Карбены и карбеноиды

Строение карбенов - нейтрально нестабильных реакционноспособных частиц с двухкоординационным углеродом. Методы генерирования карбенов и карбеноидов. Получение диазометана. Присоединение карбенов к двойной связи алкенов и их внедрение по связи С-Н.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 29.12.2011
Размер файла 239,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Карбены и карбеноиды

Введение

Карбенами называют нейтральные нестабильные частицы с двухкоординационным углеродом общей формулы R1(R2)C:, где атом углерода содержит только шесть валентных электронов. Мы последовательно рассмотрим строение карбенов, методы генерации этих чрезвычайно реакционноспособных частиц и присоединение карбенов к двойной связи, а так же внедрение карбенов по связи С-Н.

Строение карбенов

Незамещенный карбен СН2, называемый также метиленом, может находиться в синглетной или триплетной форме. В синглетной форме карбена два несвязывающих электрона со спаренными спинами находятся на одной орбитали, в то время как в триплетной форме два неспаренных электрона с параллельными спинами находятся на двух орбиталях одинаковой энергии. Синглетный карбен диамагнитен, а триплетный - парамагнитен, поэтому структура триплетного карбена может быть изучена с помощью ЭПР-спектроскопии. Различные электронные конфигурации синглетных и триплетных карбенов находят отражение как в различной геометрии этих частиц, так и в различной химической активности,, Двухвалентный атом углерода синглетного карбена находится в sp2-гибридном состоянии, оба электрона расположены на sp2-гибpиднoй орбитали (ВЗМО), а р-орбиталь (НСМО) - свободна. Триплетный карбен характеризуется sp-гибридизацией двухвалентного углерода; при этом два неспаренных электрона располагаются на двух р-орбиталях, т. е. триплетный карбен является бирадикалом. Угол Н-С-Н для синглетного метилена, согласно спектральным данным, равен 102-1050, а для триплетного метилена этот угол увеличивается до 135 1400. Это соответствует более высокой стабильности триплетного метилена. Согласно данным квантовомеханических расчетов триплетный метилен действительно на 10 ккал/моль стабильнее синглетного метилена.

Заместители, однако, вызывают изменение относительной стабильности этих двух форм карбенов. Для диалкилкарбенов триплетная форма также стабильнее синглетной, но для дигалокарбенов :CHal2, и других карбенов с заместителями, содержащими неподеленную пару электронов, основным состоянием является синглетное. Валентный угол С1-С-С1 для дихлоркарбена, равный 1060, хорошо согласуется с синглетной формой. Более высокая стабильность синглетной формы дигалокарбенов по сравнению с триплетной, по-видимому, обусловлена ее стабилизацией за счет неподеленной пары электронов гетероатома.

Такая стабилизация триплетной формы дигалокарбенов невозможна. Согласно данным квантовомеханического расчета, энергия синглет - триплетного перехода для дихлоркарбена составляет 13,5 Ккал/моль.

Получение диазометана

Наиболее удобным лабораторным способом является действие 30 % щёлочи на бис(N-метил-N-нитрозоамид) терефталевой кислоты[1]:

Другой вариант: реакция N-метил-N-нитрозо-пара-толуолсульфонамида или 1-метил-3-нитро-1-нитрозогуанидина с гидроксидом натрия или калия при нагревании[2]:

Методы генерирования карбенов и карбеноидов

Существует несколько общих методов генерирования таких нестабильных частиц как карбены. В одном из них в качестве источника карбенов используют алифатические диазосоединения - диазоалканы. Простейшим диазосоединением алифатического ряда является диазометан. Диазометан представляет собой относительно неустойчивое вещество, разлагающееся при облучении на азот и метилен.

Метилен :СН2 при фотолизе диазометана образуется в менее стабильной синглетной форме. Синглетный метилен в условиях реакции в результате столкновений с молекулами диазометана или азота быстро теряет энергию и превращается в более стабильный триплетный метилен. Поэтому процессы с участием триплетного метилена целесообразно изучать в газовой фазе в атмосфере инертного газа при малых концентрациях субстрата. Фотолиз диазосоединений удобен для генерации самого метилена, но мало употребим для генерации других карбенов вследствие малой доступности высших диазоалканов. Более общий метод генерирования моно- и диалкилкарбенов заключается в термическом или фотохимическом разложении тозилгидразонов - производных карбонильных соединений. Этот метод, в принципе, является модификацией метода разложения диазосоединений, поскольку и в этом случае интермедиатами являются диазосоединения. Исходные тозилгидразоны образуются при взаимодействии альдегида или кетона с тозилгидразином. Фотохимическое разложение тозилгидразонов в присутствии сильного основания (трет-бутилата калия, н-бутиллития и др.) позволяет избежать выделения диазоалкана. Образующееся диазосоединение сразу же подвергается фотохимическому разложению и не накапливается в реакционной среде. Разложение тозилгидразонов с целью генерации карбенов проводят в апротонной индифферентной среде - диметоксиэтане СН3ОСН2СН2ОСН3 (моноглим) или диметиловом эфире диэтиленгликоля СН3ОСН2СН2ОСН2СН2ОСН3 (диглим)[3].

