Основы газовой хроматографии
Газовая хроматография как универсальный метод разделения смесей разнообразных веществ, испаряющихся без разложения. Принципиальная схема газового хроматографа. Характеристика первичных, исправленных и приведенных, абсолютных параметров удерживания.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 17.08.2011 |
Размер файла | 307,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
СОДЕРЖАНИЕ
1 Введение в газовую хроматографию основы метода
2 Принципиальная схема газового хроматографа
3 Сущность и классификация методов хроматографии
4 Хоматограмма
5 Элюционные характеристики
5.1 Исправленные и приведенные параметры удерживания
5.2 Абсолютные параметры удерживания
1 ВВЕДЕНИЕ В ГАЗОВУЮ ХРОМАТОГРАФИЮ ОСНОВЫ МЕТОДА
газовый хроматография параметр удерживание
Хроматография [гр. chromatos - цвет + grapho - пишу] - метод разделения, анализа и физико-химических исследований веществ, основанный на перемещении зоны вещества вдоль слоя сорбента в потоке подвижной фазы с многократным повторением сорбционных и десорбционных актов. При этом разделяемые вещества распределяются между двумя несмешивающимися фазами (в зависимости от их относительной растворимости в каждой фазе): подвижной и неподвижной.
Газовая хроматография - хроматография, в которой подвижная фаза находится в состоянии газа или пара - инертный газ (газ-носитель). Неподвижной фазой (НЖФ) является высокомолекулярная жидкость, закрепленная на пористый носитель или на стенки длинной капиллярной трубки.
Газовая хроматография - универсальный метод разделения смесей разнообразных веществ, испаряющихся без разложения. При этом компоненты разделяемой смеси перемещаются по хроматографической колонке с потоком газа-носителя. По мере движения разделяемая смесь многократно распределяется между газом-носителем (подвижной фазой) и нелетучей неподвижной жидкой фазой, нанесенной на инертный материал (твердый носитель), которым заполнена колонка. Принцип разделения - неодинаковое сродство веществ к летучей подвижной фазе и стационарной фазе в колонке. Компоненты смеси селективно задерживаются последней, поскольку растворимость их в этой фазе различна, и таким образом разделяются (компонентам с большей растворимостью требуется большее время для выхода из жидкой фазы, чем компонентам с меньшей растворимостью). Затем вещества выходят из колонки и регистрируются детектором. Сигнал детектора записывается в виде хроматограммы автоматическим потенциометром (самописцем) или же регистрируется компьютером.
Хроматография один из наиболее распространенных физико-химических методов исследования. Хроматографические методы широко используются в химии и биохимии, находят применение в химической, нефтехимической, металлургической, фармацевтической, пищевой и других отраслях промышленности. С повышением экологических требований к среде обитания, продуктам питания, лекарствам естественно находят свое отражение в исследовании охраны окружающей среды и медицине, а также в других областях науки и промышленности. Круг решаемых задач и практическое использование хроматографии непрерывно расширяется.
2 ПРИНЦИПИАЛЬНАЯ СХЕМА ГАЗОВОГО ХРОМАТОГРАФА
Газовый хроматограф представляет собой прибор, использующий принцип хроматографии в системах газ-адсорбент или газ-жидкость. В аппаратурном оформлении это совокупность нескольких самостоятельных, параллельно функционирующих систем: источник газа-носителя и блок подготовки газов, испаритель, термостат колонок и сами хромато- графические колонки, детектор, система регистрации и обработки данных. Типичная блок-схема газового хроматографа изображена на рисунке 1.
Рисунок 1 - Принципиальная схема газового хроматографа: 1 - система подготовки газов; 2 - система дозирования; 3 - колонка; 4 - система термостатирования; 5 - система детектирования; 6 - блок питания детектора; 7 - усилитель сигнала детектора; 8 - регистратор (самописец, компьютер); 9 - измерители режима хроматографа (расход газов, стабилизация температур и электрического питания детекторов)
Газовые функциональные связи показаны стрелками, электрические - одинарной линией, термостатируемые элементы заключены в пунктирный контур.
