Химические свойства органических соединений

Сущность карбоновых кислот, их классификация и сферы применения. Строение, изомерия и способы синтеза одноатомных предельных спиртов (алканолов). Химические свойства ароматических углеводородов и алканов. Реакции присоединения и окисления алкенов.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 11.12.2011
Размер файла 461,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Химические свойства органических кислот

Органические соединения, содержащие в качестве функциональной группы карбоксил -COOH, носят название карбоновых кислот. В зависимости от характера радикала, с которым связана карбоксильная группа, различают кислоты предельные, непредельные, ароматические и др. По числу имеющихся в молекуле карбоксильных групп их подразделяют на одноосновные, двухосновные и т.д.

Наша жизнь постоянно связана с данными веществами, всем хорошо известны такие названия, как муравьиная, уксусная, лимонная и другие кислоты. Органические кислоты входят в состав лекарственных препаратов (ацетилсалициловая кислота), используются в пищевой промышленности (уксусная, лимонная кислоты), для получения синтетически моющих средств и мыла. Некоторые кислоты вырабатываются насекомыми и используются в качестве средств защиты (муравьиная кислота). Биохимические процессы, проходящие на клеточном уровне связанны с пировиноградной кислотой, окисление многих веществ попадающих в наш организм превращает их в молочную или уксусную кислоту.

В данной работе сделана попытка, изучить некоторые свойства этих удивительных соединений.

Рассматривая строение карбоксильной группы, мы должны отметить наличие в ней двойной связи C=O и, следовательно, отнести её к числу ненасыщенных функциональных групп, наличие связи O-H, т.е. существование подвижного атома водорода. Классическими примерами карбоновых кислот, у которых прослеживаются общие свойства этих соединений, служат уксусная кислота, стеариновая кислота, акриловая кислота. Интерес вызывает муравьиная кислота, совмещающая в себе свойства альдегидов и кислот.

Рассмотрев некоторые свойства органических кислот, можно заметить сходство между органическими и неорганическими кислотами (взаимодействие с основаниями, с металлами). Несмотря на различие углеводородных радикалов многие органические кислоты имеют схожие химические свойства, это определяется наличием одинаковых функциональных групп.

Одноатомные предельные спирты (алканолы)

Строение

Изучение спиртов лучше начать с рассмотрения предельных одноатомных, имеющих общую формулу CnH2n+1OH, или в общем виде R-OH.

В зависимости от характера углеродного атома (первичный, вторичный или третичный), с которым связана гидроксильная группа, различают спирты первичные, вторичные и третичные:

Одновалентная спиртовая группа -СН2OН называется первичной, двухвалентная - =СН-ОН - вторичной и трехвалентная - ?С-ОН - третичной спиртовой группой.) Строение самого простого спирта - метилового (метанола) - можно представить формулами:

Из электронной формулы видно, что кислород в молекуле спирта имеет две неподеленные электронные пары. Кислород в гидроксильной группе, обладая значительной электроотрицательностью, оттягивает электронную плотность связи O-Н в свою сторону. Поэтому такая связь частично поляризована: на атоме кислорода появляется частичный отрицательный, а на водороде - частичный положительный заряды:?

Однако эта поляризация снижается за счет донорных свойств алкильных радикалов:?

Таким образом, подвижность атома водорода в гидроксильной группе спирта несколько меньше, чем в воде. Более "кислым" в ряду одноатомных предельных спиртов будет метиловый (метанол). Он немного "кислее", чем вода.

Радикалы в молекуле спирта также играют определенную роль в проявлении кислотных свойств. Обычно углеводородные радикалы понижают кислотное свойства. Но если в них содержатся, электроноакцепторные группы, то кислотность спиртов заметно увеличивается. Например, спирт (СF3)3С-ОН за счет атомов фтора становится настолько кислым, что способен вытеснять угольную кислоту из ее солей.

