Физические, физико-химические, химические методы определения нитратов в продуктах питания животного происхождения

Нитраты как соли азотной кислоты, которые накапливаются в продуктах и воде при избыточном содержании в почве азотных удобрений, а также попадании кислотных дождей, их природные источники в продуктах питания. Методы и критерии определения нитратов.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 08.09.2011
Размер файла 85,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

Нитраты в продуктах питания животного происхождения. Физические, физико-химические, химические методы определения нитратов в этих продуктах

Введение

В повседневной жизни людей существует 3 основных проблемы, - вследствие которых возникают различные заболевания, какие-либо экономические и экологические преграды - курение, алкоголизм, наркотики. Но не стоит забывать и об употреблении в быту минеральных удобрений, в состав которых могут входить различные вещества. Почти каждый человек ежедневно использует пищевые продукты, которые содержат нитраты, и не задумывается о том, к каким последствиям это может привести.

Что такое нитраты

Нитраты - это соли азотной кислоты, которые накапливаются в продуктах и воде при избыточном содержании в почве азотных удобрений, а также попадании кислотных дождей. Азотная кислота, прародитель нитратов, является самым сильным окислителем. На первый взгляд она покажется безобидной жидкостью, однако, при добавлении некоторого количества соляной кислоты, мы получим так называемую «царскую водку», в которой растворяется само золото, и свинец. Так что говорить о нитратах, раз у них такой предок. Кроме того, нитраты являются самыми часто используемыми веществами, в производстве удобрений.

Природные источники нитратов

Основные источники нитратов - органическое вещество почвы, минерализация которого обеспечивает постоянное образование нитратов. Скорость минерализации органического вещества зависит от его состава, совокупности экологических факторов, степени и характера землепользования. Поэтому динамика нитратов в земных экосистемах определенным образом связана с малым биологическим круговоротом азота.

Сельскохозяйственное использование почвы приводит к уменьшению запасов органического азота. Убыль почвенного азота усиливается при проведении агротехнических мероприятий, стимулирующих минерализацию органического вещества (севообороты с паром и пропашными культурами, интенсивная обработка почвы, внесение повышенных доз минеральных удобрений). В этой связи роль почвенного азота в загрязнении природных вод нитратами и в накоплении растениями, по-видимому, более существенная, чем считалось до сих пор.

Антропогенные источники нитратов подразделяются на аграрные (минеральные и органические удобрения, животноводческое производство), индустриальные (отходы промышленного производства и сточные воды) и коммунально-бытовые. Роль каждого из этих источников в отдельных страна, регионах, областях неодинакова, что зависит от природных условий, соотношения аграрного и промышленного секторов, интенсивности их развития и масштабов производства, степени концентрации точечных источников нитратов и других факторов. Об интенсивности поступления промышленных и сельскохозяйственных отходов в окружающую среду в индустриально развитых странах можно судить по количеству образуемых в США азотсодержащих органических материалов. Из 730 млн. т. сухого вещества получаемых ежегодно отходов 53,7% составляют послеуборочные остатки, 21,8 - навоз, 18,1 - городские отходы, 4,5 - отходы деревообрабатывающей промышленности, 1 - индустриальные отходы. 0,5 и 0,4% - осадок сточных вод и пищевые остатки. все из перечисленных органических вещест виспользуются в той или иной мере в сельском хозяйстве. Азотные удобрения представляют собой главный антропогенный источник азота, который по своим масштабам приближается к биологической его фиксации на суше и по некоторым прогнозам уже в ближайшие десятилетия превысит ее.

Нитраты в продуктах питания

В процессе хранения и переработки продукции количество нитратов, как правило, несколько снижается, однако при нарушении режимов хранения их содержание может расти, и довольно существенно. Образованию нитратов и нитритов в процессе хранения продукции способствуют различные виды микроорганизмов.

Чем выше содержание нитратов в убранном урожае, тем больше нитритов образуется в ходе хранения. Риск образования нитритов в продукции возрастает при повышении температуры хранения с 10 до 35.°С, недостаточной аэрации складированной продукции, сильной загрязненности листовых овощей и корнеплодов, наличии механических повреждений продукции, оттаивании свежезамороженных овощей в течение длительного времени при комнатной температуре.