Для генерирования дигалокарбенов разработаны методы, основанные на реакции - элиминирования галогеноводорода из тригалогенометанов под действием сильных оснований. Этот метод исторически был первым, с помощью которого в качестве интермедиата был генерирован первый из карбенов - дихлоркарбен (Дж. Хайн 1950 г.). При взаимодействии с сильными основаниями из хлороформа (рКа хлороформа составляет ~16), бромоформа (рКа = 9) и других тригалогенометанов образуется анион который стабилизируется за счет отщепления галогенид-иона с образованием дигалокарбена:

В качестве основания можно использовать также литийорганические соединения в индифферентной апротонной среде.

Дихлоркарбен может быть также генерирован при термическом декарбоксилировании сухого трихлорацетата натрия:

Реакции карбенов и карбеноидов

Присоединение к двойной связи алкенов с образованием производных циклопропана

Присоединение карбенов к алкенам с образованием производных циклопропана является важнейшей реакцией карбенов. Реакция была открыта в 1954 г. Дерингом и Хофманом и в настоящее время это наиболее распространенный общий способ синтеза производных циклопропана и построения циклопропанового кольца

В этой реакции наиболее отчетливо проявляется различие в реакционной способности синглетной и триплетной формы карбенов. Карбен в трипленом состоянии является бирадикалом и следует ожидать, что триплетный карбен должен обладать такой же реакционной способностью и селективностью в реакциях с алкенами, как и другие бирадикальные частицы. Синглетный карбен с пустой р-орбиталью и неподеленной парой электронов должен быть "бифильным" реагентом, т. e. одновременно и электрофильным и нуклеофильным агентом. Синглетный карбен может участвовать в синхронном одностадийном циклоприсоединении к двойной связи, тогда как триплетный карбен должен присоединяться в две последовательные стадии.

Для синглетного карбена характерно синхронное присоединение к двойной связи алкена с полным сохранением геометрии при двойной связи (реакция [2+1]-циклоприсоединения). Присоединение синглетной формы карбена по двойной связи происходит, таким образом, строго стереоспецифично. Хорошей моделью переходного состояния в этом случае является активированный комплекс:

В качестве примеров стереоспецифического присоединения синглетного карбена к алкенам приведем присоединение дихлоркарбена к цис-пентену-2 и транс-бутену-2.

Триплетный карбен, как типичный бирадикал, присоединяется к алкенам по двухстадийному механизму с промежуточным образованием нового бирадикала. Замыкание цикла в бирадикале с образованием производного циклопропана невозможно до тех пор, пока один из электронов в бирадикале не подвергнется спиновой инверсии. Инверсия спина более медленный процесс по сравнению с вращением вокруг простых С-С-связей в бирадикале. Поэтому замыкание циклопропанового кольца приводит к образованию обоих диастереомеров. Действительно, присоединение триплетного карбена к двойной связи нестереоспецифично и в общем случае приводит к образованию обоих диастереомерных форм циклопропанового производного.

Таким образом, стереоспецифичность присоединения карбенов к алкенам в растворе может быть использована для определения мультиплетности генерируемого карбена. Стереоспецифичность присоединения рассматривается как доказательство участия синглетной формы. Отсутствие стереоспецифичности допускает как исключительное участие триплетного карбена, так и одновременное участие его синглетной и триплетной форм.

Частицы с одновалентным азотом, являющиеся электронными аналогами карбенов, называются нитренами. Нитрен, образующийся в качестве интермедиата при облучении УФ-светом эфиров азидокарбоновой кислоты N3-COOR, присоединяется к алкенам с образованием азиридинов, например:

Выходы азиридинов в этом случае, как правило, ниже, чем выходы соответствующих циклопропанов в реакциях алкенов с диазосоединениями. На практике для синтеза азиридинов чаще используют другие более эффективные методы синтеза.