Номенклатура. Названия спиртов чаще всего связывают с названиями радикалов, с которыми связана гидроксильная группа:

По систематической номенклатуре спирты называют по названию соответствующего алкана с добавлением суффикса -ол (СН3ОН - метанол, C2H5-ОН - этанол и т.д.). Главную цепь нумеруют с того конца, к которому ближе расположена гидроксильная группа. Например:

Иногда спирты рассматривают как производные простейшего спирта - метилового СH3-ОН, который называют также карбинолом:

Изомерия. Строение спиртов зависит от структуры углеродной цепи и положения в ней гидроксильной группы. Например:

Получение

В природе спирты встречаются редко, чаще - в виде производных (сложные эфиры и др.), из которых они могут быть получены. Для получения спиртов важную роль играет органический синтез. Приведем некоторые способы синтеза спиртов.

1. Гидратация (присоединение воды к алкенам). Реакция проводится в присутствии катализаторов. При использовании в качестве катализатора серной кислоты (сернокислотная гидратация) реакция идет в две стадии:

Если реакцию гидратации проводить при высокой температуре (300 - 350°С) и давлении в присутствии катализатора (смеси фосфорной к вольфрамовой кислот), то реакция идет в одну стадию. Это-метод прямой гидратации. При получении этилового спирта этот метод вытеснил сернокислотную гидратацию. Гидратация алкенов имеет важное промышленное значение. Этот способ позволяет получать спирты из доступного и дешевого сырья - газов крекинга. Так, из 1 т этилена можно получить 1,4 т спирта. Впервые в нашей стране этиловый спирт начали получать гидратацией этилена с 1952 г. (г. Сумгаит).

2. Гидролиз моногалогенопроизводных. Реакцию проводят, нагревая галогеналкилы с водой или водным раствором щелочей:

C2H6Cl + H2O > C2H6OH + HC

3. Получение метанола из синтез-газа. Процесс идет при 220-300°С и сравнительно невысоком давлении с использованием катализатора из оксидов меди и цинка:

кат.

CO + 2H2 > CH3OH

Из синтез-газа можно получать и другие спирты.

4. Восстановление альдегидов и кетонов. При восстановлении альдегидов образуются первичные, а при восстановлении кетонов - вторичные:

5. Спиртовое брожение (расщепление) моносахаридов C6H12O6 под влиянием ферментов:

зимаза

C6H12O6 -> C2H6OH + 2CO2

Физические и химические свойства

Физические свойства. Физические свойства некоторых одноатомных спиртов приведены в таблице.

Таблица 1. Физические свойства некоторых одноатомных спиртов

Название спиртов

Формула

tкип, °C

tпл, °C

d204

Метиловый (метанол)

СН3ОН

64,7

-97,8

0,7930

Этиловый (этанол)

C2H5OH

78,3

-117,3

0,7900

Пропиловый (пропанол-1)

н3Н7ОН

97,2

-127

0,8040

Изопропиловый (пропанол-2)

СH3СН(ОН)СН3

82,2

-88

0,7850

Бутиловый (бутанол-1)

н-C4H9OH

117,7

-79,9

0,8090

втop-Бутиловый (бутанол-2)

СH3СН2СН(ОН)СН3

100

-89

0,8080

Изобутиловый (2-метилпропанол-1)

СН3СН(СН3)СН2

108,4

-108

0,8010

трет-Бутиловый (2-метилпропанол-2)

(СН3)3СОН

83

+25

0,7880

Амиловый (пентанол-1)

C5H11OH

138

-78,2

0,8140

Гексиловый (гексанол-1)

C6H13OH

157,2

-51,6

0,8190

Гептиловый (гептанол-1)

C7H15OH

176,3

-34,1

0,8220

Октиловый (октанол-1)

C8H17OH

195,0

-16,3

0,8240

Нониловый (нонанол-1)

C9H19OH

213,5

-5,0

0,8270

Дециловый (деканол-1)

C10H21OH

231,0

+6,0

0,8290

Предельные одноатомные спирты от C1 до C12 - жидкости. Высшие спирты - мазеобразные вещества, от C21 и выше - твердые вещества. Все спирты легче воды (плотность ниже единицы). Температура кипения спиртов нормального строения повышается с увеличением молекулярной массы. Спирты нормального строения кипят при более высокой температуре, чем спирты с изостроением. В воде хорошо растворяются метиловый, этиловый и пропиловый спирты. С увеличением молекулярной массы растворимость спиртов снижается. Низшие спирты легче воспламеняются и горят бесцветным пламенем. Спирты с большой молекулярной массой коптят при горении. Температура кипения спиртов выше, чем галогеналкилов и углеводородов с тем же числом углеродных атомов. Это объясняется тем, что молекулы спирта, как и воды, являются ассоциированными жидкостями за счет водородных связей, возникающих между молекулами:

Водородная связь оказывает большое влияние на физические свойства спиртов.

