Токсикологическая химия
Физико-химические методы исследования, применяемые в химико-токсикологическом анализе "металлических ядов". Ядовитые алкилгалогениды. План анализа при подозрении на отравление производными барбитуровой кислоты. Производные тропана, хлорофос и дихлорофос.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 16.05.2011 |
Размер файла | 2,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Применение. Действие на организм. Четыреххлористый углерод широко применяется в промышленности как растворитель жиров, смол, каучука. Он используется как консервант при обработке меха, а также применяется для удаления жирных пятен из одежды. Четыреххлористый углерод входит в состав жидкостей для наполнения огнетушителей. Тяжелые пары четыреххлористого углерода нарушают контакт горящих предметов с кислородом воздуха. Это приводит к прекращению процесса горения. Однако при высокой температуре в результате разложения четыреххлористого углерода могут образовываться фосген и другие ядовитые вещества, вызывающие отравление. Четыреххлористый углерод применяется в ветеринарии в качестве противоглистного средства.
Четыреххлористый углерод поступает в организм при вдыхании его паров, а также может поступать через неповрежденную кожу и пищевой канал. Четыреххлористый углерод неравномерно распределяется в организме. Количество его в ткани, богатой жирами, в несколько раз больше, чем в крови. Содержание четыреххлористого углерода в печени и в костном мозгу значительно выше, чем в легких. В эритроцитах крови трупов содержится четыреххлористого углерода примерно в 2,5 раза больше, чем в плазме. Он обладает наркотическим действием, поражает центральную нервную систему. Поступление в организм больших его доз вызывает тяжелые дистрофические изменения в печени, почках, сердце и в других органах. Смертельная доза четыреххлористого углерода составляет 30--60 мл.
Метаболизм. Четыреххлористый углерод быстро выделяется из организма. Уже через 48 ч после поступления в организм его нельзя обнаружить в выдыхаемом воздухе. Его метаболитами являются хлороформ и оксид углерода (IV).
Обнаружение четыреххлористого углерода
В химико-токсикологическом анализе для обнаружения четыреххлористого углерода ССЦ в дистиллятах применяют ряд реакций, большинство которых дают и другие хлорпроизводные углеводородов.
Реакция отщепления хлора. Четыреххлористый углерод можно обнаружить по наличию в его молекуле атомов хлора:
Реакция Фудживара. При нагревании СCl4 с пиридином в присутствии щелочи появляется красная окраска. Способ выполнения этой реакции приводится выше:
Реакция образования изонитрила.
Реакция с резорцином. При нагревании ССl 4 с резорцином в присутствии щелочи появляется розовая или малиново-красная окраска. Способ выполнения этой реакции приведен выше: В пробирку вносят 1 мл исследуемого раствора и 1 мл 10 %-го свежеприготовленного раствора резорцина в 10%-м растворе гидроксида натрия. После нагревания пробирки на кипящей водяной бане в течение 5--10 мин появляется розовая или малиновая окраска. Параллельно выполняют «холостой» опыт.
Эту реакцию кроме хлороформа дают четыреххлористый углерод, хлоралгидрат и др. Не дает этой реакции дихлорэтан.
Реакция с 2,7-диоксинафталином. Для обнаружения четыреххлористого углерода в дистиллятах, а также в различных технических жидкостях, содержащих указанный препарат, применяют реакцию с 2,7-диоксинафталином, при которой появляется светло-бурая окраска, переходящая в зелено-желтую.
Выполнение реакции. Каплю исследуемой жидкости вносят в пробирку, прибавляют 2 мл циклогексанола, крупинку гидроксида натрия и несколько кристалликов 2,7-диоксинафталина. Смесь нагревают до кипения и продолжают нагревание в течение 45--60 с. Затем раствор сливают с нерастворившегося гидроксида натрия, охлаждают, прибавляют к нему 2 мл ледяной уксусной кислоты и 4 мл этилового спирта, а затем взбалтывают. При наличии ССl 4 в исследуемой жидкости появляется светло-бурая окраска, переходящая в зелено-желтую. При этой реакции хлороформ дает темно-красную окраску.