Система подготовки газов служит для установки, стабилизации и очистки потоков газа-носителя и дополнительных газов. Она включает блок регулировки расходов газов, обеспечивающий очистку, подачу и стабилизацию скорости и расхода газа-носителя в колонку, а также других газов, необходимых для работы детектора, например, воздуха и водорода для пламенно-ионизационнго детектора.
Система дозирования позволяет вводить в поток газа-носителя определенное количество анализируемой смеси в газообразном или жидком состоянии. Представляет собой устройство с самоуплотняющейся резиновой мембраной или кран-дозатор. Устройство ввода пробы необходимо термостатировать при температуре, равной температуре колонки или выше на 20-30°С.
Система детектирования преобразует соответствующие изменения физических или физико-химических свойств бинарных смесей (компонент - газ-носитель по сравнению с чистым газом носителем) в электрический сигнал. Величина сигнала зависит как от природы компонента, так и от содержания его в анализируемой смеси.
Система термостатирования служит для установки и поддерживания рабочих температур термостатов колонок (до 350°С), испарителя, детектора и других узлов хроматографа.
Система регистрации преобразует изменения физико-химических параметров в электрический сигнал, величина и форма которого регистрируются на ленте самописца или в современном варианте - на мониторе компьютера. Прибор должен быть снабжен соответствующим электрометрическим усилителем, обеспечивающим получение на выходе электрического сигнала, пропорционального концентрации определяемого компонента в газе-носителе, выходящем из колонки.
Система инструментальной обработки данных позволяет вести управление экспериментом и обработку результатов в диалоговом режиме. С помощью компьютерных программ, имеющих алгоритм распознавания и сформированных банков данных, можно решать задачи расшифровки сложных хроматограмм и количественного определения компонентов.
Рассмотренная схема типична для обычного газового хроматографа, используемого в количественном анализе, однако газовый хроматограф может иметь гораздо более сложную схему, содержащую несколько колонок и детекторов, включающий автоматические устройства для подготовки и дозирования пробы.
Помимо этих общих основных элементов дополнительное оснащение газового хроматографа определяется его назначением: он может служить в качестве универсального аналитического прибора, для изучения физико-химических величин, в качестве универсального аналитического анализатора для контроля за составом смесей и для регулирования производственного процесса или в качестве анализатора элементного состава органических соединений. Во всех случаях для надежного функционирования прибора необходимо подбирать соответствующие газы, параметры электрической схемы, насадочные или капиллярные колонки, приспособления для закрепления колонок в термостате и устройства для отбора и внесения проб в дозатор.
3 СУЩНОСТЬ И КЛАССИФИКАЦИЯ МЕТОДОВ ХРОМАТОГРАФИИ
В основу той или иной классификации хроматографических методов могут быть положены различные характерные признаки процесса. При этом следует учитывать, что существуют промежуточные варианты, не укладывающиеся в рамки строгой классификации. Более того, именно такие промежуточные варианты часто оказываются весьма перспективными и даже единственно возможными для решения сложных задач анализа.
Разнообразные варианты хроматографии укладываются в относительно простую схему классификации в зависимости от используемой подвижной фазы и характера межмолекулярных взаимодействий (табл. 1-3).
