Выпарной аппарат для выпаривания концентрированных растворов
Схемы выпарных аппаратов с поднимающейся и опускающейся пленкой. Процесс выпаривания нестойких к повышенным температурам вязких и листообразных растворов. Действие принудительной циркуляции. Барботажный аппарат для концентрирования серной кислоты.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 07.09.2011 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Выпарной аппарат для выпаривания концентрированных растворов
Выпарной аппарат для выпаривания концентрированных растворов, состоит из греющей камеры 1, над которой расположена камера вскипания 2 высотой около 3 м. В верхней части камеры вскипания размещены концентрические перегородки 3, образующие кольцевые каналы. Из камеры вскипания парожидкостная смесь поступает в сепаратор 5, откуда жидкость возвращается в греющую камеру по циркуляционной трубе 4 через приемник для кристаллов 6. В греющей камере происходит только подогрев раствора, а кипит он в каналах между перегородками 3. Эти перегородки упорядочивают поток вскипающей жидкости и препятствуют образованию пульсаций и вредных циркуляционных токов в зоне кипения.
Рис 1. Выпарной аппарат для концентрированных растворов
1 - греющая камера, 2 - камера вскипания, 3 - концентрические перегородки, 4 - циркуляционная труба, 5 - сепаратор, 6 - приемник кристаллов
В описанном аппарате достигается большая скорость циркуляции (до 3,5 м/с вместо 1-1,5 м/с в обычных аппаратах с естественной циркуляцией). Это наряду с отсутствием кипения в трубах приводит к значительному уменьшению выделений накипи на поверхности теплообмена. Такой аппарат наиболее пригоден для выпаривания концентрированных, кристаллизующихся и вязких растворов.
Прямоточные (пленочные) аппараты. Принципиальное отличие этих аппаратов от аппаратов с естественной циркуляцией состоит в том, что выпаривание в них происходит при однократном прохождении выпариваемого раствора по трубам нагревательной камеры. Таким образом, выпаривание осуществляется без циркуляции раствора. Кроме того, раствор выпаривается, перемещаясь (на большей части высоты кипятильных труб) в виде тонкой пленки по внутренней поверхности труб. В центральной части труб вдоль их оси движется вторичный пар. Это приводи к резкому снижению температурных потерь, обусловленных гидростатической депрессией. Различают прямоточные выпарные аппараты с поднимающейся и опускающейся пленкой.
Аппарат с поднимающейся пленкой (рис. 14) состоит из нагревательной камеры, представляющей собой пучок труб небольшого диаметра (15--25мм) длиной 7--9м, и сепаратора 2.
Раствор на выпаривание поступает снизу в трубы нагревательной камеры, межтрубное пространство которой обогревается греющим паром. На уровне, соответствующем обычно 20 - 25 % высоты труб, наступает интенсивное кипение. Пузырьки вторичного пара сливаются и пар, быстро поднимаясь по трубам, за счет поверхностного трения увлекает за собой раствор. При этом жидкость перемещается в виде пленки, всползающей по внутренней поверхности труб, и выпаривание происходит в тонком слое.
Вторичный пар, выходящий из труб, содержит капли жидкости, которые отделяются от пара с помощью отбойника 3 и центробежного брызгоуловитель 4. В брызгоуловитель влажный пар поступает тангенциально и ему сообщается вращательное движение. Под действием центробежной силы капли жидкости отбрасываются к периферии, жидкость стекает вниз, а пар удаляется сверху из аппарата.
Прямоточные выпарные аппараты ближе к аппаратам идеального вытеснения, в то время как аппараты с многократной циркуляцией приближаются к аппаратам идеального смешения. Вместе с тем в прямоточных аппаратах раствор проходит по кипятильным трубкам однократно. Поэтому время пребывания его мало и аккумулирующая способность этих аппаратов низка, что важно при выпаривании термически нестойких веществ.