Хранение свежих овощей при низкой температуре предотвращает образование нитритов. В глубоко замороженных овощах накопления нитратного азота не происходит. Однако при размораживании происходит повышение нитратов.

Овощеводческая продукция используется в пищу человеком, как в свежем, так и в переработанном виде. В зависимости от режимов и видов технологической переработки меняется уровень содержания нитратного азота в конечном продукте. Как правило, количество нитратов в продукте в процессе переработки снижается, но при этом следует соблюдать режимы переработки. Предварительная подготовка продукции (очистка, мойка, сушка) снижает количество нитратов в продуктах питания на 3-25%. В процессе переработки продукции происходит быстрое разрушение ферментов и гибель микроорганизмов, что останавливает дальнейшее превращение нитрата в нитрит. В зависимости от способа дальнейшего приготовления пищи количество нитратов снижается неодинаково.

Известно, что концентрация нитратов выше 8 мг/л существенно сказывается на вкусовых качествах продукта, он приобретает вяжущий, кисловато-соленый вкус. Свежеприготовленные соки могут стать опасными для здоровья, если длительное время не подвергаются дальнейшей обработке вследствие быстрого перехода нитратов в нитриты. С продуктами животного происхождения в организм человека, как правило, поступает незначительное количество нитратов. Тем не менее, накопление нитратного азота в них обусловлено, по всей видимости, с одной стороны, использованием животными кормов с высоким уровнем нитратов, а с другой - поступлением их в продукты в процессе технологической переработки.

Количество нитратов в овощах зависит от биологических особенностей растений. Особенно много нитратов (1000-1500 мг/кг) накапливают шпинат, салат, редис, сельдерей, листовая капуста, брокколи, столовая свекла. Среднее количество отмечено у белокочанной и цветной капусты, огурца, моркови (100-1500 мг/кг). Меньше всего содержится нитратов в луке, помидорах, баклажане, перце, зеленом горошке. Растения, вегетативная масса которых поражена вредителями или болезнями, накапливают нитратов больше, чем непораженные. Много нитратов содержится в недозрелых овощах. Овощи последних сборов обычно содержат меньше нитратов, чем в первые сборы. При использовании овощей в пищу необходимо учитывать различное содержание нитратов в разных частях и органах растений. В овощах нитраты распределены неравномерно. У листовых овощей нитраты накапливаются в основном в черешках и жилках листьев. Содержание нитратов в плодах кабачка и огурца уменьшается от плодоножки к верхушке, а у патиссона - от поверхностного слоя к сердцевине. В кончиках корнеплодов моркови, свеклы, редиса, репы, редьки содержание нитратов больше, что связано с наличием в них мелких всасывающих корешков. В сердцевине корнеплода моркови уровень нитратов выше, чем в кожице, а в направлении от кончика корня к верхушке он снижается. У столовой свеклы особенно много нитратов в верхушке и в кончике корня. Верхние листья капусты содержат нитратов примерно в 2 раза больше, чем внутренние, а наибольшее количество нитратов накапливается в кочерыжке. У картофеля более низкий уровень нитратов в мякоти клубня по сравнению с сердцевиной. Содержание нитратов в овощной продукции зависит от почвенно-климатических условий, биологических особенностей растений, агротехнических приемов, сортов, условий освещения, сбалансированности по основным элементам питания, обеспеченности почвы микроэлементами, сроков посева и уборки овощей и ряда других факторов, частью которых можно управлять. Часто одной из основных причин повышенного содержания нитратов в овощах считают внесение в почву недопустимо высоких доз азотных удобрений. Это в определенной мере справедливо, однако причины накопления нитратов в растениях следует рассматривать в комплексе. Источником избыточного накопления нитратов в растениях могут быть не только удобрения, но и естественные запасы азота в почве. Накопление нитратов в овощной продукции возрастает при неблагоприятных погодных условиях: в годы с холодным и пасмурным летом поглощенные из почвы нитраты не полностью расходуются на построение органических соединений и аккумулируются в тканях растений в свободной форме. Однако постоянно повышенные температуры в течение вегетационного периода также способствуют повышению концентрации нитратов в овощах. Степень освещенности растений оказывает значительное влияние на процесс аккумуляции нитратов: при плохой освещенности и недостатке солнечной радиации содержание нитратов в овощах резко увеличивается. Поэтому очень важно не загущать посевы и посадки овощных культур и поддерживать чистоту стекол в теплицах. В условиях хорошей обеспеченности влагой накопление нитратов в овощах усиливается, а при длительном недостатке - снижается. Содержание нитратного азота в овощах увеличивается при несбалансированности минерального питания, при внесении высоких доз азотного удобрения весной и при проведении поздних подкормок азотом. В овощной продукции летних посевов нитратов содержится больше, чем при весенних посевах. Это, вероятнее всего, связано с большей интенсивностью солнечной освещенности летом, а также с изменением концентрации азота в почве после весеннего внесения азотных удобрений.

