периодической системы (номера периодов обозначены цифрами сверху); жирным шрифтом выделены подоболочки, завершающие формирование оболочек с данным n.

Числа электронов в оболочках и подоболочках определяются на основании Паули принципа. Применительно к электронам, как частицам с полуцелым спином, он постулирует, что в атоме не может быть двух электронов с одинаковыми значениями всех квантовых чисел. Этот принцип не определяет однако, последовательность формирования электронных конфигураций атомов по мере возрастания Z. Из приведенной выше схемы находятся емкости последовательных периодов: 2, 8, 18, 32, 32, ….

Реальная схема построения электронных конфигураций атомов описывается так называемым правилом, сформулированным (1951) В.М.Клечковским. Построение электронных конфигураций происходит в соответствии с последовательным увеличением суммы. При этом в пределах каждой такой суммы сначала заполняются подоболочки с большими и меньшими , затем с меньшими и большими.

Начиная с шестого периода построение электронных конфигураций атомов в действительности приобретает более сложный характер, что выражается в нарушении четких границ между последовательно заполняющимися подоболочками.

Реальная схема первоначально не была выведена из каких-либо строгих теоретических представлений. Она основывалась на известных химических свойствах элементов и сведениях об их спектрах. Действительное физическое обоснование реальная схема получила благодаря применению методов квантовой механики к описанию строения атомов. В квантовомеханической интерпретации теории строения атомов понятие электронных оболочек и подоболочек при строгом подходе утратило свой исходный смысл; ныне широко используется представление об атомных орбиталях. Тем не менее, разработанный Бором принцип физической интерпретации явления периодичности не потерял своего значения и в первом приближении достаточно исчерпывающе объясняет теоретические основы периодической системы. Во всяком случае, в публикуемых формах изображения периодической системы отражается представление о характере распределения электронов по оболочкам и подоболочкам.

2. Химическая связь и валентность

2.1 Валентность

Валентность - это способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи. Количественной мерой валентности атома элемента служит число атомов водорода или кислорода (эти элементы принято считать соответственно одно- или двухвалентными), которые присоединяет образуя гидрид или оксид. Валентность элемента может быть определена и по другим атомам с известной валентностью. В различных соединениях атомы одного и того же элемента могут проявлять различную валентность.

До развития электронных представлений о строении вещества валентность трактовали формально. В рамках электронной теории химической связи валентность атома определяется числом его неспаренных электронов в основном или возбужденном состояниях, участвующих в образовании общих электронных пар с электронами других атомов. Поскольку электроны внутренних оболочек атома не участвуют в образовании химических связей, максимальную валентность элемента считают равной числу электронов во внешней электронной оболочке атома. Максимальная валентность элементов одной и той же группы периодической системы обычно соответствует ее порядковому номеру. Например максимальная валентность должна быть равна 4, ее равен 7. Электростатическая теория химической связи привела к формулировке близкого к валентности и дополняющего ее понятия степени окисления (окислительного числа). Степень окисления соответствует заряду который приобрел бы атом, если бы все электронные пары его химических связей сместились в сторону более электроотрицательных атомов. При этом электронные пары, обобщенные одинаковыми атомами, делятся пополам. По знаку степень окисления, как правило, совпадает с экспериментально определенным эффективным зарядом атома, но численно намного превышает его. Например степень окисления серы равна +6, а ее эффективный заряд - около +2.

Термин "валентность" введен в 60-х гг. 19 в. На представлениях о валентности была основана классическая теория химического строения А.М.Бутлерова. В современной теории химического строения представления о валентности часто отождествляют с общим учением о химической связи.

2.2 Химическая связь

Химия изучает процессы превращения молекул при воздействиях и при воздействии на них внешних факторов (теплоты, света, электрического тока, магнитного поля), во время которых образуются новые химические связи. Под химической связью понимается результат взаимодействия между атомами, выражающийся в создании определенной конфигурации атомов, отличающий один тип молекулы от другого. До создания квантовой механики полагали, что существует особая химическая сила, вызывающая связь атомов, которая, в отличие от других сил природы, обладает насыщаемостью. Квантовая механика следующим образом объяснила химические явления: взаимодействие электронных оболочек атомов порождает химические связи. Если атомные конфигурации подходят друг к другу, возникает одна округлая структура, несколько большая, чем до этого был каждый атом по отдельности. Так получается насыщенная молекула, и присоединить к ней еще какой-то атом почти невозможно. При образовании молекулы перекрытие электронных облаков приводит к образованию между ядрами некоторого отрицательного заряда, который как бы "цементирует" молекулу, стягивая ядра к области перекрытия. Энергия этого взаимодействия - порядка 1000 кДж/моль (у молекулы азота - 940, цезия - 42). Для сравнения, энергия межмолекулярного взаимодействия составляет порядка 100 кДж/моль, так что отличить их по энергии трудно, поэтому важно выделить главную черту химической связи - обобществление валентных электронов и перенос заряда, если связь образуется между разными атомами.