Предварительная проба на четыреххлористый углерод в моче. Для обнаружения четыреххлористого углерода в моче применяется описанная выше предварительная проба :
Для обнаружения хлороформа и других хлорпроизводных в моче применяют предварительную пробу, основанную на реакции Фудживара. В пробирку вносят 1 мл мочи, прибавляют 1 мл 10 %-го раствора гидроксида натрия и 1 мл свеже-перегнанного пиридина. Содержимое пробирки взбалтывают и нагревают на кипящей водяной бане в течение 2 мин. Появление розовой или красной окраски указывает на наличие в моче хлороформа или других трихлорпроизводных углеводородов. При этом необходимо производить «холостой» опыт, так как пары некоторых веществ, которые могут находиться в воздухе, тоже дают эту реакцию.
4. Токсикологическое значение этилового спирта. Извлечение его из объектов исследования, идентификация. Методы определения алкоголя в выдыхаемом воздухе. Судебно-химическая оценка полученных результатов
Этиловый спирт С2Н5ОН (этанол, этиловый алкоголь, винный спирт) -- бесцветная, летучая жидкость с характерным запахом, жгучая на вкус (пл. 0,813--0,816, т. кип. 77--77,5 °С). Этиловый спирт горит синеватым пламенем, смешивается во всех соотношениях с водой, диэтиловым эфиром и многими другими органическими растворителями, перегоняется с водяным паром.
Этиловый спирт получают путем брожения крахмалсодержащих продуктов (зерно, картофель), фруктов, сахара и т. д. Полученный брожением этиловый спирт отгоняют и получают спирт-сырец, который очищают путем ректификации. Спирт-сырец и самогон, изготовленные в домашних условиях, содержат некоторое количество сивушных масел, состав и свойства которых описаны ниже (см. гл. IV, § 10). Сивушные масла относительно медленно метаболизируются в организме. Поэтому продолжительность действия их на организм большая, чем этилового спирта.
Применение этилового спирта. Этиловый спирт широко используется в промышленности как растворитель и исходный продукт для получения многих химических соединений. Этот спирт используется в медицине как дезинфицирующее средство.
В химических лабораториях он применяется как растворитель, входит в состав многих спиртных напитков.
Действие на организм и токсичность. Этиловый спирт может поступать в организм несколькими путями: при приеме внутрь, при внутривенном введении, а также через легкие в виде паров с вдыхаемым воздухом.
Поступивший в организм этиловый спирт действует на кору головного мозга. При этом наступает опьянение с характерным алкогольным «возбуждением». Это возбуждение не является результатом усиления возбудительного процесса, а возникает из-за ослабления процесса торможения. Таким образом, под влиянием алкоголя проявляется преобладание процессов возбуждения над процессами торможения. В больших дозах этиловый спирт вызывает угнетение функций как спинного, так и продолговатого мозга. При этом может наступить состояние длительного глубокого наркоза с потерей рефлексов и угнетением жизненно важных центров. Под влиянием этилового спирта может наступить смерть в результате паралича дыхательного центра.
О токсичности этилового спирта свидетельствует наличие случаев острых отравлений этим спиртом. В последнее десятилетие острые отравления этиловым спиртом занимают первое место (около 60%) среди отравлений другими токсическими веществами. Алкоголь не только вызывает острые отравления, но и способствует скоропостижной смерти от других заболеваний (прежде всего, от заболеваний сердечно-сосудистой системы).
Степень токсичности этилового спирта зависит от дозы, концентрации его в напитках, от наличия в них сивушных масел и других примесей, прибавляемых для придания напиткам определенного запаха и вкуса. Ориентировочно смертельной дозой для человека считается 6--8 мл чистого этилового спирта на 1 кг массы тела. В пересчете на всю массу тела это составляет 200--300 мл этилового спирта. Однако эта доза может изменяться в зависимости от чувствительности к этиловому спирту, условий его приема (крепость напитков, наполненность желудка пищей) и т. д. У одних лиц смерть может наступить после приема 100-- 150 г чистого этилового спирта, в то время как у других лиц. смерть не наступает и после приема 600--800 г этого спирта.