Тыквенные культуры - кабачок, патиссон, огурец, тыква, арбуз и дыня - склонны к накоплению нитратов и наиболее чувствительны к изменению внешних условий выращивания. Количество накопленных нитратов во многом определяется сбалансированностью минерального питания, интенсивностью освещенности, температурным режимом и влажностью, а также сортовыми особенностями. Отмечено, что огурцы, выращенные в теплицах в ранневесенний период, накапливают нитратов значительно больше, чем грунтовые летние. Не зря у нас в народе говорят: «Всякому овощу свой срок». Неблагоприятные погодные условия, недостаток освещенности и положительных температур ранней весной существенно снижают активность фотосинтетических процессов.

Табак не является продуктом питания, но на земном шаре курят свыше 1 млрд. человек, которые ежедневно выкуривают 5 трлн. сигарет. Ежегодный прирост курящих составляет свыше 2,1%. В то же время негативное действие табака на организм человека не ограничивается влиянием только никотина. Известно, что растения табака накапливают значительные количества нитратного азота, который в процессе курения превращается в окислы табака. Среди них необходимо выделить закись азота, которая при вдыхании в незначительных количествах вызывает состояние легкого опьянения («веселящий газ»). При вдыхании в больших количествах она действует как наркотическое средство. Существует положительная коррелятивная связь между содержанием нитратов в табаке и количеством закиси азота, образующейся при курении. Количество нитратного азота в табаке определяется целым комплексом факторов, в том числе и применением удобрений. Как выяснилось, сорт табака также определяет содержание азота нитратов. Сигареты производимые в Болгарии, содержали среднее количество нитратов, тогда как в табаке сигарет, выпускаемых в Корее и на Кубе, содержалось повышенное их количество.

Методы определения нитратов

Существует три основных вида определения нитратов:

- физические,

- физико-химические,

- химические.

Главенствующее положение занимают физико-химические: спектрофотометрия, хроматография, электрохимия и хемилюминесценция.

Спектрофотометрические методы определения нитратов можно разделить на 4 группы, основанные на:

* нитровании ароматических органических соединений (особенно фенолов);

* окислении органических соединений;

* восстановлении нитрат-ионов до нитрит-ионов;

* поглощении нитратов в УФ-области спектра. Получаемые соединения имеют максимум светопоглощения в ближней ультрафиолетовой и видимой областях спектра. Интенсивность светопоглощения пропорциональна содержанию нитратов в анализируемой пробе.

Давно известен метод газожидкостной хроматографии, который заключается в нитровании органических соединений ароматического ряда - бензола и его производных в присутствии серной кислоты, разделение их с помощью колонки, заполненной специальными сорбентами, испарении и количественном определении нитропроизводных пламенно-ионизационным детектором или детекторами электронного захвата.

Газохроматографический метод определения нитратов обладает высокой чувствительностью и достаточной точностью. Недостатком этого метода является влияние на результаты анализа сопутствующих веществ. Наличие галогенидов приводит к занижению результатов анализа, а загрязненность серной кислотой нитратами - к их завышению, причем оба влияния значимы и не поддаются оценке.

