Поверхностно-активные вещества

Классификация и основные свойства поверхностно активных веществ (ПАВ). Молекулярное строение и получение ПАВ. Ионогенные, катионоактивные, амфотерные и неионогенные ПАВ. Особенность фторуглеводородных ПАВ. Технологические ПАВ и их смазочная способность.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 11.12.2011
Размер файла 910,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Поверхностно активные вещества - ПАВ

Поверхностно-активные вещества ПАВ - это вещества, адсорбирующиеся на поверхности раздела двух фаз и образующие на ней слой повышенной концентрации. Однако в понятие «поверхностно-активные вещества» (ПАВ) обычно вкладывают более узкий смысл, относя его лишь к группе органических соединений, адсорбция которых из их растворов даже очень малой концентрации приводит к резкому снижению поверхностного (межфазного) натяжения на поверхности раздела р-ра с газом (паром), др. жидкостью или твердым телом. Термин «поверхностное натяжение» принято употреблять по отношению к поверхности раздела конденсированной фазы с газом, а термин «межфазное натяжение» - по отношению к поверхности раздела двух конденсированных фаз. Накопление и ориентация в адсорбционном слое молекул или ионов ПАВ - следствие их дифильности (двойственности свойств). Каждая молекула типичных ПАВ имеет олеофильную, или липофильную, часть (один или несколько углеводородных радикалов) и гидрофильную часть (одну или несколько полярных групп). Т.е. поверхностная активность ПАВ, растворенных в углеводородных жидкостях, обусловлена гидрофильными группами, а растворенных в воде - олеофильными (гидрофобными) радикалами.

Классификация ПАВ

По типу гидрофильных групп ПАВ делят на ионные, или ионогенные, и неионные, или неионогенные. Ионогенные ПАВ диссоциируют в растворе на ионы, одни из которых обладают адсорбционной активностью, другие (противоионы) - адсорбционно не активны. Если адсорбционно активны анионы, ПАВ наз. анионными, или анионоактивными, в противоположном случае - катионными, или катионо-активными. Некоторые ПАВ содержат как кислотные, так и основные группы; такие ПАВ обладают амфотерными свойствами, Их наз. амфотерными, или анфолитными, ПАВ. Неионогенные ПАВ не диссоциируют при растворении на ноны; носителями гидрофильности в них обычно яаляются гидроксильные группы и полигликолевые цепи различяой длины.

Существуют также ПАВ, в которых наряду с неионогенными гидрофильными атомными группами присутствуют ионогенные.

В отдельный класс выделяют фторуглеродные ПАВ - соединения с полным или частичным замещением атомов водорода в гидрофобных радикалах на атомы фтора. Кр. того, как отдельную группу следует рассматривать высокомолекулярные ПАВ - адсорбционно активные водорастворимые полимеры ионогенного (полиэлектролиты) и неионогенного типов.

Все ПАВ можно разделить на две категории по типу систем, образуеных ими при взаимодействии с растворителем. К одной категории относятся мицеллообразующие (полуколлоидные, мылоподобные) ПАВ, к другой - не образующие мицелл. ПАВ первой категории в р-ре выше нек-рой (определенной для каждого вещества) «критической» концентрации образуют мицеллы, т. е. молекулярные или ионные ассоциаты с числом молекул (ионов) от нескольких десятков до нескольких сотен. Ниже критической концентрации мицеллообразования (ККМ) вещество находится в истинно растворенном состоянии, а выше ККМ - как в истинно растворенном, так и в мицеллярном.

Мицеллы ПАВ находятся в обратимом термодинамич. равновесии с молекулами; при разбавлении р-ра они распадаются, а при увеличении концентрации вновь возникают. Обычно такие р-ры обладают моющей способностью. ПАП второй категории не образуют мицелл ни в р-рах, ни в адсорбционных слоях. При любой концентрации они находятся в истинно растворенном состоянии.

Молекулярное строение и получение поверхностно-активных веществ (ПАВ)

Ионогенные ПАВ

Анионоактивные вещества составляют большую часть мирового производства ПАВ. Промышленные ПАВ этого типа можно разделить на след. основные группы: карбоновые кислоты и их соли (мыла), алкилсульфаты (сульфоэфиры), алкилсульфонаты и алкиларилсульфонаты, прочие продукты.

В производстве мыл и многих ионов и неионогенных мылоподобных ПАВ используют карбоновые кислоты, получаемые гидролизом из растительных и животных жиров, и синтетические жирные к-ты. Промышленное значение имеют также смоляные и жирные к-ты таллового масла - побочного продукта целлюлозного производства - смоляные к-ты канифоли, среди которых преобладает абиетиновая.

Наибольшее значение как ПАВ из солей монокарбоновых к-т имеют мыла (натриевые, калиевые и аммонийные) жирных к-т RСООН, где R - насыщенный или ненасыщенный нормальный алифатический радикал с числом атомов углерода 12-18, и мыла (натриевые, реже калиевые) смоляных к-т. Практическое значение имеют также дикарбоновые к-ты, напр. алкенилянтарные, получаемые в промышленности конденсацией непредельных углеводородов с малеиновым ангидридом.

Алкилсульфаты синтезируют обычно сульфоэтерификацией высших жирных спиртов или - олефинов с последующей нейтрализацией соответственно первичных или вторичных алкилсерных кислот.

Алкиларилсульфонаты, гл. обр. моно- и диалкилбензолсульфонаты, а также моно- и диалкилнафталинсульфонаты составляют большую часть синтетических анионоактивных ПАВ.

Алкилсульфонаты обычно получают из насыщенных углеводородов С12 - С18 нормального строения, которые сульфохлорируют или сульфоокисляют с последующим омылением или нейтрализацией продукта.

Катионоактивные ПАВ

Катионоактивные ПАВ можно разделить на следующие основные группы: амины различной степени замещения и четвертичные аммониевые основания, др. азотсодержащие основания (гуанидиню, гидрозины, гетероциклические соединении и т. д.), четвертичные фосфониевые и третичные сульфониевые основания.

Сырьем для катионоактвных ПАВ, имеющих хозяйственное значение, служат амины, получаемые из жирных кислот и спиртов, алкгалогенидов, а также алкилфенолов. Четвертичные аммониевые соли синтезируют из соответствующих длинноцепочечных галоидных алкилов реакцией с третичными аминами, из аминов хлоралкилированием или др. путями из синтетических спиртов, фенолов и фенольных смесей.

Большее значение как катионоактивные ПАВ и как исходные продукты в синтезе неионогенных ПАВ (см. ниже) имеют не только моно- , но и диамины, полиамины и их производные.

Амфотерные ПАВ

Амфотерные ПАВ могут быть получены из анионоактивных введением в них аминогрупп или из катионоактивных введением кислотных промышленностью амфотерные ПАВ выпускаются в небольшом количестве, и их потребление расширяется медленно.