Длительное злоупотребление этиловым спиртом приводит к хроническому отравлению (алкоголизму). Повторные приемы алкоголя приводят к развитию привыкания, в результате которого малые дозы этого спирта перестают вызывать прежнее эйфорическое состояние. Чтобы вызвать эйфорическое состояние, таким лицам со временем требуется повышенная доза этилового спирта. Одновременно с привыканием вырабатывается пристрастие, а затем развивается алкогольная зависимость (алкоголизм), которая характеризуется тягостными переживаниями без употребления алкоголя и сильным желанием повторных его приемов.
В результате длительных приемов этилового спирта происходит ряд тяжелых нарушений функций организма: может наступить цирроз печени, перерождение сердечной мышцы и почек, стойкое расширение сосудов лица (особенно сосудов носа), дрожание мышц, галлюцинации, буйный бред (белая горячка), перерождение мужских и женских половых желез, в результате чего от алкоголиков рождаются дети с умственной и физической недостаточностью. Кроме этого, алкогольное опьянение часто является причиной несчастных случаев в быту, на производстве, транспорте и т. д. Значительное число нарушений социалистической законности и преступлений совершается в состоянии алкогольного опьянения.
Таким образом, алкоголизм является большим социальным злом, с которым необходимо вести решительную борьбу.
Распределение в организме. Этиловый спирт неравномерно распределяется в тканях и биологических жидкостях организма. Это зависит от количества воды в органе или биологической жидкости. Количественное содержание этилового спирта прямо пропорционально количеству воды и обратно пропорционально количеству жировой ткани в органе. В организме содержится около 65 % воды от общей массы тела. Из этого количества 75-- 85 % воды содержится в цельной крови. Учитывая большой объем крови в организме, в ней накапливается значительно большее количество этилового спирта, чем в других органах и тканях. Поэтому определение этилового спирта в крови имеет большое значение для оценки количества этого спирта, поступившего в организм. Имеется определенная зависимость между количеством этилового спирта в крови и моче. В первые 1--2 ч после приема этилового спирта (спиртных напитков) концентрация его в моче несколько ниже, чем в крови. В период элиминации содержание этилового спирта в моче, взятой катетером из мочеточника, превышает содержание его в крови. Эти данные имеют большое значение для установления времени, прошедшего с момента приема этилового спирта до момента исследования.
Большое значение в диагностике опьянений и отравлений этиловым спиртом имеют результаты количественного определения этого спирта, которые выражают в промилле (% 0 ), что означает тысячную долю.
При оценке результатов количественного определения этилового спирта в крови необходимо учитывать, что этот спирт может образовываться при гнилостном разложении трупов. При гниении в крови трупов может образовываться от ничтожных количеств до 2,4 % 0 этилового спирта. В первые 2--3 сут после смерти этиловый спирт в определенной степени разлагается под влиянием алкогольдегидразы, которая в это время еще сохраняет ферментативную активность.
В отличие от крови в моче трупов образование этилового спирта не происходит. Поэтому для оценки степени опьянения производят определение этилового спирта как в крови, так и в моче.
Выводы о степени опьянения и о смертельных отравлениях этиловым спиртом делают на основании результатов определения этого спирта в крови. При обнаружении в крови менее 0,3 % 0 этилового спирта делают вывод об отсутствии влияния этого спирта на организм. Легкое опьянение характеризуется наличием в крови 0,5--1,5 % 0 этилового спирта. При опьянении средней степени в крови обнаруживается 1,5--2,5 % 0, а при сильном опьянении-- 2,5--3,0 % 0 этилового спирта. При тяжелом отравлении в крови содержится 3--5 % 0, а при смертельном отравлении -- 5--6 % 0 этилового спирта.
Метаболизм. Часть этилового спирта (2--10 %) выделяется из организма в неизмененном виде с мочой, выдыхаемым воздухом, потом, слюной, калом и т. д Остальное количество этого спирта подвергается метаболизму. Причем метаболизм этилового спирта может происходить несколькими путями. Определенное количество этилового спирта окисляется с образованием воды и оксида углерода (IV). Несколько большее количество этого спирта окисляется до уксусного альдегида, а затем до уксусной кислоты.
Если ввести в организм антабус, циамид и некоторые другие вещества, то происходит задержка превращения уксусного альдегида в уксусную кислоту. Это приводит к накоплению уксусного альдегида в организме, который вызывает отвращение к алкоголю.
