Характеристика и представители простых жиров

Происхождение и состав жиров, их основные функции в растениях и животных. Классификация жирных кислот, образование триглицеридов. Температура плавления и кипения жиров, их химические свойства. Количественная оценка кумулятивных свойств вредных веществ.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 24.06.2011
Размер файла 27,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

1. Характеристика и представители простых жиров

Жиры, вещества животного, растительного и микробного происхождения, состоящие в основном (до 98%) из триглицеридов (ацилглицеринов) полных эфиров глицерина и жирных кислот. Содержат также ди- и моноглицериды (1-3%), фосфолипиды, гликолипиды и диольные липиды (0,5-3%), свободные жирные кислоты, стерины и их эфиры (0,05 1,7%), красящие вещества (каротин, ксантофилл), витамины A, D, Е и К, полифенолы и их эфиры. Химические, физические и биологические свойства жиров определяются входящими в их состав триглицеридами и, в первую очередь, длиной цепи, степенью ненасыщенности жирных кислот и их расположением в триглицериде. В состав жиров входят в основном неразветвленные жирные кислоты, содержащие четное число атомов С (от 4 до 26) как насыщенные, так моно- и полиненасыщенные; в основном это миристиновая, пальмитиновая, стеариновая, 9-гексадеценовая, олеиновая, линолевая и линоленовая кислоты. Почти все ненасыщенные кислоты растительных жиров и большинства животных жиров являются цис-изомерами. Жиры жвачных животных содержат транс-изомеры.

Жирные масла растений и жиры запасных тканей животных представляют собой наряду с углеводами концентрированный энергетический и строительный резерв жизнедеятельности организма. До 90% видов растений содержат запасные жиры в семенах, но они могут накапливаться и в других органах растений. Основная роль запасных жиров в растении - использование их в качестве резервного материала (во время прорастания семян и развития зародыша); кроме того, они выполняют важную роль защитных веществ, помогающих организмам переносить неблагоприятные условия окружающей среды, в частности низкие температуры. Накапливаясь в семядолях зимующих семян, жиры способствуют сохранению зародыша в условиях мороза. У деревьев умеренного пояса при переходе в состояние покоя запасной крахмал древесины превращается в жир, повышающий морозостойкость ствола.

У животных жиры являются конечными или временными запасными веществами. Конечные запасы, например жир молока, не подлежат использованию самим организмом. Только временные запасные жиры, типичные для жировых тканей, являются мобильными продуктами. Именно эти жиры одновременно являются продуктами, используемыми человеком для пищевых, лекарственных и технических целей.

1.1 Строение жиров

Жиры состоят почти исключительно из глицеридов жирных кислот, то есть сложных эфиров глицерина и высокомолекулярных жирных кислот. Глицериды имеют следующую общую формулу:

где R1, R2, R3 - радикалы жирных кислот. В природных жирах обнаружено более 200 различных жирных кислот. Преoблaдающими являются жирные кислоты с четным числом углеродных атомов от 8 до 24. Жирные кислоты с короткой цепью, содержащей менее 8 углеродных атомов (капроновая, масляная и др.), в составе глицеридов не встречаются, но могут присутствовать в свободном виде влияя на запах и вкус жиров. Большинство жиров содержит 4-7 главных и несколько сопутствующих (составляющих менее 5% от суммы жирных кислот). Достаточно сказать что до 75% жиров составляют глицериды всего трех кислот - пальмитиновой, олеиновой или линолевой.

Входящие в состав триглицеридов жирные кислоты могут быть насыщенными и ненасыщенными. Жиры некоторых растений содержат специфические жирные кислоты, характерные только для этих растений. Так, масло клещевины содержит оксикислоту - рицинолевую; хаульмугровое масло образовано глицеридами циклических кислот - гиднокарповой, хаульмугровой; некоторые кислоты характерны для растений определенных семейств.

Глицериды бывают однокислотные и разнокислотные (смешанные). У однокислотных глицеридов этерификация глицерина произошла с тремя молекулами одной и той же жирной кислоты, например триолеин, тристеарин и т.п. Однако жиры, состоящие из однокислотных триглицеридов, в природе встречаются довольно редко (оливковое масло, касторовое масло). В образовании жиров доминирует закон максимальной разнородности - подавляющее большинство известных жиров представляют смеси разнокислотных глицеридов (например, стеаринодиолеин, пальмитиноолеинолеин и т.п. В настоящее время известно свыше 1300 различных жиров, различающихся по составу жирных кислот и образуемых ими разнокислотных глицеридов.