Неионогенные ПАВ

Это наиболее перспективный и быстро развивающийся класс ПАВ. Не менее 80-90% таких ПАВ получают присоединением окиси этилена к спиртам, алкилфенолам, карбоновым кислотам, аминам и другим соединениям с реакционноспособными атомами водорода. Полиоксиатиленовые эфиры алкилфенолов - самая многочисленная и распространенная группа неионогенных ПАВ, включающая более сотни торговых названий наиболее известны препараты ОП-4, ОП-7 и ОП-10. Типичное сырье - октил-, ионил- и додецилфенолы; кр. того, используют крезолы, крезоловую кислоту, -нафтол и др. Если в реакцию взят индивидуальный алкилфенол, готовый продукт представляет собой смесь ПАВ общей формулы RC6H4O(CH2O)mH, где т - степень оксиэтилирования, зависящая от молярного соотношения исходных компонентов.

Полиоксиэтиленовые эфиры жирных к-т RСОО(СН2СН2О)mН сиyтезируют прямым оксиэтилированием к-т или этерификацией к-т предварительно полученным полиэтиленгликолем.

Полиоксиэтиленовые эфиры спиртов RО(СН2СН2О)mН приобрели важное промышленное значение, т. к. они легко поддаются биохимич. разложению в природных условиях. Их получают оксиэтилированием высших жирных спиртов, реакцией алкилбромида с мононатриевой солью полиэтиленгликоля и др. путями.

Полиоксиэтиленовые эфиры меркаптанов, как и спиртов, получают обычно оксиэтилированием третичных алкилмеркаптанов, а также первичных н-алкилмеркаптанов и нек-рых алкилбензолмеркаптанов.

Полиоксиэтиленовые производные алкиламинов составляют весьма разнообразную группу ПАВ, многие из к-рых выпускают в промышленности. Эти ПАВ, будучи по своей природе катионоактивными, с увеличением длины полиоксиэтиленовой цепи приобретают ярко выраженные свойства неионогенных веществ. Наиболее важны в практическом отношении продукты оксиэтилирования первичных н-алкиламинов, трет-алкиламинов и дегидроабиетиламинов.

Выпускают также продукты на основе полиэтиленполиаминов, напр. диэтилентриамина, но они не имеют широкого применения. В промышленном или полупромышленном масштабе производят ПАВ с третичным алифатич. радикалом RС(СН3)2NН (СН2СН2О)mН, содержащим 12-22 атома углерода, и т = 1 - 25; полиоксиэтилендегидроабиетиламины (на основе к-т канифоли и таллового масла); полиоксипропиленовые производные аминов - «пропомины».

Полиоксиэтиленалкиламиды обычно получают оксиэтилированием амидов или предварительно полученных моно- или днэтилоламидов жирвых к-т (лауриновой, пальмитиновой, олеиновой).

Ряд неионогенных ПАВ получают на основе полиатомных спиртов, частично этерифицированных жирными к-тами. Используют спирты, содержащие от 2 до 6 гидроксильных групп, пентаэритрит, полиглицерины, углеводы. При оксиэтилировании к свободным гидроксильным группам исходного продукта присоединяются полиоксиэтиленовые цепи разной длины.

Другой путь получения ПАВ из полиатомных спиртов - сначала оксиэтилирование, а затем этерификация.

Практич. значение блоксополимеров окиси этилена и окиси пропилена как ПАВ постоянно возрастает. Их получают ступенчатой полимеризацией, используя в качестве «затравки» соединения, содержащие реакционноспособные атомы водорода.

Монофункциональные исходные соединения для синтеза таких ПАВ - одноатомные спирты, кислоты, меркаптаны, вторичные амины, N-замещенные амиды и др. Гидрофобной частью молекулы служит остаток исходного вещества, если оно имеет достаточно длинный алифатич. радикал, и полипропиленоксидный блок

Помимо плюроников на основе функционального исходного соединения известны другие ПАВ, такие как плюродаты.

Исходными веществами с тремя функциональными группами в синтезе блоксополимерных неионогенных ПАВ могут быть глицерин и др.

Из тетрафункциональных соединений для синтеза блоксополимерных ПАВ чаще всего используют алифатич. первичные диамины. Наиболее известны тетроники.

Получают также блоксополимеры окисей алкилена на основе пентаэритрита, диатилентриамина, гекситов (сорбита и маннита), сахарозы и др.

Неионогенные ПАВ различных типа используют как исходные продукты для получения ряда ионогенных ПАВ. На основе оксиэтилированных алифатич. спиртов, алкилфенолов и др. рассмотренных выше веществ синтезируют поверхностно-активные сульфаты, фосфаты, карбоксилаты и четвертичные аммониевые соединения.

К большинству оксиэтилированньгх продуктов можно присоединить акрилонитрил с последующим переводом полученного амина в четвертичное аммониевое основание обычными методами.

Фторзамещенные ПАВ составляют обширный класс соединений. Многие фторзамещенные ПАВ разных типов получают на основе фторангидридов перфторкарбоновых и перфторсульфоновых к-т.

Высокомолекулярные ПАВ - растворимые карбо- или гетроцепные полимеры ионогенного или неионогеного типа с мол. массой от нескольких тысяч до нескольких сотен тысяч. Среди них есть природные соединения (белки, альгенаты, пектиновые вещества и т. д.), продукты химич. обработки природных полимеров (напр., производные целлюлозы) и синтетич. полимеры.

В структуре типичных высокомолекулярных ПАВ должно быть четкое разграничение гидрофильных и гидрофобных участков. ПАВ являются сополимеры или гомополимеры, в к-рых вдоль длинной гидрофобной основной цепи расположены через определенные интервалы гидрофильные боковые цепи или группы. Типичные представители анионоактивных ПАВ этой группы - полиакриловая и полиметакриловая к-ты, их соли и нек-рые производные, а также карбоксилсодержащие полимеры на основе поливинилового спирта, полиакриламида, сополимеров малеинового ангидрида с др. непредельными соединениями. Поверхностной активностью обладают сульфированные и сульфоэтерифицированные полимеры (полистирол, поливиниловый спирт, оксиэтилированный поликонденсат п-алкилфенола с формальдегидом и др.).

Катионоактивные полимерные ПАВ получают хлорметилированием, а затем аминированием полистирола, поливинилтолуола и др. виниловых полимеров. Особенно высока поверхностная активность солей полимерных четвертичных аммониевых оснований, в том числе солей поливинилпиридиния. для получения высокомолекулярных ионогенных ПАВ - растворимых полиэлектролитов - пригодно большинство методов и исходных продуктов, к-рые применяют при синтезе ионообменных смол.

Неиноногенные высокомолекулярные ПАВ можно получить оксиэтвлированием практически из любого полимера, содержащего гидроксильные или др. функциональные группы с реакционноспособными атомами водорода.

Свойства поверхностно-активных веществ (ПАВ)

Поверхностную активность удобно оценивать по наибольшему понижению поверхностного натяжения деленному на соответствующую концентрацию - ККМ в случае мицеллообразующих ПАВ. Поверхностная активность обратно пропорциональна ККМ:

Образование мицелл происходит в узком интервале концентраций, который становится уже и определенней по мере удлинения гидрофобных радикалов.