Обнаружение этилового спирта
При исследовании органов трупов (желудок с содержимым, печень, почки и др.) на наличие этилового спирта его отгоняют с водяным паром. Обнаружение этилового спирта производят при помощи описанных ниже реакций. Для обнаружения этилового спирта в крови и моче применяют метод газожидкостной хроматографии.
Метод микродиффузии. Этиловый спирт можно обнаружить методом микродиффузии, который описан выше (см. гл. III, § 3).
Реакция образования йодоформа. При нагревании этилового спирта с раствором иода и щелочью образуется йодоформ (CHJ 3 ), имеющий специфический запах:
Выполнение реакции. В пробирку вносят 1 мл исследуемого раствора и 2 мл 5 %-го раствора гидроксида натрия или карбоната натрия. К этой смеси по каплям прибавляют 1 %-й раствор иода в 2 %-м растворе иодида калия до слабо-желтой окраски. Затем смесь несколько минут нагревают на водяной бане (50 °С). При наличии этилового спирта ощущается запах йодоформа. При относительно больших количествах этилового спирта в пробе образуются кристаллы йодоформа, имеющие форму шестиугольников и звездочек.
Предел обнаружения: 0,04 мг этилового спирта в 1 мл раствора. Эта реакция не специфична на этиловый спирт. Ее дают ацетон, молочная кислота и др.
Реакция этерификации. Для этерификации этилового спирта применяют ацетат натрия и хлористый бензоил.
1. Реакция образования уксусно-этилового эфира. Этиловый спирт с ацетатом натрия в присутствии серной кислоты образует уксусно-этиловый эфир, имеющий характерный запах:
2CH 3 COONa + 2C 2 H 5 OH + H 2 SO 4 ---> 2СН 3 СООС 2 Н 5 + Na 2 SO 4 + 2H 2 O
Выполнение реакции. В пробирку вносят 1 мл исследуемого раствора и 0,1 г высушенного ацетата натрия, затем осторожно по каплям прибавляют 2 мл концентрированной серной кислоты. Смесь нагревают на пламени горелки (лучше нагревать пробирку на парафиновой или глицериновой бане) до выделения пузырьков газа. Появление специфического запаха уксусно-этилового эфира указывает на наличие этилового спирта в исследуемом растворе.
Предел обнаружения: 15 мкг этилового спирта в 1 мл раствора.
Запах уксусно-этилового эфира более отчетливо ощущается, если содержимое пробирки вылить в 20--25-кратный объем воды.
2. Реакция образования этилбензоата. При взаимодействии этилового спирта с бензоилхлоридом (хлористым бензоилом) образуется этилбензоат, имеющий характерный запах:
Распознаванию запаха этилбензоата мешает избыток бензоилхлорида, имеющего неприятный запах. Поэтому для разложения избытка бензоилхлорида прибавляют раствор щелочи:
Выполнение реакции. К 1 мл исследуемого раствора прибавляют 1--2 капли бензоилхлорида. При частом взбалтывании смеси к ней прибавляют по каплям 10 %-й раствор гидроксида натрия до исчезновения удушливого запаха бензоилхлорида. Появление запаха этилбензоата указывает на наличие этилового спирта в пробе. Этот запах лучше, ощущается после нанесения нескольких капель реакционной смеси на кусочек фильтровальной бумаги. Реакции мешает метиловый спирт, так как запах этилбензоата напоминает запах бензойнометилового эфира.
Реакция образования ацетальдегида. Этиловый спирт окисляется дихроматом калия, перманганатом калия и некоторыми другими окислителями до ацетальдегида:
ЗС 2 Н 5 ОН + К 2 Cr 2 O 7, + 4H 2 SO 4 ---> 3СН 3 СНО + Cr 2 (SO 4 ) 3 + K 2 SO 4 + 7R 2 O
Выполнение реакции. К 1 мл исследуемого раствора прибавляют 10 %-й раствор серной кислоты до получения кислой среды (по лакмусу), К этой смеси по каплям прибавляют 10%-й раствор дихромата калия до тех пор, пока жидкость не станет оранжево-красной. Смесь оставляют на несколько минут при комнатной температуре. При наличии этилового спирта в исследуемом растворе появляется запах ацетальдегида. При этой реакции мвжет образовываться и некоторое количество уксусной кислоты. Побочная реакция образования уксусной кислоты понижает чувствительность реакции обнаружения ацетальдегида.