Таблица 1 - Классификация вариантов хроматографии по фазовым состояниям
Подвижная фаза |
Неподвижная фаза |
Название метода |
|
Газ |
Адсорбент Жидкость |
Газоадсорбционная Газожидкостная |
|
Жидкость |
Адсорбент Жидкость |
Жидкостно-адсорбционная Жидкость-жидкостная |
|
Газ или пар в сверхкритическом состоянии |
Адсорбент Жидкость |
Флюидно-адсорбционная Флюидно-жидкостная |
|
Коллоидная система |
Сложная композиция твердых и жидких компонентов |
Полифазная хроматография |
Таблица 2 - Варианты хроматографии по характеру взаимодействий
Механизм процесса разделения |
Вариант хроматографии |
|
По размеру молекул |
Ситовая |
|
За счет физической адсорбции или растворения |
Молекулярная |
|
За счет ионного обмена |
Ионообменная |
|
За счет водородных связей, химического сродства и др. |
Хемосорбционная |
Таблица 3 - Варианты хроматографии по способу проведения процесса
Способ проведения |
Вариант хроматографии |
|
В цилиндрическом слое сорбента |
Колоночная |
|
В слое сорбента на плоской поверхности |
Планарная |
|
В пленке жидкости или слое сорбента, размещенном на внутренней стенке трубки |
Капиллярная |
|
В полях электрических, магнитных, центробежных и других сил |
Хроматография в полях сил |
В зависимости от способа перемещения сорбатов вдоль слоя сорбента различают: проявительный (элюационный), фронтальный, вытеснительный методы и электрохроматографию.
Проявительный (элюационный) метод заключается в том, что сорбаты переносятся через сорбционный слой потоком вещества (элюента), сорбирующегося хуже любого из сорбатов. В ходе проявительного анализа разделенные компоненты анализируемой смеси выходят из хроматографической колонки в потоке элюента отдельными зонами, между которыми (при достаточно четком разделении) из колонки выходит чистый элюент.
Основные преимущества проявительного метода заключаются в следующем:
- при выборе соответствующих условий компоненты могут быть, практически полностью, изолированы друг от друга и будут находиться лишь в смеси с элюентом;
- сорбент непрерывно регенерируется элюентом, поэтому после выхода наиболее сильно сорбирующегося компонента пробы может быть немедленно начато исследование следующей смеси;
- если концентрация исследуемого компонента соответствует линейному участку изотермы сорбции, то время элюирования компонента при заданных условиях является постоянной величиной, которая может быть использована для целей идентификации.
К недостаткам метода относится необходимость использования значительных количеств элюента.
Проявительный анализ можно проводить как при постоянной температуре (изотермическая хроматография), так и при изменении температуры сорбента в процессе анализа по заданной программе (хроматография с программированием температуры). В последнем случае изменяется сорбционная емкость сорбента.
Фронтальный метод заключается в непрерывном пропускании исследуемой смеси через слой сорбента. При этом на сорбенте образуются зоны, содержащие последовательно увеличивающееся число компонентов, а из колонки вначале выходит порция наименее сорбирующегося вещества. Фронтальный анализ применялся на ранних стадиях развития хроматографии, когда еще не были достаточно разработаны методы детектирования. В настоящее время он используется редко и практически совсем не применяется для целей количественного анализа. Это объясняется тем, что при фронтальном анализе ни один из компонентов смеси не отделяется полностью от остальных. Если после полного проявления концентрационного профиля при фронтальном анализе прекратить подачу пробы и начать промывку колонки чистой подвижной фазой, то фронтальный анализ превратится в вариант проявительной хроматографии с очень большой пробой.
Кривая элюирования будет повторять в обратном порядке кривую фронтального анализа; последняя ступень будет соответствовать относительно чистому последнему (наиболее сильно удерживаемому) компоненту.
Вытеснительный метод заключается в переносе разделяемой смеси потоком вещества (вытеснителя), сорбирующегося сильнее любого из компонентов смеси. В ходе вытеснительного анализа образуются отдельные примыкающие друг к другу зоны компонентов, которые располагаются в порядке увеличения их сорбируемости. Порядок элюирования компонентов характеризует их физико-химические свойства, а ширина полосы (не высота!) пропорциональна концентрации данного компонента.
Вытеснительный анализ как метод разделения имеет весьма ограниченное применение и крайне редко используется в количественном анализе. Это объясняется тем, что в результате описанного процесса не получается дискретных локальных полос индивидуальных соединений.