1.2 Свойства жиров

жир кислота триглицерид вредное вещество

Свойства жиров определяются качественным составом жирных кислот, их количественным соотношением, процентным содержанием свободных, не связанных с глицерином, жирных кислот, соотношением различных триглицеридов и т.п.

Насыщенные жирные кислоты образуют триглицериды, имеющие при обычной температуре твердую консистенцию. Среди них встречаются как животные (например, говяжий жир), так и растительные (например, масло какао) жиры. Ненасыщенные жирные кислоты образуют триглицериды, имеющие при тех же условиях жидкую консистенцию - животные жиры (например, рыбий жир) и подавляющее большинство растительных масел.

Жиры и масла жирны на ощупь, нанесенные на бумагу, оставляют характерное "жирное" пятно, не исчезающее при нагревании, а, наоборот, еще сильнее расплывающееся. При обыкновенной температуре масла не загораются, но нагретые или в виде паров горят ярким пламенем. Чистые триглицериды бесцветны, но природные жиры более или менее окрашены. Масла обычно желтоватые вследствие присутствия каротиноидов, некоторые из них могут быть окрашены хлорофиллом в зеленый цвет, или, что еще реже, в красно-оранжевый или иной цвет в зависимости от вида липохромов. Запах и вкус свежих жиров специфичны. Запах обусловлен присутствием следов эфирных масел (терпены, алифатические углеводороды и др.). В некоторых жирах содержатся обладающие запахом сложные эфиры низкомолекулярных кислот. Специфический запах рыбьих жиров обусловлен сильно ненасыщенными жирными кислотами или, вернее, продуктами их окисления.

Плотность подавляющего числа жиров находится в пределах 0,910-0,945. Лишь у немногих масел (например, касторового) плотность выше - до 0,970 (при 20°С, по ГФ X).

В воде жиры и масла нерастворимы, но их можно заэмульгировать в воде с помощью поверхностно-активных веществ. В этаноле растворяются трудно (или не растворяются), за исключением касторового масла. Легко растворимы в диэтиловом эфире, хлороформе, сероуглероде, бензине, петролейном эфире, вазелиновом масле. Жиры и масла смешиваются между собой в любых соотношениях. Они являются хорошими растворителями эфирных масел, камфоры, смол, серы, фосфора и ряда других веществ.

Температура плавления твердых жиров возрастает с числом углеродных атомов, входящих в их состав жирных кислот. Поскольку жиры представляют сложные смеси разных триглицеридов, точка плавления их обычно не бывает четко выраженной. Сказанное в равной степени относится и к температуре застывания.

Температура кипения жиров не может быть определена, поскольку при нагревании до 250°С они разрушаются с образованием из глицерина сильно раздражающего слизистые оболочки глаз альдегида акролеина.

Кипят они в высоком вакууме. Жирные масла, состоящие из простых триглицеридов, оптически неактивны, если они не содержат примеси оптически активных веществ. В случае смешанных триглицеридов некоторые жирные масла могут проявлять оптическую активность.

Показатель преломления тем выше, чем больше содержится в жире триглицеридов ненасыщенных кислот. Например, масло какао имеет показатель преломления 1,457, миндальное - 1,470, льняное - 1,482.

Химические свойства жиров проявляются в их способности к омылению, прогорканию, высыханию и гидрогенизации.

Омыление. Триглицериды жирных кислот способны к превращениям, характерным для сложных эфиров. Под влиянием едких щелочей происходит расщепление эфирных связей, в результате чего образуются свободный глицерин и щелочные соли жирных кислот (мыла).

Реакция омыления широко используется для приготовления бытовых и медицинских мыл, а также для выяснения состава жиров и их доброкачественности. С этой целью определяют число омыления, то есть количество миллиграммов едкого калия (KOH), необходимое для нейтрализации свободных и связанных в виде триглицеридов жирных кислот, содержащихся в 1 г жира.

Прогоркание. Этот сложный химический процесс происходит при хранении жира в неблагоприятных условиях (доступ воздуха и влаги, свет, тепло), в результате чего жиры приобретают горьковатый вкус и неприятный запах. Если жиры в этих условиях подвергаются действию фермента липазы, то происходит их разложение, аналогичное реакции омыления. Этот вид порчи жира легко контролируется по величине кислотного числа (КЧ). Под этой константой понимается количество миллиграммов едкого калия (KOH), которое необходимо для нейтрализации свободных жирных кислот, содержащихся в 1 г жира. Доброкачественные жиры содержат небольшое количество свободных жирных кислот.