Окисление этилового спирта и обнаружение его по ацетальдегиду. Ацетальдегид, образующийся при окислении этилового спирта, можно обнаружить при помощи реакции с нитропруссидом натрия и морфолином. С этой целью 2--3 капли раствора 4, содержащего ацетальдегид, наносят на капельную пластинку или на фильтровальную бумагу и прибавляют каплю реактива (свежеприготовленная смесь равных объемов 20 %-го водного раствора морфолина и 5 %-го водного раствора нитропруссида натрия). При наличии ацетальдегида в растворе появляется синяя окраска.
Предел обнаружения: 1 мкг ацетальдегида в пробе.
Эту реакцию дают акролеин и некоторые другие альдегиды. Реакцию с морфолином и нитропруссидом натрия дает пропионовый альдегид только при высокой его концентрации. Формальдегид не дает этой реакции. Поэтому реакцию окисления этилового спирта до ацетальдегида и обнаружение его с морфолином и нитропруссидом натрия можно использовать для различия метилового и этилового спиртов.
Предварительная проба на наличие этилового спирта в моче и крови. Эта проба подробно описана выше (см. гл. IV, § 8).
Обнаружение этилового спирта в напитках и растворах методом газожидкостной хроматографии
Принцип обнаружения химических соединений с помощью метода газожидкостной хроматографии описан в ряде источников литературы. Для обнаружения этилового спирта в растворах, напитках и в других жидкостях методом газожидкостной хроматографии в качестве эталонного вещества применяют 95 %-й этиловый спирт. Перед введением в дозатор газового хроматографа этот спирт переводят в более летучее, чем этиловый спирт (т. кип. 78 °С), соединение -- этилнитрит (т. кип. 17 °С). Для этого к этиловому спирту прибавляют нитрит натрия или калия и трихлоруксусную кислоту:
С 2 Н 5 ОН + ССl 3 СООН + KNO 2 ---> C 2 H 5 ONO + CC1 3 COOK + Н 2 О.
Образовавшийся этилнитрит, который находится в газообразном состоянии над жидкостью, вводят в газовый хроматограф и производят хроматографирование.
Условия хроматографирования:
хроматограф, снабженный катарометром;
металлическая колонка длиной 100 см, диаметром 0,6 см;
твердый носитель: сферохром, хезасорб или другие носители;
неподвижная жидкая фаза: полиэтиленгликоль (мол. масса 1000--1500), нанесенный на твердый носитель в количестве 12 %;
температура термостатов колонки и детектора 75 °С, температура дозатора комнатная;
газ-носитель: технический азот, пропускаемый через хроматограф со скоростью 50--60 мл/мин;
ток детектора 60--100 мА;
скорость движения диаграммной ленты 720 мм/ч.
Методика обнаружения этилового спирта в напитках и растворах. Во флакон из-под пенициллина вносят 0,5 мл 50%-го раствора трихлоруксусной кислоты и 0,5 мл водного раствора эталонного вещества (95 %-го этилового спирта, разбавленного водой с таким расчетом, чтобы концентрация его составляла 3-- 4% 0 ). Флакон закрывают резиновой пробкой, которую закрепляют специальным приспособлением (фиксатором). Затем с помощью шприца через резиновую пробку во флакон вводят 0,25 мл 30 %-го раствора нитрита натрия. Содержимое флакона в течение 1 мин хорошо взбалтывают и с помощью другого сухого шприца набирают 3 мл газообразной фазы, находящейся над жидкостью. Эту газообразную фазу, содержащую этилнитрит, вводят в дозатор хроматографа и производят хроматографирование. При этом записывают время удерживания этилнитрита.
После окончания хроматографирования эталонного вещества производят точно такой же опыт с исследуемым раствором, в котором предполагается наличие этилового спирта.
Совпадение времени удерживания вещества в обеих пробах (в пробе с эталонным и исследуемым веществом) указывает на идентичность этих веществ.