Прямоточные аппараты чувствительны к изменению режима работы и требуют для эффективного выпаривания поддерживания некоторого оптимального «кажущегося» уровня раствора в кипятильных трубах. «Кажущийся» уровень соответствует высоте столба холодного раствора, которым может быть уравновешен столб парожидкостной смеси в трубах. При «кажущемся» уровне ниже оптимального верхняя часть поверхности труб не омывается жидкостью и практически не участвует в теплообмене; «оголенная» часть поверхности труб при испарении на ней брызг жидкости покрывается накипью При «кажущемся» уровне выше оптимального на большей части поверхности труб раствор только нагревается; соответственно уменьшается высота зоны кипения, где теплопередача интенсивнее; это приводит к снижению средней величины коэффициента теплопередачи. Кроме того, для вертикальных прямоточных аппаратов необходимы высокие производственные помещения. Область применения аппаратов с поднимающейся пленкой - выпаривание маловязких растворов, в том числе пенящихся и чувствительных к высоким температурам. Эти аппараты не рекомендуются для выпаривания кристаллизующихся растворов ввиду возможности забивания труб кристаллами.
В прямоточных (пленочных) аппаратах трудно обеспечить равномерную толщину пленки выпариваемой жидкости (что необходимо для, эффективной работы аппарата), кроме того, эти аппараты весьма чувствительны к неравномерной подаче раствора, а чистка длинных труб малого диаметра затруднительна. Поэтому пленочные аппараты вытесняются вертикальными выпарными аппаратами с циркуляцией раствора.
Роторные прямоточные аппараты. Для выпаривания нестойких к повышенным температурам вязких и листообразных растворов применяют роторные прямоточные аппараты (рис, 15). Внутри цилиндрического корпуса 1 аппарата, снабженного паровыми рубашками 2, вращается ротор 3, состоящий из вертикального вала (расположенного по оси аппарата) и шарнирно закрепленных на уем скребков 4.
Выпариваемый раствор поступает в аппарат сверху, захватывается вращающимися скребками, под действием центробежной силы отбрасывается к стенкам аппарата и перемещается по их внутренней поверхности в виде турбулентно движущейся пленки. Постепенно происходит полное выпаривание пленки, и на стенках аппарата образуется тонкий слой порошка или пасты, который снимается вращающимися скребками (зазор между наружной кромкой скребков и стенкой аппарата составляет менее 1 мм). Твердый или пастообразный продукт удаляется через специальный секторный затвор из днища аппарата.
В роторных прямоточных аппаратах достигается интенсивный теплообмен при небольшом уносе жидкости вторичным паром. Вместе с тем роторные аппараты сложны в изготовлении и отличаются относительно высокой стоимостью эксплуатации, вследствие наличия вращающихся частей (ротора)
Имеется несколько разновидностей роторных прямоточных выпарных аппаратов, в том числе аппараты с горизонтальным корпусом.
Аппараты с принудительной циркуляцией. Для того чтобы устранить. отложение накипи в трубах, особенно при выпаривании кристаллизующихся растворов, необходимы скорости циркуляции не менее 2--2,5 м/сек т.е. больше тех скоростей, при которых работают аппараты с естественной циркуляцией.
В принципе такие высокие скорости достижимы и в условиях естественной циркуляции, но при этом необходимы очень большие полезные разности температур (между греющим паром и кипящим раствором).
В аппаратах с принудительной циркуляцией скорость ее определяется производительностью циркуляционного насоса и не зависит от высоты уровня жидкости в трубах, а также от интенсивности парообразования Поэтому в аппаратах с принудительной циркуляцией выпаривание эффективно протекает при малых полезных разностях температур,. не превышающих 3--5 °С и при значительных вязкостях растворов
Одна из конструкций выпарного аппарата с принудительной циркуляцией показана на рис 16. Аппарат имеет выносную вертикальную нагревательную камеру 1, сепаратор 2 и не обогреваемую циркуляционную трубу 3, в которую подается исходный раствор. Циркуляция раствора производится насосом 4.