Простейшие мицеллы типичных полуколлоидпых ПАВ, напр. солей жирных к-т, при концентрациях, не слишком превышающих ККМ, имеют сфероидальную форму.

С ростом концентрации ПАВ анизометричных мицелл сопровождается резким возрастанием структурной вязкости, приводящей в нек-рых случаях к гелеебреаованию, т.е. полной потере текучести.

ККМ - важный технологяч. показатель. Его можно определять раз-личными методами, т.к. в области ККМ более или менее резко меняются многие физикохимич. свойства системы ККМ находят по характерным изменениям поверхностного натяжения, светорассеяния, электропроводности, вязкости, диффузии, солюбилизации, спектральных характеристик р-ра и т.д.

ГЛБ - условная и чисто эмпирич. характеристика, не претендующая на универсальность.

Очень специфичны по свойствам фтортензиды, неполярная часть молекулы к-рых образована фторуглеродными цепями. Вследствие слабого межмолекулярного взаимодействия низкомолекулярные фторуглероды обладают чрезвычайно малой поверхностной энергией.

Особенность фторуглеводородных ПАВ - соединений с фторуглеродными и углеводородными радикалами - высокая поверхностная активность в неполярных органич. жидкостях с низкой поверхностной энергией. Адсорбционный слой перфторированных ПАВ на твердой поверхности, ориентированный фторуглеродными радикалами наружу, снижает критическое поверхностное натяжение смачивания до значений меньших, чем поверхностное натяжение углеводородных жидкостей. Это значит, что такая поверхность становится не только гидрофобной, но и олеофобной, тоесть не смачиваемой маслами и другими жидкими углеводородами. Фторуглеродные цепи, вследствие высокой энергии межатомной (внутримолекулярной) связи, химически инертны и термостойки.

поверхностный активный вещество молекулярный

Применение поверхностно-активных веществ (ПАВ)

ПАВ находят широкое применение в промышленности, в сельском хозяйстве, медицине и быту. Мировое производство ПАВ растет с каждым годом, причем в общем выпуске продукции постоянно возрастает доля неионогенных веществ. Широко используют все виды ПАВ при получении и применении синтетич. полимеров. Важнейшая область потребления мицеллообразующих ПАВ - производство полимеров методом эмульсионной полимеризации. От типа и концентрации выбранных ПАВ (эвульгаторов) во многом зависят технологич. и физико-химич. свойства получаемых латексов. ПАВ используют также при суспензионной иолимеризации. Обычно применяют высокомолекулярные ПАВ - водорастворимые полимеры (воливиниловый спирт, производные целлюлозы, растительные клеи и т.п.). Смешиванием лаков или жидких масляносмоляных композиций с водой в присутствии эмульгаторов получают эмульсии, применяемые при изготовлении пластмасс, кожзаменителей, нетканых материалов, импрегированных тканей, водоразбавляемых красок и т.д.

В производстве лакокрасочных материалов и пластмасс. ПАВ добавляют для регулирования их реологич. характеристик.

Разнообразные ПАВ применяют для поверхностной обработки волокнистых (тканых и нетканых) и пленочных материалов ( как антистатики, модификаторы прядильных р-ров, моющие средства. Среди ПАВ, применяемых как гидрофобизаторы, наиболее перспективны кремнийорганические и фторуглеродные соединения. Последние при соответствующей ориентации молекул в поверхностном слое способны предотвратить смачивание материала не только водой, но и углеводородными жидкостями.

В производстве губчатых резин и пенопластов ПАВ применяют как стабилизаторы пен.

Высокомолекулярные водорастворимые ПАВ, помимо использования в указанных выше технологич. процессах, применяют как флокулянты в различных видах водоочистки. С их помощью из сточных и технологич. вод, а также из питьевой воды удаляют загрязнения, находящиеся во взвешенном состоянии.

ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА, в-ва, адсорбция к-рых из жидкости на пов-сти раздела с др. фазой (жидкой, твердой или газообразной) приводит к значит. понижению поверхностного натяжения (см. Поверхностная активность). В наиб. общем и важном с практич. точки зрения случае адсорбирующиеся молекулы (ионы) ПАВ имеют дифильное строение, т. е. состоят из полярной группы и неполярного углеводородного радикала (дифильные молекулы). Поверхностной активностью в отношении неполярной фазы (газ, углеводородная жидкость, неполярная пов-сть твердого тела) обладает углеводородный радикал, к-рый выталкивается из полярной среды. В водном р-ре ПАВ на границе с воздухом образуется адсорбц. мономолекулярный слой с углеводородными радикалами, ориентированными в сторону воздуха. По мере его насыщения молекулы (ионы) ПАВ, уплотняясь в поверхностном слое, располагаются перпендикулярно пов-сти (нормальная ориентация).

Концентрация ПАВ в адсорбц. слое на неск. порядков выше, чем в объеме жидкости, поэтому даже при ничтожно малом содержании в воде (0,01-0,1% по массе) ПАВ могут снижать поверхностное натяжение воды на границе с воздухом с 72,8·10-3 до 25·10-3 Дж/м2, т.е. практически до поверхностного натяжения углеводородных жидкостей. Аналогичное явление имеет место на границе водный р-р ПАВ - углеводородная жидкость, что создает предпосылки для образования эмульсий.

В зависимости от состояния ПАВ в р-ре условно различают истинно р-римые (молекулярно-диспергированные) и коллоидные ПАВ. Условность такого разделения состоит в том, что одно и то же ПАВ может относиться к обеим группам в зависимости от условий и хим. природы (полярности) р-рителя. Обе группы ПАВ адсорбируются на фазовых границах, т. е. проявляют в р-рах поверхностную активность, в то время как объемные св-ва, связанные с возникновением коллоидной (мицеллярной) фазы, проявляют лишь коллоидные ПАВ. Указанные группы ПАВ отличаются значением безразмерной величины, к-рая наз. гидрофильно-липофильным балансом (ГЛБ) и определяется отношением:

где -сродство (своб. энергия взаимодействия) неполярной части молекулы ПАВ к углеводородной жидкости (b-безразмерный параметр, зависящий от природы ПАВ, -своб. энергия взаимод. в расчете на одну группу CH2, v-число групп CH2 в углеводородном радикале), a-сродство полярной группы к воде. Для коллоидных ПАВ (b + или , где индексы m соответствуют миним. значениям сродства, при к-ром начинают проявляться коллоидные св-ва ПАВ. Миним. число углеродных атомов в радикале для разных видов коллоидных ПАВ лежит в пределах 8-12, т.е. коллоидные ПАВ имеют достаточно большой углеводородный радикал. Вместе с тем коллоидные ПАВ должны обладать и истинной р-римостью в воде, т.е. полярность гидрофильной группы также должна быть достаточно высокой. Этому соответствует условие:

В нач. 60-х гг. 20 в. Д. Девисом была разработана шкала ГЛБ со значениями от О до 40. ПАВ с липофильными св-вами имеют низкие значения ГЛБ, с гидрофильными-высокие. Каждой группе атомов, входящей в молекулу ПАВ, приписывается групповое число. При сложении этих чисел получают ГЛБ по ф-ле:

ГЛБ = гидрофильных групповых чисел + 4- гидрофобных групповых чисел + 7.