Методика обнаружения этилового спирта в крови и моче. Методика обнаружения этилового спирта в крови и моче аналогична методике обнаружения этого спирта в напитках и растворах. Сначала производят хроматографирование и определение времени удерживания этилового спирта, являющегося эталонным веществом. Это определение производят так, как указано при описании методики определения этого спирта в напитках и растворах. Затем приступают к определению этилового спирта в крови или в моче.
Во флакон из-под пенициллина вносят 0,5 мл исследуемой крови или мочи и 0,5 мл 50 %-го раствора трихлоруксусной кислоты. Флакон закрывают резиновой пробкой, которую закрепляют специальным фиксатором. После этого во флакон через резиновую пробку с помощью шприца вводят 0,25 мл 30%-го раствора нитрита натрия. Содержимое флакона хорошо взбалтывают в течение одной минуты. Затем из флакона другим шприцом набирают 3 мл газообразной фазы, которую вводят в дозатор хроматографа и хроматографируют. Если совпадает время удерживания эталонного вещества и вещества, содержащегося в крови или в моче, делают вывод о наличии этилового спирта в исследуемых биологических жидкостях.
При обнаружении этилового спирта в моче или в крови методом газожидкостной хроматографии производят количественное определение этого спирта в указанных объектах.
Количественное определение этилового спирта в крови и моче методом газожидкостной хроматографии
Для количественного определения этилового спирта в крови и моче применяют метод внутреннего стандарта, как один из методов газожидкостной хроматографии. Согласно этому методу, к крови или к моче, в которых определяют количественное содержание этилового спирта, прибавляют внутренний стандарт. В качестве внутреннего стандарта применяют пропиловый спирт. Содержащийся в крови или моче этиловый спирт (т. кип. 78 °С), а также пропиловый спирт (т. кип. 97,5 °С), прибавленный в качестве внутреннего стандарта, переводят в более летучие соединения (в этилнитрит с т. кип. 17 °С и пропилнитрит с т. кип. 46 -- 48°С). Смесь этилнитрита и пропилнитрита вводят в дозатор хроматографа и проводят хроматографирование. При этом на хроматограмме выписывается два пика, один из которых соответствует этиловому спирту (этилнитриту), а второй -- пропиловому спирту (пропилнитриту). Затем рассчитывают отношение площади или высоты пика этилового спирта (этилнитрита) к площади или высоте пика внутреннего стандарта -- пропилового спирта (пропилнитрита).
Расчет количественного содержания этилового спирта в крови или в моче производится по калибровочному графику.
Построение калибровочного графика. Сначала приготовляют серию стандартных растворов, содержащих 2, 3, 4 и 5 % 0 этилового спирта, и раствор внутреннего стандарта, содержащий 4 % 0 пропилового спирта. В несколько флаконов из-под пенициллина вносят по 2 мл раствора, содержащего по 4 % 0 пропилового спирта. В каждый флакон прибавляют по 2 мл раствора этилового спирта различной концентрации (2, 3, 4 и 5% 0 ). Содержимое флаконов хорошо перемешивают, а затем берут по 1 мл смеси спиртов из каждого флакона и переносят в другие флаконы из-под пенициллина. В каждый флакон прибавляют по 0,5 мл 50 %-го раствора трихлоруксусной кислоты. Флаконы закрывают резиновыми пробками, которые закрепляют фиксаторами. Затем с помощью шприца через резиновую пробку во флаконы вносят по 0,25 мл 30 %-го раствора нитрита натрия. Содержимое флаконов взбалтывают в течение одной минуты. После этого с помощью другого сухого шприца из флаконов отбирают по 3 мл газообразной фазы, которую вводят в дозатор хроматографа, и хроматографируют.
Условия хроматографирования указаны выше при описании способа обнаружения этилового спирта в напитках и растворах.
На хроматограммах измеряют площадь или высоту каждого пика. Затем находят отношение площади или высоты пика этилового спирта (этилнитрита) к площади или высоте пика внутреннего стандарта (пропилнитрита). Учитывая, что при этом для разных концентраций этилового спирта получаются величины, незначительно отличающиеся друг от друга, их умножают на 100 и результаты умножения наносят на ось ординат калибровочного графика. На ось абсцисс калибровочного графика наносят значение концентраций этилового спирта (в % 0 ).