Химические свойства. Основные химические свойства спиртов определяются реакционноспособной гидроксильной группой. Химические реакции могут идти или только по водороду гидроксильной группы, или протекать с участием всей группы.

Реакции гидроксильного водорода. 1. Взаимодействие спиртов со щелочными металлами (образование алкоголятов). Спирты, как известно, обладают чрезвычайно слабыми кислотными. Однако атом водорода гидроксильной группы, обладая некоторой подвижностью, способен обмениваться в реакциях замещения на активные металлы:

2C2H6OH + 2Na > 2C2H6ONa + H2 этилат натрия

Образующиеся продукты называют алкоголятами (от названия спиртов - алкоголи). Алкоголяты метилового спирта называются метилатами, а этилового - этилатами и т.д. Алкоголяты - твердые, неустойчивые вещества, легко подвергающиеся гидролизу:

C2H6ONa + H2O > C2H6OH + NaOH

Алкоголяты щелочных металлов обладают более сильными основными свойствами, чем гидроксиды щелочных металлов.

2. Образование простых эфиров.

Взаимодействием алкоголятов с галогеналкилами можно получить простые эфиры:

C2H6-ONa + I-C2H6 > C2H6-O-C2H6 + NaI диэтиловый эфир

3. Образование сложных эфиров (реакция этерификации).

При реакции спиртов с кислотами (органическими или неорганическими) получаются соединения, которые называют сложными эфирами. Такая реакция получила название реакции этерификации (от лат. aether - эфир). Если во взаимодействие со спиртом вводят органические (карбоновые) кислоты, то в качестве катализатора используют сильные минеральные кислоты:

Реакции гидроксила. 1. Замещение гидроксильной группы на галоген (образование галогенопроизводного):

C2H6OH + HCl > C2H6Cl + H2O

Такая реакция обратима, но можно равновесие сдвинуть вправо, если ее проводить в присутствии водоотнимающих средств (например, H2SO4(конц.), ZnCl2 и др.). Замещение гидроксильной группы на галоген происходит также при взаимодействии спирта с PCl5.

2. Дегидратация спиртов (отщепление воды).

Реакция дегидратации может быть внутримолекулярной и межмолекулярной. При внутримолекулярной дегидратации образуются алкеновые углеводороды:

Химические свойства ароматических углеводородов

Ароматические углеводороды, органические соединения, состоящие из углерода и водорода и содержащие бензольные ядра. Простейшие и наиболее важные представители А. у. - бензол (I) и его гомологи: метилбензол, или толуол (II), диметилбензол, или ксилол, и т. д. К А. у. относятся также производные бензола с ненасыщенными боковыми цепями, например стирол (III). Известно много А. у. с несколькими бензольными ядрами в молекуле, например дифенилметан (IV), дифенил C6H5-C6H5, в котором оба бензольных ядра непосредственно связаны между собой; в нафталине (V) оба цикла имеют 2 общих атома углерода; такие углеводороды называются А. у. с конденсированными ядрами.

Основными источником получения А. у. служат продукты коксования каменного угля. Из 1 т каменноугольной смолы можно в среднем выделит: 3,5 кг бензола, 1,5 кг толуола, 2 кг нафталина. Большое значение имеет производство А. у. из нефтяных углеводородов жирного ряда (см. Ароматизация нефтепродуктов). Для некоторых А. у. имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу:

По химическим свойствам А. у. резко отличаются от ненасыщенных алициклических соединений; их выделяют в самостоятельный большой класс органических соединений (см. Ароматические соединения). При действии серной кислоты, азотной кислоты, галогенов и других реагентов в А. у. замещаются атомы водорода и образуются ароматические сульфокислоты, нитросоединения, галогенбензолы и т.д. Эти соединения служат промежуточными продуктами в производстве красителей, лекарственных средств и др. Стирол легко образует практически важный полимер - полистирол. При окислении нафталина образуется фталевая кислота о6Н4 (COOH)2, служащая исходным продуктом в производстве многих красителей, глифталевых смол, фенолфталеина.