Хотя понятие о ГЛБ является достаточно формальным, оно позволяет определять области применения ПАВ. Так, для образования эмульсий вода/масло ГЛБ лежит в пределах 3-6, эмульсий масло/во да-8-16, для смачивателей-7-9, для моющих средств-13-15.

Поверхностная активность ПАВ, относящихся к разным группам, определяется по-разному. Для истинно р-римых ПАВ она равна макс. значению производной и измеряется по начальному участку изотермы адсорбции s(c)при с0 (Г-число молей ПАВ, адсорбированных единицей пов-сти, R-газовая постоянная, T-абс. т-ра). Для коллоидных ПАВ поверхностная активность Gмин = (s0 - sмин)/смин, где s0 - поверхностное натяжение чистого р-рителя, sМИH-наименьшее (постоянное) значение s, а смин-соответствующая этому значению концентрация ПАВ. Дальнейшее введение в р-р ПАВ приводит к увеличению числа мицелл, а концентрация молекулярно-диспергированного ПАВ остается постоянной. Величина смин-критич. концентрация мицеллообразования (KKM). Она определяется как концентрация ПАВ, при к-рой в р-ре возникает большое число мицелл, находящихся в термоди-намич. равновесии с молекулами (ионами), и резко изменяются св-ва р-ра (электропроводность, поверхностное натяжение, вязкость, светорассеяние и т.д., см. Мицеллообразо-вание).

Классификация ПАВ. В данной статье описывается классификация, принятая на III Международном конгрессе по ПАВ и рекомендованная Международной организацией по стандартизации (ISO)в 1960. Она основана на хим. природе молекул и включает четыре осн. класса ПАВ: анионактив-ные, катионактивные, неионогенные и амфотерные. Иногда выделяют также высокомол. (полимерные), перфторир. и кремнийорг. ПАВ, однако по хим. природе молекул эти ПАВ м. б. отнесены к одному из вышеперечисл. классов.

Анионактивные ПАВ содержат в молекуле одну или неск. полярных групп и диссоциируют в водном р-ре с образованием длинноцепочечных анионов, определяющих их поверхностную активность. Это группы: COOH(M), OSO2OH(M), SO3H(M), где M-металл (одно-, двух- или трехвалентный). Гидрофобная часть молекулы обычно представлена предельными или непредельными алифатич. цепями или алкилароматич. радикалами. Выделяют 6 групп анионактивных ПАВ.

1) Производные карбоновых к-т (мыла): RCOOM, ROOC (СН2)nСООМ, RC6H4 (СН2)nСООМ, RCH=CH -- --(СН2)nСООМ. 2) Первичные и вторичные алкилсульфаты ROSO3M, R'R:CHOSO3M, алкиларилэтилсульфаты RC6H4C2H4OSO3M, алкилциклогексилэтилсульфаты RC6H10C2H4OSO3M и т.п. (см. Авироль, Ализариновое масло, Алкилсульфаты). 3)Алкил- и алкилбензолсульфо-наты, сульфонаты сложных эфиров моно- и дикарбоно-вых к-т: RSO3M, RC6H4SO3M, ROOCCH2SO3M, ROOCCH2CH(COOR)SO3M (см. Алкилбензолсульфонаты, Нафталинсульфонаты, Сульфонаты). 4) Сульфо- и карбокси-этоксилаты спиртов, сульфоэтоксилаты карбоновых к-т, сульфоэтоксилаты алкилфенилэтиловых спиртов, диметал-лич. соли сульфоянтарной к-ты, соли сульфатов непредельных к-т: RO(C2H4O)nSO3M, RO(C2H4O)nCH2COOM, RCOO (C2H4O)n SO3M, RC6H4 (C2H4O)2 SO3M, ROOCCH2CH ·(COOM) SO3M, RCH (OSO3M)=CH (CH2)n--COOM. 5) Азотсодержащие ПАВ: амидосульфонаты RCONR'--R:--SO3M, амиды сульфокарбоновых к-т RR'NOC--R:--SO3M, амидосульфаты RCONR'- R:--OSO3M, амидокарбоксилаты RCO(NH-R'--CO)nOM, в-ва с карбокси- и сульфогруппами RCONH--R--OCOR:(SO3M) --COOM. Вместо амидной группы во мн. таких в-вах м.б. также сульфоамидная группа, напр. RC6H4SO2NHCH2CH2SO3M. 6) Соли перфторир. карбоновых к-т, перфторир. сульфоацетатов, моно- и диалкил-фосфатов и фосфонатов, перфторир. фосфонаты и др. соединения.

В анионактивных ПАВ катион м. б. не только металлом, но и орг. основанием. Часто это ди- или триэтаноламин. Поверхностная активность начинает проявляться при длине углеводородной гидрофобной цепи C8 и с увеличением длины цепи увеличивается вплоть до полной потери р-ри-мости ПАВ в воде. В зависимости от структуры промежут. функц. групп и гидрофильности полярной части молекулы длина углеводородной части может доходить до C18. Бензольное ядро соответствует примерно 4 атомам С, перфто-рированная метиленовая группа CF2-примерно 2,5-3 мети-леновым группам.

Наиб. распространены алкилсульфаты и алкиларилсуль-фонаты. Оптим. поверхностно-активными св-вами обладают первичный додецилсульфат и прямоцепочечный доде-цилбензолсульфонат. Эти в-ва термически стабильны, малотоксичны (ЛД50 1,5-2 г/кг, белые мыши), не раздражают кожу человека и удовлетворительно подвергаются биол. распаду в водоемах (см. ниже), за исключением алкиларил-сульфонатов с разветвленной алкильной цепью. Они хорошо совмещаются с др. ПАВ, проявляя при этом синергизм, порошки их негигроскопичны. Вторичные алкилсульфаты обладают хорошей пенообразующей способностью, но термически неустойчивы и применяются в жидком виде. Вторичные алкилсульфонаты обладают высокой поверхностной активностью, но весьма гигроскопичны. Перспективными являются ПАВ, у к-рых гидрофильная часть состоит из неск. функц. групп. Напр., динатриевые соли сульфоянтарной к-ты обладают хорошими санитарно-гигиенич. св-вами наряду с высокими коллоидно-хим. и технол. показателями при растворении в жесткой воде. ПАВ, содержащие сульфониламидную группу, обладают биол. активностью. Хорошими св-вами обладает также додецил-фосфат.