Главные отличительные черты химической связи:

1. понижение полной энергии многоатомной системы по сравнению с энергией изолированных атомов или атомных фрагментов, из которых она образована;

2. существенное перераспределение электронной плотности в области химической связи по сравнению с простым наложением электронных плотностей не связанных атомов или атомных фрагментов, сближенных на расстоянии связи.

Последняя особенность наиболее точно отделяет химическую связь от межмолекулярных взаимодействий, тогда как энергетический критерий является менее определенным.

Природа химической связи полностью определяется электрическими кулоновскими взаимодействиями ядер и электронов, однако правильное описание распределения электрического заряда возможно лишь с учетом законов квантовой механики. Точные расчеты зависимостей полной энергии и ее компонент от межъядерного расстояния для простейшей структуры с химической связью - молекулярного иона с одноэлектронной связью - показывают, что минимум полной энергии.

При этом кинетическая энергия электрона возрастает и наполовину компенсирует понижение потенциальной. Результирующий эффект (понижение энергии) превышает энергию расталкивания положительно заряженных ядер и обусловливает образование химической связи с энергией 255 кДж/моль. Такая интерпретация природы химической связи, дополненная учетом эффектов межэлектронного отталкивания и электронной корреляции, в целом распространяется на описание связей в двух- и многоэлектронных молекулах.

Полагая движение электронов независимым от намного более медленных ядерных движений (адиабатической приближение), можно вполне строго описать образование химической связи как результат действия кулоновских сил притяжения положительно заряженных атомных ядер к электронному облаку, сконцентрированному в межъядерном пространстве. Заряд этого облака стремится приблизить ядра друг к другу (связывающая область), тогда как электронный заряд вне межъядерного пространства (несвязывающая область) стремится ядра раздвинуть. В этом же направлении действуют и силы ядерного отталкивания. При сближении атомов на равновесное расстояние часть электронной плотности из несвязывающей области переходит в связывающую. Электронный заряд распределяется в обеих областях так, чтобы силы, стремящиеся сблизить и оттолкнуть ядра, были одинаковыми. Это достигается при некотором равновесном расстоянии, соответствующем длине связи.

Варианты классификации химической связи определяются различными ее характеристиками или способами описания (в духе классической теории валентности или в рамках квантовохимических представлений; следует подчеркнуть, что между этими подходами не всегда может быть установлено однозначное соответствие). В теории валентности каждой связи между атомами соответствует одна электронная пара. В зависимости от способа ее образовании из электронов связываемых атомов можно выделить ковалентную связь и координационную связь. Если электронная пара химической связи полностью принадлежит одному из атомов, то образуется ионная связь. По степени смещения центра тяжести электронного облака связывающих электронов химические связи делят на неполярные (равноудаленность от обоих атомных центров) и полярные (промежуточные между неполярными и ионными). Ковалентные и координационные связи подразделяются по числу образующих их электронных пар на простые и кратные - двойные, тройные и четверные.

При рассмотрении химической связи, основанном на квантовомеханических расчетах волновых функций многоатомных молекул, ионов, кристаллов, понятие двухцентровой связи, используемое в классической теории валентности, не получает прямого эквивалента вследствие делокализзации электронных орбиталей по нескольким (нередко всем) атомным центрам. Переход к локализованным орбиталям часто сохраняет возможность анализировать химические связи в многоатомных молекулах в рамках традиционных представлений о связях, поделенных и неподеленных электронных парах. Типичные примеры соединений с локализованными двухцентровыми связями - насыщенные углеводороды. В том случае, когда процедура локализации не позволяет однозначно выделить в молекуле локализованные двухцентровые орбитали, реализующиеся в ней химические связи относят к многоцентровым связям, характерным для ненасыщенных соединений с сопряженными связями. Предельный случай делокализации - металлическая связь, обусловленная перемещением валентных электронов металла во всем пространстве кристаллической решетки, образуемой его положительными ионами.

Основные характеристики химической связи - прочность, длина, полярность. Длина химической связи меньше суммы Ван-дер-ваальсовых радиусов атомов, образующих связь.

Для измерения энергии связи используют калории, отнесенные к одному молю (числу граммов, равному относительной молекулярной массе) и деленные на число Авогадро N. Эта величина определяет энергию связи одной молекулы. Для кислорода она равна 116000 кал/моль, для водорода - 103000 кал/моль, т.е. меняется незначительно.