При большой скорости движения выпариваемого раствора кипение его происходит на коротком участке перед выходом из кипятильных труб. Таким образом, зона кипения оказывается перемещенной в самую верхнюю часть нагревательной камеры На большей части длины труб жидкость лишь несколько перегревается. Это объясняется тем, что давление внизу трубы больше давления у её верхнего края на величину гидростатического давления столба жидкости и гидравлического сопротивления трубы.
Вследствие высокого уровня раствора в кипятильных трубах значительная часть всего циркуляционного контура заполнена жидкостью, а паросодержание смеси жидкости и вторичного пара, выбрасываемой из труб, невелико. В связи с этим циркуляционный насос должен перекачивать большие объемы жидкости (иметь большую производительность) при умеренном расходе энергии, затрачиваемой в основном на преодоление гидравлического сопротивления труб. Таким требованиям удовлетворяют пропеллерные насосы, которые обычно используются в аппаратах с принудительной циркуляцией. Скорость ее ограничена возрастанием гидравлического сопротивления и соответственно расходом энергии на циркуляцию. Поэтому желательно выбирать оптимальную скорость циркуляции, которую устанавливают на основе технико-экономических расчетов.
Выпарные аппараты с тепловым насосом. По технолологическим причинам использование многоярусных выпарных аппаратов иногда может оказаться неприемлемым. Так, например, приходится отказываться от многократного выпаривания тех чувствительных к высоким температурам растворов для которых температуры кипения в первых корпусах многокорпусных установок слишком высоки и могут вызвать порчу продукта. В подобных и некоторых других случаях возможно и экономически целесообразно использовать для выпаривания однокорпусные выпарные аппараты с тепловым насосом.
С помощью теплового насоса, представляющего собой трансформатор тепла, повышают экономичность работы однокорпусного аппарата, сжимая вторичный пар на выходе аппарата до давления свежего (первичного) пара и направляя его в качестве греющего в нагревательную камеру того же аппарата. Сжатие (вторичного пара производят главным образом в турбокомпрессорах с приводом от электродвигателя или турбины или же в струйных компрессорах (инжекторах). Вследствие компактности, простоты устройства и надежности эксплуатации в .качестве тепловых насосов наиболее широко применяют струйные компрессоры, несмотря на их невысокий к.п.д.
На рис. 17 приведена схема однокорпусной выпарной установки, состоящей из выпарного аппарата 1 струйного компрессора. Первичный пар поступает по оси компрессора и инжектирует вторичный пар более низкого давления. Смесь первичного и вторичного пара по выходе из компрессора (при давлении Р2<Р1) делится на две части: большая часть смеси направляется в нагревательную камеру выпарного аппарата а остальная, избыточная часть Dизб отводится на сторону, к другим потребителям тепла.
При выпаривании растворов с небольшой температурной депрессией применение тёплового насоса в многокорпусной выпарной установке, может существенно снизить расход свежего :пара на выпаривание.
Экономичность применения теплового насоса определяется отношением стоимости энергий, затрачиваемой на сжатие вторичного пара в компрессоре, к стоимостити pacxoдуемого в выпарной установке первичного пара. В отдельных случаях это отношение может быть настолько малый, что выпарные аппараты с тепловым насосом могут успешно конкурировать с многокорпусными выпарными установками.
Расход энергии на тепловой насос приблизительно пропорционален разности температур насыщения свежего и вторичного пара, которая в свою очередь, зависит от температурной депрессии выпариваемого раствора. Поэтому для выпаривания растворов, обладающих значительной температурной депрессией, использование теплового насоса оказывается нецелесообразным. Обычно ёго применение рентабельно при невысокой степени сжатия вторичного пара, соответствующей повышению температуры насыщения пара не более чем на 10--15 °С.