Электрохроматография - хроматографический процесс, при котором движение заряженных частиц осуществляется под действием приложенного напряжения. Скорость движения частиц определяется их массой и зарядом.
В зависимости от природы процесса, обусловливающего распределение сорбатов между подвижной и неподвижной фазами, различают адсорбционную, распределительную, ионообменную, осадочную, аффинную и эксклюзионную хроматографию (табл. 2).
Элементарным актом в адсорбционной хроматографии является адсорбция; разделение основано на различии в адсорбируемости компонентов смеси на данном адсорбенте.
В распределительной хроматографии - растворение; разделение основано на различии в растворимости сорбатов в подвижной и неподвижной фазах или на различии в стабильности образующихся комплексов.
В ионообменной хроматографии - на различии констант ионообменного равновесия.
В осадочной хроматографии - на различной растворимости осадков в подвижной фазе.
В аффинной - на биоспецифическом взаимодействии компонентов с аффинным лигандом, ковалентно связанным с нерастворимым носителем. Лигандами могут выступать, например, ингибиторы, кофакторы, субстраты, а носителями - силикаты, полиалкиламиды, декстрины, целлюлоза, хитин, крахмал.
В эксклюзионной хроматографии разделение основано на различии в проницаемости молекул разделяемых веществ в неподвижную фазу (в случае гель-хроматографии неподвижной фазой служит гель) и обусловлено размерами этих молекул. Компоненты элюируются в порядке уменьшения их молекулярной массы.
К промежуточным методам относится хроматография на модифицированном сорбенте (газо-жидко-твердофазная), основанная на том, что неподвижной фазой служит твердый адсорбент, модифицированный небольшим количеством жидкости. В этом случае играют роль как адсорбция на поверхности газ-твердое тело (и, в определенной степени, - на поверхности жидкость-твердое тело), так и растворимость в жидкости. Существуют и другие промежуточные варианты.
Жидкостная хроматография - хроматографический процесс, в котором подвижной фазой является жидкость (табл. 1). В жидкостно-жидкостной хроматографии и подвижной и неподвижной фазами являются жидкости.
В жидкостно-адсорбционной хроматографии неподвижной фазой служит твердый адсорбент, а подвижной - жидкость.
В зависимости от цели проведения хроматографического процесса различают аналитическую, неаналитическую, препаративную и промышленную хроматографию.
Аналитическая хроматография предназначена для определения качественного и количественного состава исследуемых смесей. Существуют два основных метода хроматографического определения состава смесей:
- метод выходной кривой, основанный на непрерывном определении свойства выходящего из колонки потока как функции времени или объема пропущенного вещества;
- метод слоя, заключающийся в определении изменения свойства смеси по длине сорбционного слоя.
Неаналитическая хроматография - метод исследования физико-химических характеристик веществ при использовании хроматографической аппаратуры и на основании параметров хроматографических зон.
Препаративную хроматографию применяют для выделения небольших количеств чистых компонентов в лабораторных условиях.
Промышленную хроматографию используют для получения чистых веществ в значительных количествах.
Разумеется, приведенная выше классификация хроматографических методов не может считаться исчерпывающей. Так в газовой хроматографии широкое распространение получили комплексные (гибридные) методы. Из них наиболее важными являются реакционная (реакторная) газовая хроматография (сочетание химических превращений и хромато-графического процесса) и хромато-масс-спектрометрия (последовательное соединение хроматографической колонки и масс-спектрометра с получением полных или частичных масс-спектров для каждого из компонентов исследуемой смеси).