Катионактивными наз. ПАВ, молекулы к-рых диссоциируют в водном р-ре с образованием поверхностно-активного катиона с длинной гидрофобной цепью и аниона-обычно галогенида, иногда аниона серной или фосфорной к-ты. Преобладающими среди катионактивных ПАВ являются азотсодержащие соед.; практич. применение находят и в-ва, не содержащие азот: соед. сульфония [RR'R:S]+X- и сульфоксония [RR'R:SO]+Х-, фосфония [R3PR']+ X-, арсония [R3AsR'] + Х-, иодония (ф-ла I). Азотсодержащие соед. можно разделить на след. осн. группы: 1) амины и их соли RNR'R: · HX; 2) моно- и бисчетвертичные аммониевые соед. алифатич. структуры [RNR'R:R''']+ X-, [RR'2N-R:--NR'2R]2+2Х-, соед. со смешанной алифатич. и ароматич. структурой [RR'2 NC6H4NR'2 R]2 + 2Х- ; 3) четвертичные аммониевые соед. с раз л. функц. группами в гидрофобной цепи; 4) моно- и бисчетвертичные аммониевые соед. с атомом азота в гетероциклич. кольце. Последняя группа объединяет сотни ПАВ, имеющих пром. значение. Важнейшие из них-соед. пиридина, хинолина, фталазина, бензи-мидазола, бензотиазола, бензотриазола, производные пир-ролидина, имидазола, пиперидина, морфолина, пиперазина,

бензоксазина и др.; 5) оксиды аминов RR'R:N+O- (начато пром. произ-во); 6) полимерные ПАВ (II). Применяют в осн. поливинилпиридинийгалогениды.

поверхностный активный вещество молекулярный

Катионактивные ПАВ меньше снижают поверхностное натяжение, чем анионахтивные, но они могут взаимод. химически с пов-стью адсорбента, напр. с клеточными белками бактерий, обусловливая бактерицидное действие. Взаимод. полярных групп катионактивных ПАВ с гидроксильны-ми группами волокон целлюлозы приводит к гидрофобиза-ции волокон и импрегнированию тканей.

Неионогенные ПАВ не диссоциируют в воде на ионы. Их р-римость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего по-лиэтиленгликолевой цепи. По-видимому, при растворении образуются гидраты вследствие образования водородной связи между кислородными атомами полиэтиленгликоле-вого остатка и молекулами воды. Вследствие разрыва водородной связи при повышении т-ры р-римость неионогенных ПАВ уменьшается, поэтому для них точка помутнения -верх. температурный предел мицеллообразования- является важным показателем. Mн. соед., содержащие подвижной атом H (к-ты, спирты, фенолы, амины), реагируя с этиленок-сидом, образуют неионогенные ПАВ RO (C2H4O)n H. Полярность одной оксиэтиленовой группы значительно меньше полярности любой кислотной группы в анионактивных ПАВ. Поэтому для придания молекуле требуемой гидро-фильности и значения ГЛБ в зависимости от гидрофобного радикала требуется от 7 до 50 оксиэтиленовых групп. Характерная особенность неионогенных ПАВ-жидкое состояние и малое пенообразование в водных р-рах.

Неионогенные ПАВ разделяют на группы, различающиеся строением гидрофобной части молекулы, в зависимости от того, какие в-ва послужили основой получения полигли-колевых эфиров. На основе спиртов получают оксиэтилиро-ванные спирты RO(C2H4O)nH; на основе карбоновых к-т - оксиэтилированные жирные кислоты RCOO (C2H4O)n H; на основе алкилфенолов и алкилнафтолов - оксиэтилированные алкилфенолы RC6H4O(C2H4O)nH и соед. RC10H6O--- (C2H4O)nH; на основе аминов, амидов, имидазолинов-оксиэтилированные алкиламины RN[ (C2H4O)n H]2, соед. RCONH(C2H4O)nH, соед. ф-лы III; на основе сульфамидов и меркаптанов- ПАВ типа RSO2NC(C2H4O)nH]2 и RS(C2H4O)nH. Отдельную группу составляют проксанолы (п л ю r о н и к и) - блоксополимеры этилен- и пропиленокси-дов НО (C2H4O)x (C3H6O)y (C2H4O)z H, где х, у и z варьируют от неск. единиц до неск. десятков, и проксамины (тетро-ники; ф-ла IV) - блоксополимеры этилен- и пропиленокси-дов, получаемые в присут. этилендиамина. Алкилацетиленгликоли служат основой получения ПАВ типа H(OC2H4)n--OCR'R:CCCR'R''O (C2H4O)nH; эфиры фосфорной к-ты-типа (RO)2P(O)O(C2H4O)nH; эфиры пентаэритрита-типа V. Неионогенными ПАВ являются продукты конденсации гликозидов с жирными спиртами, карбоновыми к-тами и этиленоксидом. Выделяют также ПАВ группы сорбиталей (твинов, ф-ла VI)-продукты присоединения этиленоксида к моноэфиру сорбитона и жирной к-ты. Отдельную группу составляют кремнийорг. ПАВ, напр. (CH3)3Si [OSi (CH3)2]n--(CH2)3O(C2H4O)mH.

Получение неионогенных ПАВ в большинстве случаев основано на р-ции присоединения этиленоксида при повыш. т-ре под давлением в присут. катализаторов (0,1-0,5% CH3ONa, KOH или NaOH). При этом получается среднеста-тич. содержание полимергомологов, в к-рых молекулярно-массовое распределение описывается ф-цией Пуассона. Индивидуальные в-ва получают присоединением к алкоголятам полигалогензамещенных полиэтиленгликолей. Коллоидно-хим. св-ва ПАВ этого класса изменяются в широких пределах в зависимости от длины гидрофильной полигликолевой цепи и длины цепи гидрофобной части таким образом, что разл. представители одного гомологич. ряда м. б. хорошими смачивателями и эмульгаторами. Поверхностное натяжение гомологов оксиэтилированных алкилфенолов и первичных спиртов при постоянном содержании этиленоксидных групп уменьшается в соответствии с правилом Траубе, т. е. с каждой дополнит. группой CH2 поверхностное натяжение снижается. В оптим. варианте оно может достигать (28-30)· 10-3 Н/м при критич. концентрации мицеллообразования. Мицеллярная масса весьма велика; для твинов, напр., она достигает 1800. Неионогенные ПАВ менее чувствительны к солям, обусловливающим жесткость воды, чем анионактивные и катионак-тивные ПАВ. Смачивающая способность неионогенных ПАВ зависит от структуры; оптим. смачивающей способностью обладает ПАВ разветвленного строения:

Оксиэтилированные спирты C10-C18 с n от 4 до 9и плюро-ники образуют самопроизвольные микроэмульсии масло/вода и вода/масло. Неионогенные ПАВ хорошо совмещаются с др. ПАВ и часто включаются в рецептуры моющих средств.

Амфотерные (амфолитные) ПАВ содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от рН р-ра. Обычно эти ПАВ включают одну или неск. основных и кислотных групп, могут содержать также и неионоген-ную полигликолевую группу. В зависимости от величины рН они проявляют св-ва катионактивных или анионактивных ПАВ. При нек-рых значениях рН, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно р-римых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентирован-ные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. В принципе вместо N м. б. атомы S, P, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы.

