Тепловые эффекты химических реакций

Термохимия как раздел химической термодинамики, в задачу которой входит определение и изучение тепловых эффектов реакций. Уравнение первого закона термодинамики. Закон Гесса и его сущность. Тепловой эффект химической реакции и термохимические уравнения.

Рубрика Химия
Вид доклад
Язык русский
Дата добавления 23.11.2011
Размер файла 22,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Термохимия -- раздел химической термодинамики, в задачу которой входит определение и изучение тепловых эффектов реакций, а также установление их взаимосвязей с различными физико-химическими параметрами. Ещё одной из задач термохимии является измерение теплоёмкостей веществ и установление их теплот фазовых переходов. Как известно, химические реакции можно разделить на экзотермические, т.е. протекающие с выделением теплоты, и эндотермические, т.е. протекающие с поглощением теплоты. Уравнение первого закона термодинамики для процесса, сопровождающегося химическими превращениями, имеет следующий вид:

dQ = dU + pdV + dL*,

где pdV- дифференциал работы расширения; dL*- дифференциал других возможных видов работы, совершающейся в процессе химической реакции. Выбор знаков для теплоты и работы является условным. И хотя в термохимии часто полагают Q положительным при выделении теплоты системой в ходе реакции, будем считать положительными теплоту, сообщаемую системе, и работу, произведенную системой. Под тепловым эффектом реакции понимается количество теплоты, выделяющейся или поглощающейся при неизменных V и T или при неизменных p и T и при условии, что системой может производиться работа расширения, а dL* = 0.Для изохорно-изотермического процесса pdV = 0, поэтому уравнение первого закона принимает вид dQv = dU. Для изобарно-изотермической реакции dQp = dH. Поэтому Qv и Qp однозначно определяются начальными и конечными состояниями системы. Изложенное составляет основу закона, открытого в 1840 г. русским химиком Г.И. Гессом. Закон Гесса может быть сформулирован так: тепловой эффект реакции, состоящей из нескольких промежуточных стадий, не зависит от этих промежуточных стадий или их последовательности, а полностью определяется начальным и конечным состояниями системы. Закон Гесса может быть выражен также следующим образом: если система посредством ряда химических превращений совершает круговой процесс при неизменных температуре и объёме или неизменных температуре и давлении, то алгебраическая сумма тепловых эффектов реакций должна быть равна нулю. В результате кругового процесса значения функций состояния остаются неизменными, а значит, алгебраическая сумма тепловых эффектов должна быть равна нулю. Из закона Гесса вытекают очевидные следствия, имеющие практическое значение: Тепловой эффект образования соединения из исходных веществ не зависит от способа, которым это соединение получено. Тепловой эффект разложения какого-либо химического соединения до определённых продуктов равен и противоположен по знаку тепловому эффекту образования этого соединения из тех же продуктов.

Разность между тепловыми эффектами превращения двух различных систем в одинаковые продукты реакции равна тепловому эффекту перехода одной системы в другую. Или наоборот: разность тепловых эффектов превращения двух одинаковых химических систем в различные продукты реакции равна тепловому эффекту перехода одних продуктов реакции в другие. Так как в термохимических таблицах часто приводятся значения тепловых эффектов образования веществ из элементов в изобарно-изотермическом процессе при стандартных условиях (р=760 мм рт. ст.=101.325 кПа и t=25С), то это же следствие из закона Гесса можно сформулировать следующим образом: тепловой эффект реакции равен алгебраической сумме теплот образования продуктов реакции за вычетом суммы теплот образования исходных веществ, т.е. Иногда в таблицах приводятся значения тепловых эффектов сгорания (теплот сгорания) веществ, обычно также в изобарно-изотермическом процессе и стандартных условиях. При этом имеется в виду, что осуществляется полное сгорание. Для этого случая третье следствие закона Гесса можно сформулировать так: тепловой эффект реакции равен алгебраической сумме теплот сгорания исходных веществ за вычетом суммы теплот сгорания продуктов реакции, т.е.Основными экспериментальными методами термохимии являются калориметрия, дифференциальный термический анализ, дериватография. включающий измерение и вычисление тепловых эффектов реакций, теплот фазовых переходов (например, парообразования), теплот др. процессов, изучение теплоёмкостей, энтальпий и энтропий веществ и физико-химических систем, а также температурной зависимости этих величин. Экспериментальный метод Т. -- калориметрия.