менделеев квантовый валентность химический

3. Вероятностный характер химических реакций

Молекулы находятся в непрерывном движении, сталкиваясь друг с другом. Так как электронные оболочки молекул отталкиваются, то они при столкновениях отскакивают. При сильных соударениях может высвободиться достаточное количество энергии для перегруппировки электронов в столкнувшихся молекулах и формирования нового набора связей, т.е. образовании новых соединений. Так происходят химические реакции. Обычно стрелка в химическом уравнении обращена в сторону более низкой суммарной энергии связей, т.е. показывает, в какую сторону реакция стремится идти самопроизвольно.

Химические реакции - это основа химии. Одни реакции идут в обе стороны, другие только в одну, третьи - вообще не идут. Важно понять, от чего зависит возможность осуществления реакции, перестройки химических связей.

Среди всех возможностных соединений реагентов есть образования с разной степенью устойчивости. Менее устойчивое соединение обладает большей свободной энергией, значит, вновь образованная группировка менее устойчива, чем исходные компоненты. Чтобы преодолеть эту разницу в значениях свободной энергии, нужен дополнительный запас энергии, которую в химии называют энергией активации. Она определяет скорость протекания реакции, но ее бывает недостаточно для преодоления барьера, и реакция не идет. Поэтому стараются снизить величину энергии активации путем введения катализаторов, с помощью которых осуществляются многие технологические процессы. Каталитическими являются и большинство биохимических процессов в живой клетке. Расчет энергии активации проводится в квантовой химии, и он позволяет найти оптимальный путь для осуществления нужных химических реакций.

Одним из крупных достижений ХIХ в. явилось выяснение характера протекания химических реакций. Многие опыты показали, что молекулы обладают разным химическим сродством. Химические реакции могут протекать с разной скоростью, с поглощением или выделением тепла, быть обратимыми или нет и т.д.

Развитие квантовой химии позволило рассмотреть на микроуровне протекание реакций, отдельные молекулы и их электронные структуры. Использование термодинамического подхода, описывающего не отдельные объекты, а систему в целом, позволяет глубже понять тенденции течения реакций. В 1952 г. японский физик-химик Кэнити Фукуи продолжил работу над методом молекулярных орбиталей и пришел к оценке важности переходного состояния, или активированного комплекса, подчеркнув особую роль внешних электронов в течение реакций, в том числе и каталитических.

При химических превращениях на первый план выступают реакционная способность, энергетические и энтропийные ее возможности, скорость химической реакции, каталитические и кинетические закономерности.

Причина образования химических связей - выигрыш в энергии системы связанных атомов по сравнению с изолированными атомами. Строение электронных оболочек и энергетические характеристики разных атомов сильно отличаются. Неудивительно, что и выигрыш в энергии при образовании связей между ними разный и достигается разными способами. Отсюда и разные типы химических связей между атомами. Посмотрите на построенный вами график зависимости энергии ионизации от порядкового номера элемента. Как видно из этого графика, энергия ионизации атомов каждого из элементов, образующих благородные газы (Не, Nе, Ar, Кr и др.), превышает энергию ионизации атомов элементов как предыдущего, так и последующего периодов. Следовательно, атомы благородных газов совершенно не склонны отдавать свои электроны. Теперь посмотрите на аналогичный график зависимости энергии сродства к электрону от порядкового номера элемента. Как видите, эта зависимость только в общих чертах соответствует тем простейшим закономерностям, которые мы проследили в предыдущей главе. И все же из графика видно, что у атомов благородных газов энергия сродства к электрону меньше, чем у большинства других атомов, кроме того она имеет отрицательные значения. Следовательно, атомы элементов, образующих благородные газы, совершенно не склонны принимать чужие электроны. Если эти атомы не склонны ни отдавать свои, ни принимать чужие электроны, то, следовательно, их электронные оболочки энергетически выгодны, а потому - особо устойчивы. Это объясняет, почему, принимая или отдавая электроны, атомы других элементов " стремятся" приобрести валентную конфигурацию атомов благородных газов.Так как у атомов благородных газов на всех валентных подуровнях находится максимально возможное число электронов (свободных мест нет) электронные оболочки атомов благородных газов часто называют завершенной электронной оболочкой. Своих валентных электронов у атома для этого либо слишком много, либо слишком мало. Какие же у него есть возможности для приближения своей электронной оболочки к завершенной? Первая возможность: отдать другому атому " лишние" электроны или отнять у другого атома " недостающие" электроны. И в том, и в другом случае образуются ионы. Но обратите внимание: энергия ионизации любого атома больше, чем энергия сродства к электрону любого другого атома. За счет чего же происходит передача электронов от одного атома другому, ведь затратить нужно больше энергии, чем ее выделится?