Реакции внедрения по связи С-Н

Уникальной особенностью синглетного карбена является его способность внедряться по связи С-Н углеводородов. Реакционная способность синглетного метилена настолько велика, что внедрение его по связи С-Н не избирательно. Связи С-Н для первичного, вторичного и третичного атома углерода подвергаются атаке синглетного :СН2 примерно с одинаковыми скоростями. Так, например, распределение продуктов внедрения :CH2 в случае н-гептана соответствует статистическому распределению изомеров.

Реакции внедрения характерны только для активных синглетных карбенов. Дигалокарбены не внедряются по связи С-Н.

Pеакция Бухнера -- Курциуса -- Шлоттербека

Присоединение диазометана к кетонам

Реакция Арндта -- Айстерта

Превращение карбоновой кислоты в её ближайший гомолог с использованием диазометана.

карбен алкен генерирование

Литература

[1] Травень В.Ф. Органическая химия, М.: ИКЦ «Академкнига», 2004. -- ISBN 5-94628-068-6

[2] J.A. Moore; D.E. Reed (1973), "Diazomethane", Org. Synth.; Coll. Vol. 5: 351

[3] X. Creary (1990), "Tosylhydrazone Salt Pyrolyses: Phenydiazomethanes", Org. Synth.; Coll. Vol. 7: 438

[4] XuMuK.ru -- Бухнера-Курциуса-Шлоттербека реакция -- Химическая энциклопедия

[5] www.chem.msu.su/Карбены

Размещено на Allbest.ru


Подобные документы

  • Характеристика химических свойств карбенов. Электронная структура и геометрия карбенов. Реакции перегруппировки карбенов, миграции алкильных и арильных групп, синтез алкенов. Методика квантовохимических расчетов, метод теории функционала плотности.

    курсовая работа [1,8 M], добавлен 06.01.2009

  • Номенклатура и изомерия алкенов. Промышленные и лабораторные способы получения олефинов. Расчет уровня энергии молекулярных орбиталей. Окисление и восстановление алкенов, присоединение к ним электрофильных реагентов, свободных радикалов, карбенов.

    контрольная работа [308,8 K], добавлен 05.08.2013

  • Основные реакции фрагментации и перегруппировки карбениевых ионов, имеющих синтетическое значение. Перегруппировки электронодефицитных интермедиантов. Миграция к углероду и азоту. Влияние электронного состояния нитренов на их химические свойства.

    курсовая работа [905,6 K], добавлен 09.12.2014

  • Анализ химической связи как взаимодействия атомов. Свойства ковалентной связи. Механизм образования ионной связи, строение кристаллической решетки. Примеры межмолекулярной водородной связи. Схема образования металлической связи в металлах и сплавах.

    презентация [714,0 K], добавлен 08.08.2015

  • Межмолекулярная дегидратацией спиртов. Синтез эфиров по реакции Вильямсона. Присоединение спиртов к алкенам. Синтез эфиров сольватомеркурированием - демеркурированием алкенов. Присоединение спиртов к алкинам. Триметилсилиловые эфиры. Силилирование.

    реферат [156,5 K], добавлен 04.02.2009

  • Обратимая реакция Образования енолятов при действии оснований на альдегиды и кетоны. Получение диизопропиламида лития. Механизм сложноэфирной конденсации Клайзена и Дикмана. Реакции Перкина и Манниха. Получение енаминов, их ацилирование по двойной связи.

    лекция [200,8 K], добавлен 03.02.2009

  • Исследование состава и структуры алкенов как ациклических непредельных углеродов, содержащих одну двойную связь С=С. Процесс получения алкенов и свойства цис-транс-изомерии в ряду алкенов. Анализ физических и химических свойств алкенов и их применение.

    реферат [41,1 K], добавлен 11.01.2011

  • Характеристика ковалентной связи, понятия насыщаемости, направленности и полярности. Гибридизация атомных орбиталей и ионная связь. Межмолекулярные химические связи (вандерваальсовы силы). Типы кристаллических решеток. Молекулярная структура льда.

    презентация [1,1 M], добавлен 11.08.2013

  • Способы получения и свойства альдегидов и кетонов. Окисление, дегидрирование спиртов. Гидроформилирование алкенов. Синтез альдегидов и кетонов через реактивы Гриньяра. Присоединение воды и спиртов. Кислотный катализ. Присоединение синильной кислоты.

    реферат [158,8 K], добавлен 21.02.2009

  • Строение, номенклатура алкенов. Ненасыщенные углеводороды, молекулы которых содержат одну двойную С-С-связь. Гибридизация орбиталей. Изображение пространственного строения атомов. Пространственная изомерия углеродного скелета. Физические свойства алкенов.

    презентация [606,4 K], добавлен 06.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.