Химические свойства алканов

кислота спирт углеводород алкан

Алканы - химически наименее активные органические соединения. Все связи С-С и С-Н в алканах одинарные, поэтому алканы неспособны к реакциям присоединения. Для алканов характерны реакции замещения атомов водорода на другие атомы и группы атомов. Так, при хлорировании метана образуются метилхлорид CH3Cl, метиленхлорид CH2Cl2, трихлорметан (хлороформ) CHCl3 и тетрахлорид углерода (четыреххлористый углерод) CCl4. Эти реакции идут по цепному механизму с промежуточным образованием свободных радикалов

При хлорировании алканов, начиная с пропана, первый же атом хлора может заместить разные атомы водорода. Направление замещения зависит от прочности связи С-Н: чем она слабее, тем быстрее замещение именно этого атома. Первичные связи С-Н, как правило, прочнее вторичных, а вторичные прочнее третичных. В результате хлорирование при 25°С по вторичной связи (СН3)2СН-Н происходит в 4,5 раза быстрее, чем по первичной связи С2Н5-Н, а третичной связи (СН3)3С-Н - в 6,7 раза быстрее. Разная реакционная способность первичных, вторичных и третичных атомов водорода может приводить к тому, что из нескольких возможных продуктов хлорирования будет преобладать только один.

Например, при хлорировании 2,3-диметилбутана в растворе сероуглерода (CS2) образуется 95% 2-хлорпроизводного и только 5% 1-хлорпроизводного, т.е. в 19 раз меньше. Если же учесть, что в исходном алкане первичных атомов водорода в 6 раз больше, чем третичных, то отношение их реакционных способностей окажется еще больше (19 * 6 = 114). Сероуглерод как растворитель понижает реакционную способность атомов хлора и соответственно повышает его селективность. Аналогично действует понижение температуры.

Атомы брома менее активны; заметная энергия активации этой реакции приводит к тому, что бромирование алканов хотя и идет по цепному механизму, но значительно медленнее, чем хлорирование, и только при повышенной температуре или на свету. Меньшая активность атомов брома приводит и к усилению селективности бромирования. Так, если относительную скорость фотохимического бромирования этана при 40°С принять равной 1, то скорость бромирования пропана (по вторичному атому Н) составит в тех же условиях уже 220, а скорость бромирования изобутана (по третичному атому Н) - 19000.

Атомы иода наименее активны, поэтому реакция иодирования алканов RH + I2 > RI + HI - эндотермическая, возможна только при высоких температурах и идет с очень короткими цепями. Более того, очень легко идет обратная экзотермическая реакция RI + HI > RH + I2. При иодировании алканов образуются и непредельные соединения. Например, при 685°С этан, реагируя с иодом, образует 72% этилена и 10% ацетилена. Такие же результаты получены с пропаном, бутаном и пентаном.

Реакция фторирования алканов идет с очень высокой, часто взрывной, скоростью с образованием всех возможных полифторпроизводных исходного алкана. Энергия, выделяющаяся при фторировании алканов, настолько велика, что может привести к распаду молекул продуктов на радикалы, которые начинают новые цепи. В результате скорость реакции лавинообразно нарастает и это приводит к взрыву даже при низких температурах. Особенность фторирования алканов - в возможности разрушения углеродного скелета атомами фтора с образованием в качестве конечного продукта CF4 с другими галогенами такая реакция не идет.

Нитрование алканов (реакция Коновалова) также идет по радикальному механизму:

RH + NO2 > R· + HNO2,

R· + NO2 > RNO2.

Источником NO2 служит азотная кислота, которая при нагревании распадается. Реакцию проводят в растворе при температуре выше 150°С или в парах под давлением до 10 атм и температуре 400 - 500°С. В последнем случае происходит также разрыв С-С-связей в алканах и образуется смесь нитроалканов.

Все алканы горят в выделением тепла, например:

C5H12 + 8O2 > 5CO2 + 6H2O.