Барботажные выпарные аппaраты. Выпаривание некоторых сильно агрессивных и высококипящих растворов, например растворов серной, соляной, фосфорной кислот, растворов мирабилита,: хлористого магния и других, производят при непосредственном соприкосновении раствора с нагретыми инертными газами. Для таких растворов передача через стенку тепла, необходимого для выпаривания, оказывается практически неосуществимой из-за трудностей, связанных с выбором конструкционного материала, который должен сочетать хорошую теплопроводность с коррозионной и термической стойкостью.
Выпаривание при непосредственном соприкосновении раствора и теплоносителя осуществляют обычно с помощью топочных газов или нагретого воздуха в аппаратах с металлическим кожухом, футерованным изнутри коррозионно-стойкими материалами, например диабазовой и керамической плиткой, кислотоупорным и шамотным кирпичом и т.д. Барботажные трубы, по которым поступают в раствор газы, изготавливаются из термосилида, графита и других коррозионностойких материалов.
Типичный барботажный аппарат для концентрирования серной кислоты (рис 18) состоит из выносной топки и горизонтального цилиндрического корпуса 2 Часть объема аппарата заполняется слабым раствором кислоты, подаваемой по трубе 3 Топочные газы поступают по трубам 4, концы которых погружены в раствор кислоты При перемешивании раствора и теплоносителя происходит интенсивное испарение растворителя и частично кислоты. Из камеры III (третьей по ходу кислоты) газы поступают по барботажной трубе 5 в камеру II. Для повышения температуры парогазовой смеси в эту камеру по барботажной трубе б подается дополнительно некоторое количество свежих топочных газов. Из камеры II газы вместе с парами кислоты и воды по барботажной трубе 7 направляются в камеру I, где отдают тепло на подогрев исходного слабого раствора кислоты. Упаренная кислота удаляется по трубе 8 из камеры III.
Противоток кислоты и газов позволяет лучше использовать тепло топочных газов, но потери тепла с отходящими газами значительны. Кроме того, происходит большой унос газами паров кислоты которые улавливаются в отдельном электрофильтре.
выпаривание барботажный раствор концентрирование
Более эффективное выпаривание осуществляется в современных выпарных аппаратах с погружными горелками, одна из конструкций таких аппаратов приведена на рис 19. При барботаже нагретых газов через слой раствора создается значительная межфазовая поверхность и происходит перемешивание жидкости пузырьками газа. В результате достигается интенсивный теплообмен.
В плоской крышке корпуса 1 аппарата расположена одна горелка 2 (как показано на рисунке) или несколько горелок, погруженных под уровень выпариваемого раствора. Уровень раствора в аппарате поддерживается постоянным с помощью переливной трубы 3. Упаренный раствор отводится из конического днища аппарата, а выпадающие здесь кристаллы отсасываются посредством эрлифта. Парогазовая смесь отводится из пространства над жидкостью через сепаратор 4.
Для таких аппаратов обычно используют специальные горелки беспламенного горения, снабженные огнеупорной насадкой, которая в накаленном состоянии каталитически ускоряет процесс горения. В барботажных выпарных аппаратах, работающих при непосредственном соприкосновении выпариваемого раствора и греющего агента, достигаются более высокие коэффициенты теплопередачи, чем при выпаривании через стенку.
Области применения и выбор выпарных аппаратов. Конструкция выпарного аппарата должна удовлетворять ряду общих требований, к числу которых относятся: высокая производительность и интенсивность теплопередачи при возможно меньших объеме аппарата и расходе металла на его изготовление, простота устройства, надежность в эксплуатации, легкость очистки поверхности теплообмена, удобство осмотра, ремонта и замены отдельных частей.
Вместе с тем выбор конструкции и материала выпарного аппарата определяется в каждом конкретном случае физико-химическими свойствами выпариваемого раствора (вязкость, температурная депрессия, кристаллизуемость, термическая стойкость, химическая агрессивность и др.).