По хим. строению и нек-рому сходству св-в амфолитные ПАВ делят на 5 осн. групп: 1) алкиламинокарбоновые к-ты RNH (CH2)n COOH; алкильный радикал амина обычно нормальный (прямоцепочечный), но если он расположен между аминной группой и карбоксильной, иногда имеет разветвленный характер. К этой же группе относят алкиламино-фенилкарбоновые к-ты RNHC6H4COOH; алкиламинокарбоновые к-ты с первичной, вторичной или третичной аминогруппой RCH (NH2) COOH, RCH (NHR) COOH, R(CH3)NCH2COOH; с промежут. гидроксильной, эфирной, сложноэфирной, амидной или сульфоамидной группой; в-ва с двумя и более амино- и амидогруппами, с несколькими амино- и гидроксильными группами.

2) Алкилбетаины представляют собой наиб, важную группу цвиттер-ионных ПАВ. Их можно разделить на 5 осн. групп: а) алкилбетаины -С-алкилбетаины RCH [N+ (CH3)3] COO- и N-алкилбетаины RN+(CH3)2 СН2СОО- ; б) сульфит-, суль-фо-, сульфат- и фосфатбетаины RN+(CH3)2CH2CH2 RN+(CH3)2CH2CH2, RC6H4CH2N+(CH3)2CH2CH2 RN+(CH3)2CH2CH(OH)CH2OP; в) амидобетаины RCONH(CH2)3 N+(CH3)2COO- ; г) оксиэтилированные бетаины RN+[(C2H4O)pH][(C2H4O)gH]CH2COO-; д) др. цвиттер-ионные ПАВ.

3) Производные алкилимидазолинов, в молекулах к-рых анионные и катионные группы имеют примерно одинаковые константы ионизации (ф-лы VII и VIII), где R-алкил C7-C17, R'-H, Na, CH2COOM (M-металл). По структуре и методам синтеза выделяют бетаиновые ПАВ, включающие карбокси-, сульфо-, сульфат- или сульфоэфировую группу [ф-ла IX; R' = (CH2)nCOO-, (CH2)3, CH2CH(OH)CH2 ] и прочие ("небетаиновые") имидазолиновые ПАВ [ф-ла X; R' = CH2COONa, (СН2)2 N (CH2COOH)2, (СН2)2 N= =CHC6H4SO3H, (CH2)2 OSO3H]. Сбалансированность ионизир. групп обеспечивает этим соед. хорошие коллоид-но-хим. и санитарно-гигиенич. св-ва.

4) Алкиламиноалкансульфонаты и сульфаты (AAAC1 и AAAC2 соотв.). Анионно-ориентир. в-ва легко переходят в цвиттер-ионную форму, что позволяет выделять их в чистом виде. Константа ионизации кислотной группы гораздо больше, чем основной, поэтому их применяют в щелочной среде. Однако в случае неск. основных групп и при наличии рядом с кислотной группой др. гидрофильных групп эти в-ва по св-вам и областям применения сходны с амфолитными ПАВ и обладают бактерицидным действием. В зависимости от констант ионизации можно выделить соли AAAC1 RN(R')-R:--SO3M, AAAC2 RN(R')-R: -- OSO3M, производные ароматич. аминосульфокислот RR'N--Ar--SO3M, аминосульфонаты с атомом N в гетероциклах (ф-ла XI); аминофосфаты, аминофосфонаты и др. аминосоед.: соед. типа RR'R:P(O)(OH)2, RR'R''OP(O)(OH)2, где R и R'-длинный и короткий углеводородные радикалы, R:-короткий двухвалентный радикал; соед. RN(CH2CH2SO3Na)2. Их отличие-хорошая способность диспергировать кальциевые мыла и устойчивость к солям жесткости воды.

5) Полимерные амфолитные ПАВ: природные (белки, нуклеиновые к-ты и т.п.); модифицированные природные (олигомерные гидролизаты белков, сульфатир. хитин); продукты ступенчатой конденсации аминов, формальдегида, альбумина, жирных к-т; производные целлюлозы, полученные введением карбоксильных и диэтаноламиноэтильных групп; синтетические, в молекулах к-рых сочетаются структурные особенности всех приведенных выше групп амфотер-ных ПАВ (см., напр., ф-лы XII-XVI).

Применение ПАВ. Мировое произ-во ПАВ составляет 2-3 кг на душу населения в год. Примерно 50% производимых ПАВ используется для бытовой химии (моющие и чистящие ср-ва, косметика), остальное-в пром-сти и с. х-ве. Одновременно с ежегодным ростом произ-ва ПАВ соотношение между их применением в быту и пром-сти изменяется в пользу пром-сти.

Применение ПАВ определяется их поверхностной активностью, структурой адсорбц. слоев и объемными св-вами р-ров. ПАВ обеих групп (истинно р-римые и коллоидные) используют в качестве диспергаторов при измельчении твердых тел, бурении твердых пород (понизители твердости), для улучшения смазочного действия, понижения трения и износа, интенсивности нефтеотдачи пластов и т. д. Др. важный аспект использования ПАВ - формирование и разрушение пен, эмульсий, микроэмульсий. Широкое применение ПАВ находят для регулирования структурообразования и устойчивости дисперсных систем с жидкой дисперсионной средой (водной и органической). Широко используются ми-целлярные системы, образуемые ПАВ как в водной, так и в неводной среде, для к-рых важны не поверхностная активность ПАВ и не св-ва их адсорбц. слоев, а объемные св-ва: резко выраженные аномалии вязкости с повышением концентрации ПАВ вплоть до образования, напр. в водной среде, кристаллизац. структур твердого мыла или твердо-образных структур (в пластичных смазках на основе нефтяных масел).

ПАВ находят применение более чем в 100 отраслях народного хозяйства. Большая часть производимых ПАВ используется в составе моющих ср-в, в произ-ве тканей и изделий на основе синтетич. и прир. волокон. К крупным потребителям ПАВ относятся нефтяная, хим. пром-сти, пром-сть строит. материалов и ряд других. Наиб. важные применения ПАВ:

-бурение с глинистыми р-рами и обратимыми эмульсиями вода/масло. Для регулирования агрегативной устойчивости и реологич. характеристик р-ров применяют высо-комол. ПАВ-водорастворимые эфиры целлюлозы, поли-акриламид и др., в эмульсии вводят кальциевые соли прир. и синтетич. жирных к-т (C16-C18 и выше), алкилароматич. сульфонаты, алкиламины, алкиламидоамины, алкилимида-золины;

-повышение нефтеотдачи пластов посредством мицелляр-ного заводнения (оксиэтилированные алкилфенолы и спирты, алкилароматич. сульфонаты);

-антиокислительные, противозадирные и др. присадки в произ-ве минер. масел (мыла синтетич. жирных к-т, нефтяные сульфонаты, оксиэтилир. спирты) и пластич. смазок (производные фенолов, ариламины, алкил- и арилфосфаты);