Чтобы понять, за счет чего может возникнуть выигрыш в энергии, рассмотрим систему, состоящую из двух разноименно заряженных частиц а- и б +. Расстояние между частицами. Так как разноименно заряженные частицы притягиваются, то такая система обладает потенциальной энергией, которая может выделиться при сближении этих частиц. В результате система перейдет в состояние с меньшей энергией. Именно это и происходит при образовании химической связи между ионами. Ведь получившиеся разноименно заряженные ионы притянутся друг к другу, между ионами возникнет ионная связь и образуется ионный кристалл. Выигрыш в энергии при образовании связи компенсирует затраты на образование ионов.

Если же у атомов близкие склонности отдавать (или принимать) электроны, то передать электроны друг другу они не могут, и им остается только попытаться использовать и свои, и чужие электроны совместно, не отдавая и не принимая их полностью. Это - вторая возможность атома образовать завершенную электронную оболочку. В этом случае при образовании связи также компенсируются все энергетические затраты, но причины здесь более сложные. Посмотрим, в каких случаях и как атомы осуществляют эти возможности.

Примеры образования ионных соединений

Электронные формулы исходных атомов

Уравнения передачи электронов

Электронные формулы образующихся ионов

Структурная формула вещества(*)

Простейшая формула вещества

Na - [Ne]3s1

Cl - [Ne]3s23p5

Na - e- = Na+

Cl + e- = Cl-

Na+ - [Ne]

Cl- - [Ar]

(Na)(Cl)

NaCl

Ca - [Ar]4s2

Br - [Ar,3d10]4s24p5

Ca - 2e- = Ca2+

Br + e- = Br-

Ca2+ - [Ar]

Br- - [Kr]

(Ca2)(Br)2

CaBr2

Fe - [Ar]4s23d6

S - [Ne]3s23p4

Fe - 2e- = Fe2+

S + 2e- = S2-

Fe2+ - [Ar]3d6

S2- - [Ar]

(Fe2)(S2)

FeS

В структурных формулах веществ с ионными связями указываются формальные заряды: , 2, 2 и т. д

1. Если связываемые атомы сильно отличаются по размерам, то маленькие атомы (склонные принимать электроны) отнимут электроны у больших атомов (склонных отдавать электроны), и образуется ионная связь. Энергия ионного кристалла меньше, чем энергия изолированных атомов, поэтому ионная связь возникает даже тогда, когда атому не удается, отдавая электроны, полностью завершить свою электронную оболочку (незавершенным может остаться d- или f-подуровень). Рассмотрим примеры.

2. Если связываемые атомы маленькие, то все они склонны принимать электроны, а отдавать их не склонны; поэтому отобрать друг у друга электроны такие атомы не могут. В этом случае связь между ними возникает за счет попарного обобществления неспаренных валентных электронов: один электрон одного атома и один электрон другого атома с разными спинами образуют пару электронов, принадлежащую обоим атомам и связывающую их. Так образуется ковалентная связь. Образование ковалентной связи в пространстве можно представить себе как перекрывание электронных облаков неспаренных валентных электронов разных атомов. При этом пара электронов образует общее электронное облако, связывающее атомы. Чем больше электронная плотность в области перекрывания, тем больше выделяется энергии при образовании такой связи. Прежде чем рассмотреть простейшие примеры образования ковалентной связи, договоримся валентные электроны атома обозначать точками вокруг символа этого атома, причем парой точек - неподеленные электронные пары и пары электронов ковалентной связи, а отдельными точками - неспаренные электроны. При таком обозначении валентная электронная конфигурация атома, например, фтора будет изображаться символом , а атома кислорода - . Построенные из таких символов формулы называются электронными формулами или формулами Льюиса (американский химик Гилберт Ньютон Льюис предложил их в 1916 году). По объему передаваемой информации электронные формулы относятся к группе структурных формул. Примеры образования атомами ковалентных связей:

3. Если связываемые атомы большие, то все они более или менее склонны отдавать свои электроны, а склонность принимать чужие электроны у них незначительна. Поэтому образовать между собой ионную связь эти большие атомы тоже не могут. Ковалентная связь между ними также оказывается невыгодной, так как электронная плотность в больших по размеру внешних электронных облаках незначительна. В этом случае при образовании из таких атомов химического вещества происходит обобществление валентных электронов всех связываемых атомов (валентные электроны становятся общими для всех атомов), и образуется металлический кристалл (или жидкость), в котором атомы связаны металлической связью.