Наиболее распространенным для анализа воды и водных экстрактов пищевых продуктов является потенциометрический (ионометрический) метод определения нитратов, основанный на измерении потенциала, возникающего на мембране ионоселективного электрода при погружении последнего в раствор, содержащий нитрат-ионы. Метод привлекает простотой, быстротой выполнения, возможностью вести определение в мутных и окрашенных средах. Он достаточно хорошо изучен, экспериментально отработан и обеспечен аппаратурой. Чувствительность и избирательность метода зависят от свойств нитратселективного электрода, точнее обусловлены свойствами его мембраны.

В аналитической химии известно несколько методов качественного определения нитратов и нитритов в растворе.

1. На часовое стекло поместить три капли раствора дифениламина, пять капель концентрированной серной кислоты и несколько капель исследуемого раствора. В присутствии нитрат- и нитрит-ионов появляется темно-синее окрашивание.

2. К 10 мл исследуемого раствора прибавить 1 мл раствора, состоящего из 10%-го раствора реактива Грисса в 12%-й уксусной кислоте, и нагреть до 70-80 °С на водяной бане. Появление розового окрашивания свидетельствует о наличии нитрит-ионов.

Приготовление реактива Грисса. Реактив состоит из двух растворов.

Первый - растворить 0,5 г сульфаниловой кислоты при нагревании в 50 мл 30%-го раствора уксусной кислоты.

Второй - прокипятить 0,4 г a-нафтиламина в 100 мл дистиллированной воды. К бесцветному раствору, слитому с сине-фиолетового осадка, прилить 6 мл 80%-го раствора уксусной кислоты.

Перед применением оба раствора смешать в равных объемах.

3. К 10 мл исследуемого раствора прилить 10-15 капель щелочи, добавить 25-50 мг цинковой пыли, полученную смесь нагреть. Нитраты восстанавливаются до аммиака, который обнаруживается по покраснению фенолфталеиновой бумаги, смоченной в дистиллированной воде и внесенной в пары исследуемого раствора.

4. Оригинальные методы для определения нитратов и нитритов предложены А.Л. Рычковым (1-й Московский медицинский институт имени И.М. Семашко). Для их проведения можно воспользоваться аптечными препаратами: риванолом (этакридина лактат), физиологическим раствором (0,9%-й раствор хлорида натрия в дистиллированной воде), антипирином (1-фенил - 2,3 - диметилпиразолон-5).

Р и в а н о л ь н а я р е а к ц и я. К 1 мл исследуемого раствора прибавляют 1 мл физиологического раствора и смешивают с 1 мл риванольного раствора (таблетку риванола растворяют при нагревании в 200 мл 8%-й соляной кислоты). Если появится бледно-розовая окраска, значит, уровень нитратов и нитритов в питьевой воде недопустим.

А н т и п и р и н о в а я р е а к ц и я. Антипирин в присутствии 50 мг/л нитритов образует нитропроизводное, окрашенное в салатовый цвет. Если в растворе присутствуют следы дихромата калия, то чувствительность реакции сильно возрастает, и при содержании нитритов более 1,6 мг/л появляется розовая окраска.

Для проведения этого анализа 1 мл питьевой воды смешивают с 1 мл физиологического раствора (концентрация нитритов при таком разведении уменьшается вдвое), добавляют 1 мл раствора антипирина (1 таблетку антипирина растворяют в 50 мл 8%-й соляной кислоты) и быстро 2 капли 1%-го раствора дихромата калия. Смесь нагревают до появления признаков кипения. Если в течение 5 мин раствор становится бледно-розовым, то в нем содержится более 1,6 мг/л нитрит-ионов, а в анализируемой питьевой воде их вдвое больше. В этом случае содержание нитрит-ионов превышает предельно допустимую концентрацию.

Количественное определение суммарного содержания нитратов и нитритов проводят с помощью реактива Грисса, переведя предварительно нитраты в нитриты цинковой пылью в кислой среде при рН = 3. Затем 10 капель исследуемого раствора подкисляют 10 каплями уксусной кислоты и прибавляют 8-10 капель реактива Грисса. Через 5-10 мин появляется розовое или красное окрашивание.