-регулирование смачивания при флотации железных и марганцевых руд (мыла прир. и синтетич. жирных к-т, высшие алифатич. амины), руд редких металлов (алкиларсо-новые и алкилфосфоновые к-ты, алкилароматич. сульфонаты);

-эмульсионная полимеризация, получение полистирола и др. виниловых полимеров (карбоксиметилцеллюлоза, поливиниловый спирт, мыла синтетич. жирных к-т, алкилсульфа-ты, оксиэтилированные спирты и алкилфенолы);

-произ-во хим. волокон (оксиэтилир. амины и амиды, проксанолы и проксамины, высшие спирты и к-ты);

-мех. обработка металлов: адсорбц. понижение прочности, повышение скоростей резания, строгания, фрезерования (мыла прир. и синтетич. жирных к-т, алкилароматич. сульфонаты, оксиэтилир. спирты и т.д.);

-пром-сть строит. материалов: регулирование мех. и рео-логич. св-в бетонных смесей за счет адсорбц. модифицирования компонентов (эфиры синтетич. жирных к-т, сульфонаты, алкиламины, алкилсульфаты, оксиэтилир. жирные к-ты);

-произ-во синтетических моющих средств;

-улучшение структуры почв, предотвращение эрозионных процессов (ПАВ-полиэлектролиты - продукты неполного гидролиза полиакрилонитрила, продукты амидирова-ния полиакриловой и полиметакриловой к-т, причем в составе полимерной цепи варьируются амидные, циклические имидные, карбоксильные и др. группы).

Биологическое разложение ПАВ. Водные р-ры ПАВ в большей или меньшей концентрации поступают в стоки пром. вод и в конечном счете-в водоемы. Очистке сточных вод от ПАВ уделяется большое внимание, т. к. из-за низкой скорости разложения ПАВ вредные результаты их воздействия на природу и живые организмы непредсказуемы. Сточные воды, содержащие продукты гидролиза полифосфатных ПАВ, могут вызвать интенсивный рост растений, что приводит к загрязнению ранее чистых водоемов: по мере отмирания растений начинается их гниение, а вода обедняется кислородом, что в свою очередь ухудшает условия существования др. форм жизни в воде.

Среди способов очистки сточных вод в отстойниках - перевод ПАВ в пену, адсорбция активным углем, использование ионообменных смол, нейтрализация катионактивными в-вами и др. Эти методы дороги и недостаточно эффективны, поэтому предпочтительна очистка сточных вод от ПАВ в отстойниках (аэротенках) и в естеств. условиях (в водоемах) путем биол. окисления под действием гетеротрофных бактерий (преобладающий род-Pseudomonas), к-рые входят в состав активного ила. По отношению к этому процессу ПАВ принято делить на "мягкие" и "жесткие". К жестким ПАВ относятся нек-рые алкилбензолсульфонаты (напр., тетрапропилбензолсульфонат) и оксиэтилир. изооктилфе-нолы; в настоящее время они практически не производятся. Степень биоокисления т. наз. мягких ПАВ зависит от структуры гидрофобной части молекулы ПАВ: при ее разветвлен-ности биоокисление резко ухудшается. Теоретически биоокисление идет до превращ. орг. в-в в воду и углекислый газ, практич. проблема сводится лишь к времени окисления, т. е. к кинетике процесса. Если окончат. окисление происходит медленно, ПАВ успевает произвести вредное влияние на живые организмы и прир. среду.

При биохим. очистке отработанных р-ров ПАВ окисление ведется в присут. ферментов. С увеличением т-ры скорость окисления увеличивается, но выше 350C ферменты разрушаются. Анионактивные ПАВ адсорбируются на межфазных пов-стях раздела, вследствие чего снижается ферментативный гидролиз жиров, белков и углеводов, приводящий к угнетению жизнедеятельности бактерий.

Механизм биоокисления ПАВ устанавливается путем изучения промежут. продуктов распада. Так, в промежут. продуктах распада алкилбензолсульфонатов обнаружены: алкилбензолсульфонаты с короткой алкильной цепью; суль-фофенилкарбоновые к-ты в среднем с 4 атомами С в цепи; сульфокарбоновые к-ты с 5-6 атомами С; сульфодикарбоно-вые к-ты и сульфокислоты. Это позволяет предположить, что биоразложение начинается с концевой метильной группы. Чем ближе остаток продвигается к бензольному кольцу, тем окисление происходит медленнее. Конечной стадией является распад бензольного кольца на ненасыщ. соед., к-рые окисляются достаточно быстро и полно.

Алифатич. ПАВ окисляются быстрее, чем циклические, причем сульфонаты окисляются труднее, чем сульфаты.

По-видимому, это связано с тем, что сульфаты в воде гидролизуются. Прямоцепочечные первичные и вторичные алкилсульфаты за 1 ч полностью разрушаются в сточных водах. Алкилсульфаты с разветвленной цепью окисляются медленнее, а прямоцепочечные алкилбензолсульфонаты полностью распадаются лишь за 3 сут. Биоразложение катионактивных ПАВ мало изучено, нек-рые исследователи не рекомендуют сбрасывать их в сточные воды.

Рост произ-ва ПАВ привел к появлению крупных предприятий, являющихся локальными источниками загрязнения воды. Высококонцентрир. сточные воды этих предприятий м. б. очищены микробиол. методом, основанным на использовании высокоактивных культур микроорганизмов. Получены штаммы бактерий, разрушающих алкилсульфаты, алкилсульфонаты, алкилбензолсульфонаты, сульфоэтокси-латы и др. Идентифицированы промежут. продукты распада, к-рые являются аналогами прир. в-в, нетоксичны и не оказывают неблагоприятного воздействия на окружающую среду. Один из важных результатов бактериального расщепления - отсутствие среди промежут. продуктов распада в-в с явно выраженной дифильностью молекул. Метод дал положит. результаты для сточных вод, содержащих 500 мг/л ПАВ. Эффективность очистки составила 95-97% за время не более 12 ч. Среди грамотрицат. бактерий обнаружены микроорганизмы (деструкторы), к-рые усваивают ПАВ как питат. субстрат.

Технологические ПАВ и их смазочная способность

Поверхностно-активные вещества (ПАВ) -- химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.

Существенное действие технологических ПАВ выражается как в прямом, так и в косвенном (посредство изменения структуры) влиянии на поверхностные явления на границе раздела фаз смазка-металл, т.е. на смазочную и защитную способность смазок. Значительное влияние на процессы трения и изнашивания оказывают не только индивидуальные КПАВ, но и продукты окисления, образующиеся в процесе приготовления (т.е. ТПАВ) и работы смазочных материалов. Еще в 1950-е годы Д. С. Великовским с сотрудниками были разработаны присадки серии МНИ, являющиеся продуктами окисления петролатума или церезина. Показано, что носителями их функциональных свойств, в том числе противоизносных, являются эфирокислоты, содержащие активные группы СООН, СООС, ОН, а также лактонные группы, образующие квазикристаллические структуры.