Поскольку настоящий курс посвящен газовой хроматографии, следует кратко отметить особенности этого метода. К достоинствам газовой хроматографии можно отнести:
- возможность идентификации и количественного определения индивидуальных компонентов сложных смесей;
- возможность изучения различных свойств веществ и физико-химических взаимодействий в газах, жидкостях и на поверхности твердых тел;
- высокую четкость разделения и быстроту процесса, обусловленную низкой вязкостью подвижной фазы;
- возможность использования микропроб и автоматической записи получаемых результатов, обусловленную наличием высокочувствительных и малоинерционных приборов для определения свойств элюата;
- возможность анализа широкого круга объектов - от легких газов до высокомолекулярных органических соединений и некоторых металлов;
- возможность выделения чистых веществ в препаративном и промышленном масштабе.
4 ХРОМАТОГРАММА
Каждому компоненту смеси на хроматограмме соответствует отдельный пик - максимум регистрируемого сигнала детектора или концентрации компонента хроматографируемой смеси в элюенте. Кривую зависимости сигнала детектора от объема газа-носителя или от времени называют хроматограммой (элюционной кривой). В зависимости от типа используемого детектора получают дифференциальные (рис. 2, а) и интегральные хроматограммы (рис. 2, б).
На дифференциальной хроматограмме различают следующие составные части: нулевую линию 1 - участок хроматограммы, полученной при регистрации сигнала дифференциального детектора во время выхода из колонки чистого газа-носителя; пик 2 - несорбирующегося компонента; пик 3 - участок хроматограммы, полученной при регистрации сигнала детектора во время выхода из колонки одного из определяемых компонентов (или смеси нескольких неразделенных компонентов). Пик ограничивается фронтом, соответствующим возрастанию концентрации компонента до максимальной, и тылом, отвечающим убыванию концентрации компонента в газе-носителе.
Расширение полосы компонента по мере прохождения ее через колонку, ведущее к получению широкого хроматографического пика, называют размытием пика. Размытие может быть симметричным и асимметричным. В последнем случае образуется пик либо с размытым фронтом, либо с размытым тылом. Об этом мы поговорим в разделе 5.2.
Исходными экспериментальными данными, с помощью которых выполняется качественный газохроматографический анализ, являются элюционные характеристики.
5 ЭЛЮЦИОННЫЕ ХАРАКТЕРИСТИКИ
Первичные параметры удерживания. К числу первичных параметров удерживания относятся: время удерживания, объем удерживания и соответствующий им отрезок на хроматограмме - расстояние удерживания (рис. 3).
Рисунок 3 - Типичная дифференциальная хроматограмма индивидуального вещества и несорбируемого газа
Время удерживания (tR) - это время, прошедшее от момента ввода пробы до выхода максимума концентрации определяемого компонента. Время удерживания экспериментально определяется по секундомеру либо с помощью интегратора или системы автоматизации анализа (САА) и измеряется в минутах и секундах (n'n").
Расстояние удерживания (IR - это расстояние на хроматограмме от момента ввода пробы до выхода пика определяемого компонента. Измеряется на хроматограмме с помощью линейки от линии старта до вершины пика (в мм). Расстояние удерживания - непредставительная величина, так как она зависит от скорости перемещения диаграммной ленты и от других факторов.
Удерживаемый объем (Vr) - это объем газа-носителя (в см3), прошедший через хроматографическую колонку от момента ввода пробы до момента выхода максимальной концентрации определяемого вещества, измеренный при давлении и температуре на выходе из колонки. Объем удерживания находят по уравнению:
VR = tR * Роб, (1)
где Fоб - объемная скорость газа-носителя, см3/мин - объем газа-носителя, протекающего за единицу времени через пенный расходомер, т.е. на выходе из
При наличии специальных блоков точного задания и измерения расхода газа - носителя, с табло этих приборов снимаются показания скорости газа-носителя. Если их нет - расход замеряется с помощью мыльно-пленочного колонки и при температуре колонки.
Перечисленные параметры, при условии использования одной и той же температуры опыта и скорости газа-носителя, являются качественной характеристикой анализируемых веществ в данных условиях на одном и том же приборе. Поэтому ими можно пользоваться для выполнения качественного анализа, только используя один и тот же прибор, строго соблюдая неизменность режима его работы.