С помощью других констант можно определить природу содержащихся в масле свободных жирных кислот. Так, по числу Рейхерта-Мейсля можно судить о количестве летучих растворимых в воде кислот, а по числу Поленске - о количестве летучих кислот, нерастворимых в воде. Числом Рейхерта-Мейсля называется количество миллилитров 0,1 Мэ раствора едкого калия, необходимое для нейтрализации летучих, растворимых в воде жирных кислот, полученных при строго определенных условиях из 5 г жира. Число Поленске устанавливают вслед за определением летучих кислот в той же навеске жира. Выпавшие жирные кислоты переводят в спиртовой раствор и титруют 0,1 Мэ спиртовым раствором едкого калия.

Для более точного представления о количестве содержащихся в жирах глицеридов из числа омыления вычитают кислотное число и получают так называемое эфирное число (ЭЧ), которое характеризует только связанные жирные кислоты.

Иногда прогоркание жиров зависит от жизнедеятельности микроорганизмов, вызывающих окисление отщепленных жирных кислот в кетоны или альдегиды. Однако чаще всего прогоркание жиров обусловливается окислением ненасыщенных жирных кислот кислородом воздуха. Последний может присоединяться по месту двойных связей, образуя перекиси.

Кислород может присоединяться также и к углеродному атому, соседнему с двойной связью, образуя гидроперекиси.

Образовавшиеся перекиси и гидроперекиси подвергаются разложению с образованием альдегидов и кетонов. Для характеристики окислительного прогоркания жира используется константа, известная под названием перекисное число, которое выражается количеством йода, пошедшего на разрушение перекисей.

Высыхание. Намазанные тонким слоем жидкие жиры ведут себя на воздухе по-разному: одни остаются без изменения жидкими, другие, окисляясь, постепенно превращаются в прозрачную смолоподобную эластичную пленку - линоксин, нерастворимую в органических растворителях. Масла, не образующие пленку, называются невысыхающими. Главной составной частью в таких маслах являются глицериды олеиновой кислоты (с одной двойной связью). Масла, образующие плотную пленку, называются высыхающими. Главной составной частью в таких маслах являются глицериды линоленовой кислоты (с тремя двойными связями). Масла, образующие мягкие пленки, называются полувысыхающими. Главной составной частью в таких маслах являются глицериды линолевой кислоты (с двумя двойными связями). Способность некоторых масел к высыханию широко используется в народном хозяйстве (лакокрасочная промышленность). Для медицины, наоборот, представляют интерес масла невысыхающие, поскольку они используются для парентерального введения лекарственных средств.

Олеиновая кислота обладает способностью под влиянием азотистой кислоты переходить в свои стереоизомер - элаидиновую кислоту, которая при комнатной температуре имеет твердую консистенцию. Этой реакцией, известной под названием элаидиновая проба, широко пользуются для определения типа масла: если проба положительная, то, следовательно, исследуемое масло невысыхающее (содержит триглицериды олеиновой кислоты).

Надежным способом выявления высыхаемости масел служит определение йодного числа. Известно, что все непредельные кислоты, в том числе и жирные, способны присоединять по месту двойной связи галогены. Чем больше в жирных кислотах будет двойных связей, тем больше присоединится галогенов. Для аналитических целей обычно используют йод; под йодным числом понимается количество граммов йода, которое поглощается 100 г жира. Таким образом, по величине йодного числа можно легко установить, к какой группе по степени высыхаемости относится то или иное масло.

2. Количественная оценка кумулятивных свойств вредных

веществ

Важное место в профилактической токсикологии занимает изучение кумулятивных свойств веществ, характеризующих их способность вызывать токсический эффект при последовательном, многократном поступлении в организм. Кумулятивное действие может проявляться накоплением вещества в организме и образованием депо (материальная кумуляция) либо накоплением (суммацией) эффекта (функциональная кумуляция).

В отечественной профилактической токсикологии наибольшее распространение получили два метода оценки функциональной кумуляции. Первый метод, предложенный Ю.С. Каганом и В.В. Станкевичем, основан на ежедневном введении в организм подопытных животных равных доз вещества, в долях от LD50.

Обычно затравки производятся ежедневно в дозах 0,1; 0,05; 0,02 LD50, хотя допустимы пределы от 0,2 до 0,01 LD50. Для прогнозирования хронического эффекта рекомендуется брать несколько (2-3) доз.

Второй метод "Тест субхронической токсичности" основан на ежедневном введении животным вещества в нарастающих дозах через равные промежутки времени, всего в течение 24±4 дня.