Эта реакция происходит, в частности, в цилиндрах двигателей внутреннего сгорания. Чтобы остатки несгоревших алканов не попадали в атмосферу, применяют их каталитическое дожигание в выхлопных трубах (одновременно происходит сгорание СО и превращение оксидов азота в безвредный азот). Реакция кислорода с высшими алканами (в составе парафина) происходит при горении свечи. Газообразные алканы, например, метан, образуют с воздухом взрывчатые смеси. Такие смеси могут образоваться в шахтах, а также в жилых домах при утечке бытового газа, если его содержание в воздухе достигнет 5%.

Значительные усилия химиков были направлены на подробное изучение реакции низкотемпературного окисления алканов с целью остановить ее на стадии образования ценных промежуточных продуктов - альдегидов, кетонов, спиртов, карбоновых кислот. Так, в присутствии солей Co(II), Mn(II) можно окислить бутан до уксусной кислоты, парафин - до жирных кислот С12 - С18. Окислением циклогексана получают капролактам - мономер для производства капрона и адипиновую кислоту.

Важная промышленная реакция - фотохимическое сульфохлорирование алканов: совместная радикально-цепная реакция с Cl2 и SO2 с образованием хлорангидридов алкансульфоновых кислот RSO2Cl. Эта реакция широко используется в производстве моющих веществ. При замене хлора на кислород происходит цепная радикальная реакция сульфоокисления алканов с образованием алкансульфоновых кислот R-SO2-OH. Натриевые соли этих кислот -применяют как моющие и эмульгирующие средства.

При высоких температурах происходит разложение (пиролиз) алканов, например:

CH4 > C + 2H2 (1000°C),

2CH4 > C2H2 + 3H2 (1500°C),

C2H6 > C2H4 + H2.

Последняя реакция идет при 500°С в присутствии катализатора (Ni). Аналогично из бутана можно получить 2-бутен СН3СН=СНСН3, одновременно образуется смесь этилена и этана. В отличие от этой радикальной реакции, каталитический крекинг алканов протекает по ионному механизму и служит для получения бензина из более тяжелых нефтяных фракций. При нагревании в присутствии кислот Льюиса, например, AlCl3 происходит изомеризация: неразветвленные (нормальные) алканы превращаются в разветвленные с тем же числом атомов углерода. Эта реакция имеет большое практическое значение для получения высококачественного моторного топлива. Дегидрирование алканов может сопровождаться замыканием цикла (дегидроциклизация). В случае дегидроциклизации гексана основным продуктом является бензол.

Метан при высокой температуре в присутствии катализатора реагирует с водяным паром и оксидом углерода(IV) с образованием синтез-газа:

CH4 + H2O > CO + 3H2,

CH4 + CO2 > 2CO + 2H2.

Синтез-газ используют для получения моторных топлив и метилового спирта.

В последние годы усилия химиков направлены на создание катализаторов, активирующих связи С-Н в молекулах алканов в мягких условиях. Подобные реакции «умеют» осуществлять некоторые микроорганизмы, ферменты которых способны «переваривать» даже парафин с образованием белковых соединений. Задача химиков - понять, как действуют природные катализаторы и смоделировать ферментативные реакции, которые могут идти при обычной температуре. При этом в качестве катализаторов используются различные металлоорганические соединения. Например, в присутствии некоторых платиновых соединений можно получать метанол СН3ОН непосредственно из метана, а в присутствии трифенилфосфинового комплекса родия Rh[(C6H5)3P], связанного с молекулами СО; в ходе реакции молекулы СО внедряются по связи С-Н алканов с образованием альдегидов.

Циклоалканы по химическим свойствам напоминают алканы. Так, они горючи, могут галогенироваться по радикальному механизму, при повышенной температуре в присутствии катализаторов дегидрируются - отщепляют водород и превращаются в непредельные углеводороды. Особыми свойствами, как говорилось, обладает циклопропан. В отличие от алканов, циклоалканы гидрируются, при этом цикл раскрывается и образуются алканы, например:

цикло-C3H6 + H2 > C3H8

(реакция идет при нагревании в присутствии платинового катализатора). С увеличением размера цикла реакция затрудняется - так, уже циклопентан гидрируется (до пентана) с большим трудом и при высокой температуре (300°С).