Как указывалось, высокие коэффициенты теплопередачи и большие производительности достигаются путем увеличения скорости циркуляции раствора. Однако одновременно возрастает расход энергии на выпаривание и уменьшается полезная разность температур, так как при постоянной температуре греющего пара с возрастанием гидравлического сопротивления увеличивается температура кипения раствора. Противоречивое влияние этих факторов должно учитываться при технико-экономическом сравнении аппаратов и выборе оптимальной конструкции.
Для выпаривания растворов небольшой вязкости, не превышающей ~8?10-3 н?сек/м2, без образования кристаллов чаще всего используются вертикальные выпарные аппараты с многократной естественной циркуляцией. Из них наиболее эффективны аппараты с выносной нагревательной камерой и с выносными необогреваемыми циркуляционными трубами.
Выпаривание некристаллизующихся растворов большой вязкости, достигающей ~0,1 н?сек/м2, производят в аппаратах с принудительной циркуляцией, реже в прямоточных аппаратах с падающей пленкой или в роторных прямоточных аппаратах.
В роторных прямоточных аппаратах, обеспечиваются благоприятные условия для выпаривания растворов, чувствительных к повышенным температурам.
Аппараты с принудительной циркуляцией широко применяются также для выпаривания кристаллизующихся или вязких растворов. Подобные растворы могут эффективно выпариваться и в аппаратах с вынесенной зоной кипения, работающих при естественной циркуляции. Эти аппараты при выпаривании кристаллизующихся растворов могут конкурировать с выпарными аппаратами с принудительной циркуляцией.
Для сильно пенящихся растворов рекомендуются прямоточные аппараты с поднимающейся пленкой.
Роторный пленочный испаритель
Главными особенностями выпарных установок пленочного типа являются практическое отсутствие перепада давления по высоте установки и малый объем жидкости в установке. Первый фактор способствует отсутствию в установках этого типа гидростатической депрессии, а второй - малому времени пребывания жидкости в установке по сравнению со временем пребывания продукта в выпарных установках объемного заполнения. Эти факторы обусловливают область их применения: выпаривание или дистилляция под вакуумом термически нестойких продуктов, теряющих свои потребительские свойства в результате длительного пребывания под воздействием высоких температур.
Наиболее распространенными установками пленочного типа являются пленочные аппараты со свободно стекающей пленкой. Конструкция установки этого типа представлена на рис.1. Здесь изображен кожухотрубный пленочный испаритель с нижним расположением сепаратора (с прямоточным течением пленки жидкости и вторичных паров в греющей камере) и оборудованный внешним контуром циркуляции выпариваемого продукта. Это наиболее распространенный вариант конструкции пленочного испарителя со свободно стекающей пленкой. Размеры промышленных установок данной конструкции имеют площадь поверхности теплообмена от 100 до 900 м2.
Рис.1. Пленочный испаритель для очистки сточных вод
Для выпарных установок имеющих меньшую площадь поверхности теплообмена разработано большое число различных конструкций, на некоторые из которых имеются отраслевые стандарты (на конструкции с внутренним или внешним циркуляционными контурами или без таковых, прямоточные или противоточные, с распределительными устройствами различных типов).
Конструкции с верхним расположением сепаратора (противоточные) обеспечивают лучшее фазовое разделение компонентов, чем прямоточные конструкции, но прямоточные аппараты могут работать без срыва пленочного режима при скоростях вторичных паров в теплообменных трубах примерно вдвое больших, чем противоточные аппараты, что особенно важно при проведении процесса под вакуумом при небольшом абсолютном давлении. Кроме того, при прочих равных геометрических параметрах прямоточные аппараты имеют значительно меньшую высоту. Поэтому аппараты с верхним расположением сепаратора применяются в тех процессах, в которых важна не столько производительность по вторичным парам, сколько качественная отгонка, например при удалении остатков растворителя из высококипящей жидкости, когда процесс из выпарки переходит в сушку.