Определение этилового спирта в крови и моче. Во флакон из-под пенициллина вносят 2 мл раствора внутреннего стандарта (пропилового спирта, концентрация которого составляет 4% 0 ), прибавляют 2 мл крови или мочи, подлежащей исследованию на наличие этилового спирта. Содержимое флакона хорошо взбалтывают, а затем 1 мл жидкости (смеси крови или мочи с внутренним стандартом) переносят в другой флакон из-под пенициллина и прибавляют 0,5 мл 50 %-го раствора трихлоруксусной кислоты. Флакон закрывают резиновой пробкой, которую закрепляют фиксатором. При помощи шприца через пробку во флакон вносят 0,25 мл 30%-го раствора нитрита натрия. Содержимое флакона взбалтывают в течение одной минуты. Затем при помощи другого сухого шприца отбирают из флакона 3 мл газообразной фазы, которую переносят в дозатор хроматографа, и проводят хроматографирование.
На хроматограмме определяют площади или высоты пиков и рассчитывают отношение площади или высоты пика этилового спирта к площади или высоте пика внутреннего стандарта. На основании этого отношения, умноженного на 100, по калибровочному графику рассчитывают содержание этилового спирта в крови или в моче (в % 0 ).
При определении этилового спирта в крови найденную по калибровочному графику концентрацию этого спирта умножают на 0,95, а найденную концентрацию этилового спирта в моче умножают на 1,05.
5. Какова последовательность проведения изолирования по методу Крамаренко В.Ф. Достоинства и недостатки
В зависимости от поставленной перед экспертом-химиком задачи, судебно-химическое исследование может носить общий или частный характер, т.е. анализ может быть ненаправленным (общим) или направленным (частным).
Частное исследование предусматривает проведение анализа на какое-то определенное вещество или группу веществ. Например, на производные барбитуровой кислоты, на алкалоиды или даже на одно конкретное вещество. При частном исследовании метод изолирования подбирается с учётом физико-химических свойств того соединения (или группы соединений), на которое производится анализ.
Общий анализ включает исследование на несколько групп веществ (3 группы), подлежащих обязательному судебно-химическому исследованию, в том числе и на группу «нелетучих» ядов. В этом случае используются общие для всей группы веществ (универсальные) методы изолирования.
Общими методами изолирования «нелетучих» ядов являются:
1. Изолирование подкисленным этанолом.
2. Изолирование водой, подкисленной щавелевой кислотой.
Оба метода вначале были разработаны для алкалоидов, а затем применены и к другим веществам.
1. Изолирование нейтральным ацетоном.
Изолирование подкисленным этанолом
Самый первый метод изолирования подкисленным спиртом, названный по имени авторов методом Стаса - Отто, применялся только для алкалоидов. В дальнейшем это метод претерпел серьёзные изменения и стал использоваться не только для алкалоидов, но и для многих других ядовитых и сильнодействующих веществ, имеющих токсикологическое значение.
Современная модификация метода состоит из этапов:
* Настаивание измельчённого объекта с этиловым спиртом, подкисленным щавелевой кислотой до рН 2 - 3, в течение суток. Спирт берётся в количестве, необходимом для покрытия объекта до «зеркала». Спиртовое извлечение сливается и вся операция повторяется трехкратно.
* Упаривание объединённых спиртовых извлечений при температуре 40 - 50 °С до густого остатка, в который по каплям добавляют абсолютный этанол для коагуляции белков. Осадок отфильтровывают и всю операцию осаждения повторяют по мере необходимости до полного удаления белковых соединений.
* Упаривание фильтрата при той же температуре до густого остатка и разбавление горячей водой для удаления смолистых веществ, жиров и пигментов. Осадок отфильтровывают.
* Экстрагирование веществ кислого, нейтрального и слабоосновного характера in водного фильтрата хлороформом при рН = 2 (трёхкратная экстракция), отделение органической фазы и концентрирование полученного извлечения упариванием (фракция А, «кислое» извлечение).
* Подщелачивание оставшегося после разделения фаз водного слоя до рН 9 10, экстрагирование веществ сильноосновного характера (трёхкратная экстракция) хлороформом, отделение органической фазы и концентрирование упариванием (фракции Б, «щелочное» извлечение).