Смазочная способность

Триботехнические свойства смазок, содержащих ТПАВ, в значительной степени зависят от состава основы, ее стабильности к окислению на этапе приготовления смазки, а также срабатываемости при эксплуатации. С увеличением длительности термообработки расплава литиевых смазок, приготовленных на ароматизированной основе, смазочная способность несколько улучшается.

Особенно это касается смазок на LioSt, которые в большей степени подвержены окислительному процессу с накоплением высокомолекулярных кислот. Последние, контактируя с поверхностями трения, образуют полимолекулярные граничные пленки, особенно прочные на окисленных участках поверхности металла, где адсорбция определяется полярностью активной группы молекулы ТПАВ.

По улучшению противоизносных свойств модельные ТПАВ -- индивидуальные жирные кислоты и спирты располагаются в ряд: стеариновая кислота < бегеновая кислота < цетиловый спирт < < нафтеновые кислоты. Вероятно, в отличие от объемных свойств в регулировании смазочного действия большое значение имеет химическое сродство молекулы ТПАВ к молекуле дисперсной фазы.

При концентрациях более 1% жирные кислоты снижают также задир и схватывание трущихся поверхностей, однако при этом они полностью разрушают структуру смазки. Кроме того, синтетический эфир ДОС влияет на противоизносные свойства смазок сильнее, чем любое из исследованных модельных технологических ПАВ.

В условиях трения при граничной смазке в смазочном материале формируются жидкокристаллические структуры. Выдерживание расплавов мыло-масляных дисперсий при температурах жидкокристаллического состояния приводит к наиболее быстрому включению в работу этих слоев в условиях трения, т.е. к более эффективной работе смазки. Вероятно, в ряде случаев некоторые элементы высокотемпературных мезофаз сохраняются в конечной структуре смазки и при нормальной температуре в результате склонности мыло-масляных расплавов к переохлаждению.

В работающем узле трения существенное значение имеет срабатывание основы смазки с образованием высокомолекулярных кислородсодержащих соединений. Данный фактор настолько важен, что установлена максимально допустимая степень срабатывания масла: 45-50%. Поэтому направленный синтез ТПАВ в процессе производства смазки для улучшения ее смазочной способности нужно проводить с учетом кинетики срабатывания основы в узле трения. неполярных дисперсионных сред. В частности, от содержания ТПАВ в масле С-220 зависит скорость срабатывания этой основы при испытании готовой смазки в узле трения прибора «Трибохим». В режиме приработки скорость срабатывания основы, характеризуемая тангенсом угла tg б наклона кинетических кривых, постоянно возрастает с увеличением длительности обработки при 210°С мыло-масляного расплава, т.е. с ростом количества ТПАВ. Эта закономерность согласуется с общими представлениями о срабатывании масла, в котором уже до начала испытания содержатся продукты окисления. Поэтому наиболее стабилен в режиме приработки образец с минимальным содержанием продуктов окисления, т.е. при ф = 0 мин. Скорость срабатывания его основы меньше, чем для смазок с повышенным содержанием кислородсодержащих ПАВ.

Однако основной показатель качества смазки при этих испытаниях -- скорость срабатывания основы в установившемся режиме трения. Этот параметр свидетельствует, что наиболее устойчива к срабатыванию основа смазки, полученной при длительности термообработки расплава 30 мин. Образующиеся кислородсодержащие ПАВ в наименьшей степени склонны к полимеризации и поликонденсации с образованием высокомолекулярных смолообразных соединений, каковыми являются продукты срабатывания основы.

При окислении готовых смазок в процессе длительного хранения и эксплуатации прочность смазочной пленки уменьшается, противоизносные свойства ухудшаются. По-видимому, продукты окисления, воздействуя в процессе эксплуатации на структуру смазки, уменьшают ее способность образовывать прочные пленки на металле. В этом случае в образовании смазочных слоев на металле существенно совместное действие мыла и ТПАВ.

Размещено на Allbest.ru


Подобные документы

  • Химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов). Свойства и важнейшие характеристики, получение, применение. Поверхностно-активные вещества: молекулярное строение и получение, свойства и применение.

    реферат [28,7 K], добавлен 05.02.2008

  • Распространение в природе поверхностно-активных полимеров. Способы конструирования ПАВ. Полимеры с гидрофильной основной цепью и гидрофобными боковыми цепями. Уникальные свойства высокомолекулярных поверхностно-активных веществ.

    реферат [1,6 M], добавлен 16.09.2009

  • Характеристика поверхностно-активных веществ: определение термина, строение, классификация, области применения. Стабилизация стеарат-ионами жировой частицы в воде. Моющие вещества, растворы и препараты, применяемые для очистки железнодорожного транспорта.

    контрольная работа [61,2 K], добавлен 07.12.2011

  • Характеристика поверхностно-активных веществ, особенности их структуры, сущность синтеза олигомеров высшего порядка. Димерные и лабильные ПAB, циклические и ациклические ацетали, эфиры бетаина. Значение и перспективы ПАВ с разрушаемыми связями.

    контрольная работа [987,3 K], добавлен 16.09.2009

  • Полимеризующиеся поверхностно-активные вещества и их применение для создания покрытий. Специфические свойства ПАВ и их использование в качестве эмульгаторов, диспергаторов и для экстремального снижения поверхностного натяжения. Способы полимеризации ПАВ.

    контрольная работа [1,8 M], добавлен 16.09.2009

  • Адсорбция поверхностно-активных веществ на межфазных границах. Агрегирование ПАВ в растворе. Нефтехимия и химия растительных масел как источников сырья для получения ПАВ. Классификация ПАВ, их воздействие на окружающую среду, дерматологическое действие.

    курсовая работа [1,9 M], добавлен 04.09.2009

  • Общий анализ взаимодействия поверхностно-активных веществ (ПАВ) с полимерами. Особенности дифильности белков. Относительная вязкость растворов желатина в зависимости от концентрации добавленного додецилсульфата натрия. Роль взаимодействий белков с ПАВ.

    реферат [709,8 K], добавлен 17.09.2009

  • Индуцированное полимерами агрегирование поверхностно-активного вещества (ПАВ). Притяжение между полимером и ПАВ: влияние природы обоих компонентов. Аналогия между взаимодействием поверхностно-активного вещества с поверхностно-активными полимерами.

    контрольная работа [1,2 M], добавлен 16.09.2009

  • Дисперсные системы и гомогенные растворы. Характерные свойства и особенности суспензий. Тонкие и грубые суспензии. Диспергационные и конденсационные методы получения. Суспензии из поверхностно-лиофильных и поверхностно-лиофобных нерастворимых веществ.

    презентация [529,4 K], добавлен 26.12.2016

  • Понятие и единицы измерения адсорбции. Зависимость величины адсорбции от концентрации, давления и температуры. Изотерма, изобара, изопикна, изостера адсорбции. Поверхностно-активные и поверхностно-инактивные вещества. Уравнения адсорбционного равновесия.

    реферат [78,3 K], добавлен 22.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.