В настоящее время пленочные испарители со свободно стекающей пленкой, как правило, оснащаются контуром циркуляции продукта по установке, что сразу же позволяет использовать греющие камеры с короткими (2-3 м) теплообменными трубами для обеспечения равномерности линейной плотности орошения и снижения скорости вторичных паров в теплообменных трубах. При этом внешний контур предпочтительнее внутреннего, поскольку позволяет устанавливать циркуляционный насос стандартных конструкций и использовать этот насос для перекачки отводимого из аппарата продукта, в том числе из-под вакуума в сборник под атмосферным давлением.
Оснащенные контуром циркуляции продукта пленочные аппараты со свободно стекающей пленкой могут эффективно работать с продуктами повышенной вязкости, как и кожухотрубные аппараты объемного заполнения с принудительной циркуляцией, но при этом у пленочных аппаратов есть целый ряд преимуществ: отсутствие какой-либо депрессии, кроме температурной, обусловленной физическими свойствами продукта, значительно меньшее время пребывания продукта в аппарате, существенно меньшие высота аппарата (в 2 и более раза) и производительность циркуляционного насоса (почти на порядок) при одинаковых производительностях по вторичному пару. Основным недостатком циркуляционных пленочных испарителей по сравнению с выпарными аппаратами объемного заполнения с принудительной циркуляцией является их неудовлетворительная работа с растворами при интенсивном образовании твердой фазы и большая склонность к образованию накипи на внутренней поверхности теплообменных труб.
Для устойчивой эксплуатации на очистных сооружения для промышленной очистки воды пленочных испарителей со свободно стекающей пленкой необходима надежная работа распределительных устройств, образующих пленку жидкости в верхней части теплообменных труб, в противном случае жидкость будет стекать по трубам ручьями, и установка не будет работать.
Существующие многочисленные конструкции распределительных устройств пленочных испарителей можно разделить на 3 основных типа: а) простейшие, использующие эффект поверхностного натяжения (прорезные и зубчатые устройства переливного типа, расположенные непосредственно на выступающих за верхнюю трубную доску торцах теплообменных труб);
б) усложненные, содержащие дополнительные конструктивные элементы (тарелки, желоба, особые втулки-вставки), более равномерно распределяющие жидкость по трубной доске, как правило, за счет небольшого гидростатического подпора; в) напорные, в которых осуществляется протекание жидкости сквозь отверстия малого диаметра под действием напора циркуляционного насоса.
Опыт применения распределительных устройств показывает, что наиболее надежными в работе и практически не зависящими от диаметра аппарата и величины перекоса при установке испарителя являются напорные распределители, но применять их можно не всегда из-за необходимости обеспечивать напор жидкости на входе 0,1-0,3 МПа и наличия значительного несбрасываемого при остановке объема жидкости в распределительном устройстве.
Из пленочных выпарных установок с механическими перемешивающими устройствами наибольшее распространение получили роторные пленочные испарители:
Конструкция роторного испарителя представлена на рис. 2. Греющая камера роторного испарителя представляет из себя теплообменник типа «труба в трубе», причем межтрубное пространство, как правило, разделено перемычками на несколько секций для улучшения коэффициента теплоотдачи a1 при обогреве паром и для возможности подавать в разные секции теплоноситель с различными температурами. Вал расположен по оси аппарата и приводится во вращение от расположенного в верхней части аппарата электродвигателя через клиноременную передачу или специальный понижающий редуктор. Продукт подается в верхнюю часть обогреваемой зоны РПИ и распределяется по внутренней поверхности теплообменной трубы устройством, надетым на вал. Далее продукт под действием гравитации стекает вниз, при этом равномерность его распределения по теплообменной поверхности, а также его интенсивное перемешивание и турбулизацию обеспечивают лопатки, приводимые в движение валом. Вторичные пары движутся в противотоке пленки жидкости, поступают в расположенный над греющей камерой сепаратор и далее отводятся из аппарата. Вал оснащен двумя подшипниковыми узлами. Верхний узел - вынесенный. Нижний узел может быть как вынесенным (как, например, в РПИ по ОСТ 26-01-1045-74), так и внутренним (подавляющее большинство импортных конструкций). В первом случае аппарат оснащен двумя торцевыми уплотнениями вала: верхним и нижним, во втором - только верхним.