Для определения количественного содержания нитрит-ионов используют серию стандартных растворов. Сначала готовят основной раствор, содержащий 1000 мг нитратов в литре. С этой целью 1,645 г. нитрата калия, высушенного до постоянной массы при температуре 105 °С, растворяют в 1 л дистиллированной воды в мерной колбе. Из основного раствора готовят рабочие стандартные растворы (в день проведения анализа) с содержанием 100, 50, 25 и 10 мг/л разбавлением его соответственно в 10, 20, 40 и 100 раз. При проведении анализа с градуировочным раствором проводят те же операции, что и с анализируемой пробой. Затем интенсивность окраски исследуемого образца сравнивают с окраской эталонных растворов визуально или на фотоэлектроколориметре (табл.).

Таблица. Ориентировочное содержание нитритов

При массовых анализах растений на содержание нитратов используют потенциометрический метод, который позволяет определить различные физико-химические величины и проводить количественный анализ путем измерения электродвижущей силы элемента. Этот метод основан на применении нитратселективного электрода, позволяющего быстро и точно проводить анализы вытяжек из свежего и сухого растительного материала. Метод хорош не только благодаря высокой точности, но и универсальности применения, в том числе и для растительной продукции, имеющей ярко окрашенный сок, мешающий распознаванию нитратов колориметрическими методами.

Нитратселективный электрод относится к ионоселективным электродам с жидкой мембраной, обладающей свойствами полупроницаемости и повышенной избирательности по отношению к определенному типу ионов. Это свойство позволяет определять активность анализируемого иона по результатам одного измерения, т.е. прямым потенциометрическим методом.

Жидкие мембраны изготавливают на базе ионообменного раствора в соответствующем растворителе. Этим раствором пропитывают стеклянный фильтр или синтетическую пористую пластинку (тефлон, поливинилхлорид и т.д.). К растворителю предъявляют следующие требования:

не смешиваться с водой;

обладать высокой вязкостью, чтобы не вытекать из мембраны;

иметь пониженную упругость пара, чтобы не улетучиваться;

иметь относительно высокую диэлектрическую постоянную, чтобы ассоциация ионов не выходила за разумные пределы.

Ионообменный раствор образует с исследуемым ионом диссоциирующее в той или иной степени ионное соединение или же связывает исследуемые ионы в комплекс, устойчивый в данном растворителе.

На рисунке представлена схема устройства ионо(нитрат) селективного электрода. Мембрана нитратселективного электрода содержит положительно заряженный комплексный ион переходного металла (Ni2+, Fe2+) с хелатными группами о-фенантролина.

Рис. Схема ионоселективного электрода с жидкой мембраной:

1 - внутренний электрод сравнения (хлорсеребряный); 2 - исследуемый раствор; 3 - ионообменный раствор; 4 - пластиковый корпус устройства; 5 - жидкая мембрана, приготовленная из пористой диафрагмы, пропитанной ионообменным раствором

Предложены и другие жидкостные нитрат-электроды, полученные на основе растворов нитрата диметилгексилдецилбензиламмония в деканоле, нитратов тетраоктиламмония и полимерных ионообменных систем.

Однако для различных практических применений, особенно в почвоведении и агрохимии, отдают предпочтение пленочному нитрат-электроду на основе тетрадециламмоний нитрата в дибутилфталате.

Вывод

Когда питание растений разбалансировано по азоту, калию, фосфору, микроэлементам или растениям не хватает воды и света, они аккумулируют (накапливают) большое количество нитратов.

Нитраты не оказывают токсического воздействия на растения.

Избыток нитратов в почве практически всегда приводит к избытку нитратов в растениях.

При хранении и кулинарной обработке содержание нитратов в продуктах обычно снижается.

Все опасные последствия для человека вызывают не сами нитраты, а их метаболиты - нитриты, восстанавливающиеся из нитратов воды и пищи при хранении, кулинарной обработке и в пищеварительном тракте человека под действием разнообразных микроорганизмов, в том числе и необходимых для человека.

С нитратами, разумеется, приходится считаться, но в общем-то они не так страшны. В большинстве случаев их содержание все же приемлемо, ну а когда продукт непригоден, язык всегда поможет это распознать, надо только ему доверять. Особых проблем здесь нет.