Первые 4 дня животные получают по 0,1 LD50, 5-8-й день - 0,15, 9-12-й день - 0,22, 13-16-й день - 0,34, 17-20-й день - 0,5, 21-24-й день - 0,75 LD50. Наивысшая доза, вводимая на 25-28-й день, - 1,12 LD5q. По указанной схеме суммарная доза составляет 12,8 LD50 за 24 дня.

Количественная оценка кумулятивного свойства вредного вещества в первом и втором случаях производится по показателю гибели экспериментальных животных при повторных введениях веществ. Показатель функциональной кумуляции называется коэффициентом кумуляции Кк. Методом Кагана и Станкевича Кк оценивается как отношение величины суммарной дозы, равной 50%-ти процентной гибели животных к величине дозы, вызывающей ту же 50%-ти процентную гибель при однократном введении токсиканта.

Для суждения о кумулятивных свойствах вещества используют индекс кумуляции Ik:

Чем выше кумулятивные свойства вещества, тем больше его индекс кумуляции. Как показывает опыт профилактической токсикологии, оба метода достаточно информативны. Преимущество первого заключается в возможности получения количественной характеристики и оценки степени кумулятивности вещества; достоинства второго - в меньшей длительности эксперимента и возможности оценки адаптации к яду.

Исследование кумулятивных свойств вещества позволяет не только установить количественные параметры кумуляции, но и составить представление о преимущественно поражаемых органах и системах, а также о глубине этих поражений. Использование указанной информации необходимо, поскольку в ней, в конечном итоге, заложена основа понимания патогенеза интоксикации и определения методических подходов при планировании хронического эксперимента и последующих исследований.

Размещено на Allbest.ru


Подобные документы

  • Характеристика природных животных и растительных жиров. Кислоты как их составляющая, классификация, свойства, разновидности. Физические и химические свойства жиров. Химические формулы сложных липидов и строение биологических мембран, описание свойств.

    курсовая работа [423,3 K], добавлен 12.05.2009

  • Природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот. Применение растительных и животных жиров. Жидкие жиры растительного происхождения. Свойства, биологическая роль, промышленное производство жиров и масел.

    презентация [251,9 K], добавлен 06.05.2011

  • Общая характеристика состава жиров. Жирные кислоты, ненасыщенные (предельные) жирные кислоты, ненасыщенные (непредельные) жирные кислоты. Классификация жиров. Растительные, животные жиры. Применение того или иного жира. Значение жиров в кулинарии.

    курсовая работа [32,1 K], добавлен 25.10.2010

  • Жиры и жироподобные вещества как производные высших жирных кислот, спиртов или альдегидов. Химические и физические свойства липидов. Реакция образования акролеина, компоненты жиров. Схема гидролиза. Гидролитическое прогоркание. Подлинность жирных масел.

    реферат [126,5 K], добавлен 24.12.2011

  • Идентификация гидроксильной группы. Функции, состав и виды жиров. Элементы масляной фазы эмульсионных кремов. Анализ инфракрасного спектра бетулина. Методика дезодорирования гусиного и утиного жиров, используемых в качестве основы косметического средства.

    курсовая работа [91,3 K], добавлен 28.03.2014

  • Роль жиров в здоровом питании спортсменов. Растительные и животные жиры, их физические свойства. Получение жиров по реакции глицеринового спирта с высшими карбоновыми кислотами, реакция этерификации. Особенности гидролиза жиров (омыления), гидрирование.

    презентация [284,2 K], добавлен 18.09.2013

  • Характеристика биотоплива, биодизель и биоэтанол как его распространенные типы. Основные пути каталитической гидропереработки триглицеридов жирных кислот с целью определения эффективных катализаторов для получения углеводородов топливного назначения.

    реферат [275,6 K], добавлен 28.12.2011

  • Переваривание жиров как гидролиз жиров панкреатической липазой. Активность панкреатической липазы при t=20 мин. Данные замеров титруемой кислотности в молоке с разной дозой облучения. Показатели содержания малонового диальдегида в исследуемой продукции.

    контрольная работа [173,3 K], добавлен 16.05.2016

  • Переваривание жиров в кишечнике. Расщепление жиров в процессе пищеварения. Эмульгирование и гидролиз липидов. Полный ферментативный гидролиз триацилглицерола. Кишечно-печеночная рециркуляция желчных кислот. Причины нарушений переваривания липидов.

    реферат [886,1 K], добавлен 12.01.2013

  • Способы выделения, очистки и анализа органических веществ. Получение предельных, непредельных и ароматических углеводородов, спиртов, карбоновых кислот. Получение и разложение фенолята натрия. Методы выделения белков. Химические свойства жиров, ферментов.

    лабораторная работа [201,8 K], добавлен 24.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.