Химические свойства алкенов

Химические свойства алкенов определяются строением и свойствами двойной связи С=С, которая значительно активнее других связей в молекулах этих соединений. Алкены химически более активны, чем алканы.

для алкенов наиболее характерны реакции, протекающие за счет раскрытия менее прочной p-связи. При этом p-связь (в исходном алкене) преобразуется в s -связь в продукте реакции. Исходное ненасыщенное соединение превращается в насыщенное без образования других продуктов, т.е. происходит реакция присоединения.

За счет электронов p-связи в молекулах алкенов имеется область повышенной электронной плотности (облако p-электронов над и под плоскостью молекулы).Поэтому двойная связь склонна подвергаться атаке электрофильным (электрон-дефицитным) реагентом. В этом случае будет происходить гетеролический разрыв связей и реакция пойдет по ионному механизму как электрофильное присоединение.

Механизм электрофильного присоединения обозначается символом АЕ (по первым буквам английских терминов: A - addition [присоединение], Е - electrophile [электрофил]).

С другой стороны, углерод-углеродная p-связь, являясь неполярной, может разрываться гомолитически, и тогда реакция будет идти по радикальному механизму.

Механизм радикального присоединения обозначается символом АR (R - radical - радикал).

Механизм присоединения зависит от условий проведения реакции.

Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи.

Присоединение галогенов по двойной связи С=С происходит легко в обычных условиях (при комнатной температуре, без катализатора). Например, быстрое обесцвечивание синей окраски раствора брома в воде (бромной воды) служит на наличие двойной связи.

Эта реакция протекают по механизму электрофильного присоединения с гетеролитическим разрывом связей в молекуле галогена.

Окисление алкенов

Мягкое окисление алкенов водным раствором перманганата калия приводит к образованию двухатомных спиртов (реакция Вагнера):

Полное уравнение реакции:

В ходе этой реакции происходит обесцвечивание фиолетовой окраски водного раствора KMnO4. Поэтому она используется как качественная реакция на алкены.

Химические свойства алкинов

Химические свойства алкинов сходны с алкенами, что обусловлено их ненасыщенностью.

Некоторые отличия в свойствах алкинов и алканов определяются следующими факторами:

1. p-Электроны более короткой тройной связи прочнее удерживаются ядрами атомов углерода и обладают меньшей поляризуемостью (подвижностью). Поэтому реакции электрофильного присоединения к алкинам протекают медленнее, чем к алкенам.

2. p-Электронное облако тройной связи сосредоточено в основном в межъядерном пространстве и в меньшей степени экранирует ядра углеродных атомов с внешней стороны. Следствием этого является доступность ядер углерода при атаке нуклеофильными реагентами и способность алкинов вступать в реакции нуклеофильного присоединения.

3. Связь атома водорода с углеродом в sp-гибридизованном состоянии значительно более полярна по сравнению с С-Н-связями в алканах и алкенах. Это объясняется различным вкладом в гибридизованное состояние s-орбитали, которая более прочно, чем р-АО, удерживает электроны (сравните форму и энергию s- и р-АО). Доля s-АО в sp3-состоянии составляет 25%, в sp2- 33%, а в sp- 50%. Чем больше вклад s-АО, тем выше способность атома удерживать внешние электроны, т.е. его электроотрицательность. Повышенная полярность связи С(sp)-Н приводит к возможности ее гетеролитического разрыва с отщеплением протона Н+. Таким образом, алкины с концевой тройной связью (алкины-1) проявляют кислотные свойства и способны, вступая в реакции с металлами, образовывать соли.

Гидрирование

В присутствии металлических катализаторов (Pt, Ni) алкины присоединяют водород с образованием алкенов (разрывается первая p-связь), а затем алканов (разрывается вторая p-связь):

При использовании менее активного катализатора [Pd/CaCO3/Pb(CH3COO)2] гидрирование останавливается на стадии образования алкенов.

Галогенирование

Электрофильное присоединение галогенов к алкинам протекает медленнее, чем для алкенов (первая p-связь разрывается труднее, чем вторая):

Алкины обесцвечивают бромную воду.