Для сопоставления получаемых значений первичных параметров удерживания с литературными данными или полученными на другом приборе или в иных условиях (для той же неподвижной фазы и температуры колонки) необходимо помнить, что на них влияют следующие факторы:
а) свойства и количества НЖФ (адсорбента в газоадсорбционной хроматографии и сорбента в ГЖХ), причем в газожидкостной хроматографии влияет отдельно и НЖФ, и твердый носитель;
б) температура колонки и скорость газа-носителя;
в) конструктивные особенности применяемой аппаратуры;
г) перепад давления газа-носителя на входе и выходе колонки.
Чтобы исключить влияние некоторых факторов на первичные параметры удерживания, используют следующую группу параметров.
5.1 Исправленные и приведенные параметры удерживания
Исправленное время удерживания (t'R) - время, прошедшее с момента появления пика несорбирующегося газа до появления пика соответствующего соединения:
t'R = tR - tM(3)
tM - времени удерживания несорбируемого компонента (иногда употребляют термин «мертвое» время удерживания).
Исправленное время удерживания t'R отвечает времени, в течение которого элюируемое вещество находится в неподвижной фазе (в растворенном или сорбированном состоянии). В газовой подвижной фазе все вещества, независимо от времени удерживания, проводят одно и то же время, равное tM - поправка на объем колонки, занимаемый газовой фазой, объем дозатора, детектора и соединительных газовых линий.
Для экспериментального определения tM необходимо измерить время удерживания какого-либо несорбируемого соединения, отличного от газа-носителя. В случае работы с катарометром можно за tM взять время выхода пика воздуха. При работе с ДИПом можно приравнять tM к времени удерживания метана. Если в лаборатории нет метана, можно воспользоваться временами удерживания трех н-алканов и сделать расчет по следующей формуле:
Отношение приведенного времени удерживания к «мертвому» времени называется коэффициентом емкости (извлечения) k:
(5)
Это отношение является характеристикой продолжительности нахождения молекул анализируемого соединения в неподвижной фазе относительно времени их пребывания в подвижной газовой фазе.
Исправленное расстояние удерживания - расстояние от пика несорбирующегося газа (1М) до максимума выхода пика соответствующего компонента (1R).
где j - поправочный коэффициент, учитывающий перепад давления в колонке (коэффициент сжимаемости);
РВХ - давление на входе в колонку;
РВЫХ - давление на выходе из колонки.
Исправленные объемы удерживания можно сравнить в том случае, если они получены на одной и той же колонке при прочих равных условиях, но давление на входе в колонку может различаться, поскольку в приведенную выше формулу входит поправка на перепад давления.
При РВХ ^ РВЫХ V°R становится равна предельному значению VR.
Приведенный удерживаемый объем (V'r) - объем удерживания, пересчитанный с учетом поправки на объем удерживания несорбируемого газа VM («мертвый» объем колонки, учитывающий свободные объемы колонки, дозатора, детектора и соединительных линий):
V'r = Vr - Vm = Fоб * (tR - tM) (9)
Приведенные объемы удерживания можно сравнить в том случае, если они получены на одной и той же колонке или на разных колонках, но при одинаковом перепаде давления, так как поправка на перепад давления не вводится.
Приведенный объем удерживания, исправленный с учетом перепада давления, называется эффективным (чистым) удерживаемым объемом VN:
Таким образом, эффективный объем удерживания не зависит от «мертвого объема», приведен к среднему давлению в колонке, но зависит от количества сорбента, измеренного при температуре ТК. Эту зависимость можно исключить, учитывая количество жидкой фазы в колонке или поверхность адсорбента. Тогда получаем принципиально новые параметры.
5.2 Абсолютные параметры удерживания
Удельный удерживаемый объем (VTg) при температуре колонки Т (К) равен чистому объему удерживания, отнесенному к единице массы неподвижной жидкой фазы в колонке:
(11)
где VN - чистый объем удерживания;
тЖ - масса НЖФ в колонке, г.