Как определить, связи какого типа образуют атомы элементов в определенном веществе?

По положению элементов в естественной системе химических элементов, например:

1. Хлорид цезия. Атом цезия большой, легко отдает электрон, а атом хлора маленький и легко его принимает, следовательно, связь в хлориде цезия ионная.

2. Диоксид углерода. Атомы углерода и кислорода не сильно отличаются по размерам - оба маленькие. По склонности принимать электроны они отличаются незначительно, следовательно связь в молекуле ковалентная.

3. Азот. Простое вещество. Связываемые атомы одинаковые и при этом маленькие, следовательно, связь в молекуле азота ковалентная.

4. Кальций. Простое вещество. Связываемые атомы одинаковые и довольно большие, следовательно связь в кристалле кальция металлическая.

5. Барий-тетраалюминий. Атомы обоих элементов достаточно велики, особенно атомы бария, поэтому оба элемента склонны только отдавать электроны, следовательно, связь в этом соединении металлическая.

Список используемой литературы

1. Химия. Большой энциклопедический словарь / Гл. ред. И.Л.Кнунянц - 2-е изд. - Большая Российская энциклопедий, 2000

2. Химическая энциклопедия: В 5 т.: т.2 - М.: Сов. Энциклопедия, 1999.

3. Дубнищева Татьяна Яковлевна. Концепции современного естествознания. Учебник под ред. Акад. РАН М.Ф.Жукова. - Новосибирск: ООО "Издательство ЮКЭА", 1999.

4. Кожевников Н.М., Краснодембский Е.Г., Ляпцев А.В., Тульверт В.Ф. Концепция современного естествознания: Учебное пособие / Под ред. Н.М. Кожевникова. - СПб.: Изд-во СПбГУЭФ, 2001

Размещено на Allbest.ru


Подобные документы

  • Формулировка периодического закона Д. И. Менделеева в свете теории строения атома. Связь периодического закона и периодической системы со строением атомов. Структура периодической Системы Д. И. Менделеева.

    реферат [9,1 K], добавлен 16.01.2006

  • Электронное строение атомов элементов периодической системы. Устойчивость электронных конфигураций. Характеристика семейств элементов. Изучение принципа наименьшей энергии и правила Хунда. Порядок заполнения атомных орбиталей в основном состоянии атома.

    презентация [676,5 K], добавлен 22.04.2013

  • Понятие о валентности как свойстве атомов присоединять определённое число атомов другого элемента. Определение валентности элементов по формулам. Сумма единиц валентности всех атомов одного элемента равна сумме единиц валентности атомов другого элемента.

    лекция [10,4 K], добавлен 16.05.2004

  • Изучение периодического закона и периодической системы химических элементов Д.И. Менделеева как основы современной химии, которые относятся к научным закономерностям, отражают явления, реально существующие в природе. Основные сведения строения атомов.

    реферат [28,9 K], добавлен 18.01.2011

  • Структура периодической системы химических элементов: история и современность. Структурная организация электронных систем в плоскости орбитального квантового числа и электронных подоболочек. Исторические предпосылки возникновения теории Нурлыбаева.

    курсовая работа [672,3 K], добавлен 22.01.2015

  • Атом как мельчайшая частица элемента, характеристика его структуры. Сущность и главные этапы развития науки о строении атома. Квантовая теория света. Основные положения современной концепции строения атома. Волновое уравнение Шредингера. Квантовые числа.

    презентация [744,7 K], добавлен 22.04.2013

  • Особенности валентности - образования у атомов определенного числа химических связей. Основные типы химической связи: ионная, ковалентная, водородная, металлическая. Виды кристаллов по типу химической связи: ионные, атомные, металлические, молекулярные.

    курсовая работа [241,7 K], добавлен 19.10.2013

  • Примеры важнейших оксидов. Сравнение качественного и количественного состава в молекулах HCl, H2O, NH3, CH4. Эволюция понятия "валентность". Последовательность действий при определении валентности атомов элементов в соединениях, составление формулы.

    презентация [1,6 M], добавлен 02.10.2012

  • Основные классы неорганических соединений. Распространенность химических элементов. Общие закономерности химии s-элементов I, II и III групп периодической системы Д.И. Менделеева: физические, химические свойства, способы получения, биологическая роль.

    учебное пособие [3,8 M], добавлен 03.02.2011

  • Простейшая одноэлектронная двуцентровая связь, иона водорода. Максимальное число возможных в природе различных химических связей между парами атомов. Круг специфических физических явлений, приводящих к образованию химических связей, теории валентности.

    реферат [169,5 K], добавлен 29.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.