Так что овощи можно смело есть, более того, при желании есть помногу. Не пренебрегая, конечно, и разумной осторожностью. Но должна быть разработана система научно обоснованного распределения и планирования использования удобрений, которая обеспечила бы их внесение на каждый конкретный участок в соответствии с истинными потребностями.

Литература

нитрат питание удобрение азотный

1. Логинов Н.Я., Воскресенский А.Г., Солодкин И.С. Аналитическая химия. 2. М.: Просвещение, 1975;

3. Корыта И., Дворжак И., Богачкова В. Электрохимия. М.: Мир, 1975;

4. Никольский Б.П., Матерова Е.А. Ионоселективные электроды. Л.: Химия, 1980.

5. О. І. Циганенко. Нітрати в харчових продуктах. Київ, «Здоров'я», 1990.

6. В.Б. Шешнев. Нитраты и другие знаки беды. М. «Советская Россия», 1990.

7. Зарубин Г.П. Дмитриев М.Т. Приходько Е.И. Мищихина В.А. Гигиеническая оценка нитратов в пищевых продуктах. Гигиена и санитария. 1990.

Размещено на Allbest.ru


Подобные документы

  • Понятие нитратов (солей азотной кислоты) и их химические свойства. Основное применение нитратов: удобрения (селитры) и взрывчатые вещества (аммониты). Биологическая роль солей азотной кислоты. Описание органических нитратов и нитритов. Свойства аммония.

    презентация [6,2 M], добавлен 14.03.2014

  • Гормональные препараты в продуктах питания. Инструкция по определению остаточных количеств гормонов в продуктах животноводства. Химические методы обнаружения и идентификации гормонов. Основные белковые и пептидные гормоны. Тривиальные названия стероидов.

    реферат [509,9 K], добавлен 22.10.2011

  • Краткая история открытия йода химиком-технологом Б. Куртуа, его основные физические и химические свойства. Распределение йода в организме человека, содержание в продуктах питания. Порядок определения недостатка элемента и механизм его восполнения.

    презентация [611,7 K], добавлен 18.03.2014

  • Содержание пищевых кислот в продуктах питания и методы их определения. Характеристика некоторых из пищевых кислот. Обоснование титрования, определения и расчета количества аскорбиновой кислоты, динамика изменения её содержания при термообработке.

    дипломная работа [1,3 M], добавлен 03.07.2015

  • Физические и физико-химические свойства азотной кислоты. Дуговой способ получения азотной кислоты. Действие концентрированной серной кислоты на твердые нитраты при нагревании. Описание вещества химиком Хайяном. Производство и применение азотной кислоты.

    презентация [5,1 M], добавлен 12.12.2010

  • Физические и химические свойства диацетила, его влияние на организм человека, причины образования в продуктах питания. Химический состав вина, анализ его качества. Метрологическая оценка показателей качества разработанной методики определение диацетила.

    дипломная работа [831,0 K], добавлен 25.04.2014

  • Понятие и общая характеристика альгиновой кислоты, ее главные физические и химические свойства, происхождение и распространение в природе. Поведение в водных системах и применение в пищевых продуктах. Влияние данного соединения на иммунитет человека.

    реферат [14,5 K], добавлен 10.05.2015

  • Физические и физико-химические свойства азотной кислоты. Сырье для производства азотной кислоты. Характеристика целевого продукта. Процесс производства слабой (разбавленной) и концентрированной азотной кислоты. Действие на организм и ее применение.

    презентация [1,6 M], добавлен 05.12.2013

  • Химическое строение, свойства и биологическое значение витамина С. Суточная потребность в нем. Экспериментальное йодометрическое определение, количественные и химические методы анализа содержания витамина в пищевых продуктах и витаминных препаратах.

    курсовая работа [1,0 M], добавлен 18.03.2013

  • Физические и химические свойства диацетила и ацетоина, их образование в алкогольных продуктах. Спектрофотометрические, флуориметрические, вольтамперометрические, хроматографические методы определения диацетила и ацетоина. Приготовление основных растворов.

    дипломная работа [563,3 K], добавлен 27.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.