Итак, для ГЖХ абсолютный удельный удерживаемый объем рассчитывается по формуле:
Этот параметр является такой же характерной константой, как температура плавления (кипения), показатель преломления и плотность, связывающей термодинамические функции сорбции со строением и физико-химическими свойствами веществ. В справочной литературе приводятся данные по удельным удерживаемым объемам различных веществ на различных фазах. Используя эти данные, можно проводить качественный анализ.
Абсолютный удельный объем удерживания является наиболее полно скорректированной характеристикой удерживания и обладает наилучшей сопоставимостью по сравнению со всеми иными абсолютными характеристиками удерживания. Однако в практике качественного газо-хроматографического анализа этим параметром пользуются редко, т. к. выполнить точный расчет V°g трудно (девять параметров входят в состав уравнения и сложно определить их все с высокой точностью). Поэтому в повседневной практике получила большее распространение другая группа параметров - относительные параметры удерживания.
Размещено на Allbest.ru
Подобные документы
Сущность метода хроматографии, история его разработки и виды. Сферы применения хроматографии, приборы или установки для хроматографического разделения и анализа смесей веществ. Схема газового хроматографа, его основные системы и принцип действия.
реферат [130,2 K], добавлен 25.09.2010Основы метода обращенной газовой хроматографии. Газовая хроматография - универсальный метод качественного и количественного анализа сложных смесей и способ получения отдельных компонентов в чистом виде. Применение обращенной газовой хроматографии.
курсовая работа [28,9 K], добавлен 09.01.2010Влияние природы газа-носителя и его параметров на качество разделения веществ. Основные требования к газу-носителю. Газовая хроматография с применением паров. Природа неподвижной жидкости. Полярные и неполярные соединения. Образование водородной связи.
реферат [18,5 K], добавлен 10.02.2010Хроматографическая система - метод разделения и анализа смесей веществ. Механизм разделения веществ по двум признакам. Сорбционные и гельфильтрационные (гельпроникающие) методы. Адсорбционная, распределительная, осадочная и ситовая хроматография.
реферат [207,8 K], добавлен 24.01.2009Физико-химический метод разделения компонентов сложных смесей газов, паров, жидкостей и растворенных веществ, основанный на использовании сорбционных процессов в динамических условиях. Хроматографический метод. Виды хроматографии. Параметры хроматограммы.
реферат [21,6 K], добавлен 15.02.2009Комплектные приборы с высокой степенью автоматизации для жидкостной хроматографии. Принципиальная схема жидкостного хроматографа. Современные насосы для жидкостной хроматографии. Устройства для формирования градиента. Инжекторы для ввода пробы, детекторы.
контрольная работа [210,5 K], добавлен 12.01.2010Особенности, область применения хроматографических методов. Основные ее варианты: газо-адсорбционный, газо-жидкостный, капиллярный и реакционный. Принципиальная схема газового хроматографа и компьютеризированной хромато-масс-спектрометрической установки.
реферат [74,1 K], добавлен 15.04.2011Сущность и назначение процесса хроматографии, его разновидности и порядок проведения. Принцип работы хроматографа и возможности его использования. Метод внутренней нормализации и его преимущества. Общие требования безопасности при работе с прибором.
курсовая работа [82,5 K], добавлен 07.12.2009Газовая хроматография как наиболее теоретически разработанный метод анализа, достоинства, область применения. Газохроматографический анализ неорганических веществ, требования к анализируемым веществам. Анализ металлов и их соединений, определение воды.
реферат [67,4 K], добавлен 24.09.2009Аппаратурное оформление процесса. Принципы и частота отбора проб. Рабочие градуировки газового хроматографа с применением рабочей эталонной градуировочной смеси. Вычисление абсолютных стандартных неопределенностей значений молярной доли компонентов.
курсовая работа [981,0 K], добавлен 03.04.2013