Её содержание составляет разработка методов определения перечисленных характеристик. Для термохимических измерений служат калориметры. На необходимость исследования тепловых эффектов и теплоёмкостей впервые (1752--54) указал М. В. Ломоносов. Первые термохимические измерения провели во 2-й половине 18 в. Дж. Блэк, А. Лавуазье и П. Лаплас. В 19 в. в работах Г. И. Гесса, П. Бертло, Х. Ю. Томсена, В. Ф. Лугинина и других учёных техника калориметрических измерений была усовершенствована. В начале 20 в. развитие Т. ознаменовалось, с одной стороны, дальнейшим повышением точности и расширением интервала температур эксперимента, а с другой -- установлением связи между энергетическими эффектами процессов и строением частиц (атомов, молекул, ионов), а также положением элементов в периодической системе элементов Д. И. Менделеева. Вместе с тем росло число изученных веществ, а с середины 20 в. теория Т. стала развиваться на основе квантовохимических и статистических представлений. Трудность, а иногда и невозможность непосредственного измерения тепловых эффектов многих процессов часто приводит к необходимости их определения косвенным путём -- к вычислению с помощью основного закона Т. -- Гесса закона. При этом для расчётов пользуются стандартными теплотами образования  различных веществ, а для взаимодействия органических соединений -- стандартными теплотами сгорания. Пересчёт  химических реакций на другие температуры осуществляют с помощью Кирхгофа уравнения. Отсутствие нужных для вычисления данных часто заставляет прибегать к приближённым закономерностям, позволяющим найти различные энергетические характеристики процессов и веществ на основании их состава и строения, а также по аналогии с изученными веществами и процессами. Данные термохимические исследований и найденные закономерности используются для составления тепловых балансов технологических процессов, изучения теплотворности топлив, расчёта равновесий химических, установления связи между энергетическими характеристиками веществ и их составом, строением, устойчивостью и реакционной способностью. В сочетании с др. термодинамическими характеристиками термохимические данные позволяют выбрать оптимальные режимы химических производств.

Широкое развитие получила Т. растворов -- определение теплоёмкости, теплот растворения, смешения и испарения, а также их зависимости от температуры и концентрации. Эти характеристики позволяют установить свойства отдельных компонентов, рассчитать теплоты сольватации и тепловые эффекты др. процессов, что важно для суждения о природе растворов и их структуре. Методы Т. используются в коллоидной химии, при изучении биологических процессов, во многих других исследованиях. Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.

Термохимические уравнения: В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции ДН записывать отдельно, через запятую. Например, термохимическое уравнение показывает, что данная химическая реакция сопровождается выделением 1531 кДж теплоты, при давлении 101 кПа, и относится к тому числу молей каждого из веществ, которое соответствует стехиометрическому коэффициенту в уравнении реакции. В термохимии также используют уравнения, в которых тепловой эффект относят к одному молю образовавшегося вещества, применяя в случае необходимости дробные коэффициенты. Закон Гесса: основе термохимических расчётов лежит закон Гесса: Тепловой эффект (?Н) химической реакции (при постоянных Р. и Т) зависит от природы и физического состояния исходных веществ и продуктов реакции и не зависит от пути её протекания. Следствия из закона Гесса: Тепловые эффекты прямой и обратной реакций равны по величине и противоположны по знаку. Тепловой эффект химической реакции (?Н) равен разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ, взятых с учётом коэффициентов в уравнении реакции (то есть помноженные на них).Закон Гесса может быть записан в виде следующего математического выражения:

термохимия уравнение тепловой реакция

С помощью закона Гесса можно рассчитать энтальпии образования веществ и тепловые эффекты реакций, которые невозможно измерить экспериментально.

Размещено на Allbest.ru


Подобные документы

  • Калориметрия как совокупность методов измерения количества выделяющейся или поглощаемой теплоты. Понятие энтальпии. Эндотермические и экзотермическая реакции. Термохимическое уравнение. Формулировка и следствия закона Гесса. Закон Лавуазье-Лапласа.

    презентация [125,7 K], добавлен 14.01.2015

  • Тепловые эффекты химических реакций, а также основные факторы, влияющие на их динамику. Закон Гесса: понятие и содержание, сферы практического применения. Энтропия системы и анализ уравнения Больцмана. Направления химических реакций и энергия Гиббса.

    лекция [34,1 K], добавлен 13.02.2015

  • Основные понятия химической термодинамики. Стандартная энтальпия сгорания вещества. Следствия из закона Гесса. Роль химии в развитии медицинской науки и практического здравоохранения. Элементы химической термодинамики и биоэнергетики. Термохимия.

    презентация [96,9 K], добавлен 07.01.2014

  • Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.

    презентация [2,2 M], добавлен 19.10.2014

  • Основные понятия и законы химической термодинамики. Основы термохимических расчётов. Закон Гесса, следствия из него и значение. Расчёты изменения термодинамических функций химических реакций. Сущность химического равновесия, его константа и смещение.

    реферат [35,3 K], добавлен 14.11.2009

  • Задачи химической кинетики, стадии химического процесса. Открытые и замкнутые системы, закон сохранения массы и энергии. Закон Гесса и его следствие, скорость реакций. Явление катализа, гомогенные, гетерогенные, окислительно-восстановительные реакции.

    курсовая работа [95,9 K], добавлен 10.10.2010

  • Составление уравнения ступенчатой диссоциации заданных веществ. Уравнения реакций кислот, оснований и амфотерных гидроксидов. Получение солей, уравнения их диссоциации. Виды концентраций вещества. Изменение энтропии при проведении химической реакции.

    контрольная работа [158,6 K], добавлен 17.05.2014

  • Понятие термохимии как области химической науки, изучающей тепловые эффекты реакций. Формы существования энергии. Параметры состояния системы, ее функции и внутренняя энергия. Измерение теплоты реакции. Стандартная энтальпия образования вещества.

    презентация [198,1 K], добавлен 22.04.2013

  • Молекулярные, электронные и термохимические уравнения. Амфотерность гидроксида олова. Механизм образования ионной химической связи. Тепловой эффект реакции. Равновесие гетерогенной системы. Вяжущие свойства стройматериалов. Реакция "серебряного зеркала".

    контрольная работа [49,8 K], добавлен 28.11.2011

  • Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.

    реферат [773,3 K], добавлен 25.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.