Гидрогалогенирование

Присоединение галогеноводородов также идет по электрофильному механизму. Продукты присоединения к несимметричным алкинам определяются правилом Морковникова:

Гидрохлорирование ацетилена используется в одном из промышленных способов получения винилхлорида. Винилхлорид является исходным веществом (мономером) в производстве поливинилхлорида (ПВХ).

Гидратация (реакция Кучерова)

Присоединение воды происходит в присутствии катализатора соли ртути (II) и идет через образование неустойчивого непредельного спирта, который изомеризуется в уксусный альдегид (в случае ацетилена):

или в кетон (в случае других алкинов):

Полимеризация

1. Димеризация под действием водно-аммиачного раствора CuCl:

2. Тримеризация ацетилена над активированным углем приводит к образованию бензола (реакция Зелинского):

возможно образование молекул, содержащих большее число звеньев ацетилена, как циклического, так и линейного строения

… -СН=СН-СН=СН-СН=СН-…

(такие полимеры обладают полупроводниковыми свойствами).

Следует также отметить, что высокомолекулярное вещество - карбин (третья аллотропная модификация углерода) - образуется не в результате полимеризации ацетилена, а при окислительной поликонденсации ацетилена в присутствии CuCl:

Размещено на Allbest.ru


Подобные документы

  • Способы выделения, очистки и анализа органических веществ. Получение предельных, непредельных и ароматических углеводородов, спиртов, карбоновых кислот. Получение и разложение фенолята натрия. Методы выделения белков. Химические свойства жиров, ферментов.

    лабораторная работа [201,8 K], добавлен 24.06.2015

  • Строение предельных углеводородов, их физические и химические свойства. Гомологический ряд метана. Изомерия и номенклатура предельных углеводородов. Декарбоксилирование натриевых солей карбоновых кислот. Выделение углеводородов из природного сырья.

    презентация [46,7 K], добавлен 28.11.2011

  • Предмет органической химии. Понятие о химических реакциях. Номенклатура органических соединений. Характеристика и способы получения алканов. Ковалентные химические связи в молекуле метана. Химические свойства галогеналканов. Структурная изомерия алкенов.

    контрольная работа [1,4 M], добавлен 01.07.2013

  • Критерии классификации спиртов. Виды изомерии, характерные для алканолов. Изомерия положения гидроксильной группы в углеродной цепи и углеродного скелета. Физические и химические свойства спиртов, температура их кипения. Строение молекулы этанола.

    презентация [6,2 M], добавлен 08.08.2015

  • Общие черты в строении молекул одноатомных и многоатомных спиртов. Свойства этилового спирта. Действие алкоголя на организм человека. Установление соответствия между исходными веществами и продуктами реакции. Химические свойства многоатомных спиртов.

    презентация [378,3 K], добавлен 20.11.2014

  • Номенклатура, изомерия, классификация и физические свойства диеновых углеводородов и органических галогенидов. Способы получения и химические свойства. Сущность диенового синтеза. Натуральные и синтетические каучуки, их применение в строительстве.

    контрольная работа [85,0 K], добавлен 27.02.2009

  • Соединения енолов и фенолов. Происхождение слова алкоголь. Классификация спиртов по числу гидроксильных групп, характеру углеводородного радикала. Их изомерия, химические свойства, способы получения. Примеры применения этилового и метилового спиртов.

    презентация [803,3 K], добавлен 27.12.2015

  • Электронное строение и физико-химические свойства спиртов. Химические свойства спиртов. Область применения. Пространственное и электронное строение, длины связей и валентные углы. Взаимодействие спиртов с щелочными металлами. Дегидратация спиртов.

    курсовая работа [221,6 K], добавлен 02.11.2008

  • Общее определение сложных эфиров алифатичеких карбоновых кислот. Физические и химические свойства. Методы получения сложных эфиров. Реакция этерификации и ее стадии. Особенности применения. Токсическое действие. Ацилирование спиртов галогенангидридами.

    реферат [441,9 K], добавлен 22.05.2016

  • Химические свойства: реакции электрофильного замещения, присоединения, гидрирование и галогенирования. Алкилирование по Фриделю-Крафтсу. Правила ориентации в бензольном кольце. Влияние заместителей в ядре на и распределение изомеров при нитровании.

    реферат [290,9 K], добавлен 21.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.