Рис.2. Роторный испаритель
Промышленная очистка воды в гальваническом производстве
Испарители в гальваническом производстве, как правило, применяются для выпаривания промывных вод при многоступенчатой (каскадной) промывке, а также воды из ванн улавливания.
Использование роторных пленочных испарителей на очистных сооружениях позволяет вернуть в технологический процесс ценные компоненты и снизить либо полностью исключить сброс сточных вод, содержащих токсичные соединения тяжелых металлов: меди, цинка никеля, хрома, свинца и пр. При использовании данной технологии значительно сокращаются эксплуатационные затраты на очистку сточных вод.
Рис.3. Испаритель для промышленной очистки воды
Размещено на Allbest.ru
Подобные документы
Способы выпаривания, выпарные аппараты, конструкции, интенсификация процессов выпаривания. Движущая сила выпаривания, температурные потери, схема передачи тепла в выпарных установках. аконы Дальтона, Генри, Рауля, идеальные и неидеальные системы.
шпаргалка [1,5 M], добавлен 16.06.2010Процесс выпаривания. Описание технологической схемы выпарной установки, ее преимущества и недостатки. Теплотехнический и механический расчёт выпарных аппаратов и их вспомогательного оборудования. Узел подогрева исходного раствора, поддержания вакуума.
курсовая работа [45,3 K], добавлен 04.01.2009Технологические схемы процесса выпаривания. Конструкции выпарных аппаратов. Принцип действия проектируемой установки. Определение поверхности теплопередачи. Расчет толщины тепловой изоляции. Определение гидравлического сопротивления теплообменника.
курсовая работа [1,4 M], добавлен 29.11.2010Технологический, полный тепловой расчет однокорпусной выпарной установки непрерывного действия для выпаривания водного раствора нитрата калия. Чертеж схемы подогревателя начального раствора. Определение температур и давлений в узловых точках аппарата.
курсовая работа [404,1 K], добавлен 29.10.2011Технология получения серной кислоты контактным методом. Разработка технологической схемы включающей, сжигания серы, окисления диоксида серы и его абсорбции с получением товарной серной кислоты. Выбор и расчет основного аппарата – контактного аппарата.
дипломная работа [551,2 K], добавлен 06.02.2013Проект однокорпусной выпарной установки непрерывного действия для выпаривания раствора хлорида аммония. Материальный баланс процесса выпаривания. Определение температур, давлений в узловых точках технологической схемы. Тепловой баланс выпарного аппарата.
курсовая работа [346,4 K], добавлен 19.01.2011Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.
презентация [759,6 K], добавлен 27.04.2015Методы расчета выпарной установки непрерывного действия, для выпаривания раствора сульфата натрия. Составление технологической схемы выпарной установки, расчет основного аппарата, подбор вспомогательного оборудования (теплообменной и насосной аппаратуры).
курсовая работа [1,4 M], добавлен 23.12.2010Механические свойства изделий из полимеров. Воздействие механического поля на жидкокристаллические растворы ЦЭЦ. Анализ результатов рентгеновских исследований растворов ЦЭЦ. Последствия сдвиговой деформации жидкокристаллических растворов ЦЭЦ в ДМФА.
статья [825,5 K], добавлен 22.02.2010Расчет выпарной установки для концентрирования водного раствора кальциевой соли соляной кислоты. Описание технологических схем выпарных установок. Расчет конструкции установки, концентраций упариваемого раствора, выбор барометрического конденсатора.
курсовая работа [1,6 M], добавлен 03.11.2013