Достоинства метода заключаются в следующем:
1.Метод универсален, т.к. этанол является хорошим растворителем для многих веществ этой группы (как ионизированных, так и молекулярных форм).
2.Метод предусматривает очистку извлечения от балластных веществ, в результате чего получаются чистые хлороформные извлечения, не дающие эмульсий при экстрагировании веществ из водной фазы хлороформом. Метод даёт возможность изолировать до 30 % барбитуратов и 20 - 25 % алкалоидов.
К недостаткам метода следует отнести:
1.Длительность (8-10 рабочих дней) и многостадийность. Большое количестве операций, связанных с осаждением белков и фильтрованием, ведёт к значительным потерям искомых веществ (алкалоиды теряются на 25 - 50 %).
2. Сравнительная дороговизна метода (на 1 исследование тратится до 500 мл этанола). Все это приводит к тому, что классический метод Стаса - Отто теряет своё былое
значение и постепенно заменяется более быстрыми, эффективными и экономным» методами извлечения подкисленной водой.
В настоящее время метод применяется, главным образом, для исследованш гнилостно изменённого биологического материала.
Изолирование водой, подкисленной щавелевой кислотой
Идея изолирования подкисленной водой высказывалась разными исследователями. Так ещё в 1856 году С. Макадам предложил для подкисления воды использовать щавелевук кислоту, в 1861 г. Усляр и Эрдман - соляную, а в 1865 г. Г. Драгендорф - серную. Вплоть да 1941 г. водный метод не получал широкого распространения. В 1942 - 1943 г.г. Степановы» А.В. и Швайковой М.Д. был предложен метод изолирования алкалоидов из объекта растительного происхождения водой, подкисленной щавелевой кислотой (ускоренный метод) В 1947 - 49 г.г. этот метод был применён А.А. Васильевой к трупному материалу, после чего oн вошёл в практику судебно-химического анализа в отечественных лабораториях. На примере кониина можно представить следующим уравнением:
Схема изолирования по методу Васильевой заключается в следующем:
* Настаивание измельчённого объекта с водой, подкисленной щавелевой кислотой до рН = 2 - 3, в течение двух часов. Вода берётся в количестве 1 : 2 по отношению к навеске объекта. Водное извлечение фильтруется.
* Экстрагирование веществ кислого, нейтрального и слабоосновного характера и водного фильтрата хлороформом при рН = 2 (трёхкратная экстракция), отделение органической фазы и концентрирование полученного извлечения упариванием (фракнш А, «кислое» извлечение).
* Подщелачивание оставшегося после разделения фаз водного слоя растворои аммиака до рН 9 - 10, экстрагирование веществ основного характера трёхкратной экстракцией хлороформом, отделение органической фазы и концентрирован» упариванием (фракция Б, «щелочное» извлечение).
По сравнению с изолированием подкисленным спиртом извлечение водой подкисленной щавелевой кислотой.
Преимущества:
1. Быстрота (анализ можно провести в течение одного рабочего дня).
2. Меньшее количество операций, меньшие потери искомых веществ (алкалоид! извлекаются на 30 - 40 %).
3. Экономичность и дешевизна, т.к. дорогой спирт заменён водой.
Недостатком метода: Является образование стойких эмульсий при экстрагирований веществ из водной фазы хлороформом, особенно при исследовании гнилостнол биоматериала, т.к. метод не предусматривает очистки извлечений.
Изолирование нейтральным ацетоном
Метод предложен проф. Карташовым В.А. (г. Барнаул) в 1990 году.
Измельченную навеску биологического материала массой 5 г экстрагируют 10 м ацетона в течение 10 минут, центрифугируют. Полученное извлечение сливают, операцию экстрагирования ацетоном повторяют ещё 2 раза по 5 мл. Извлечения объединяют.
К объединенному извлечению добавляют 20 мл 0,5 н раствора хлористоводородной кислоты, перемешивают и экстрагируют гексаном дважды. Гексановые извлечения, содержащие примеси, отбрасывают.
Из очищенного вводно-ацетонового извлечения (рН=1) эфиром экстрагируют вещества кислотного характера. Далее вводно-ацетновую фазу подщелачивают гидроксидом аммония до Рн=9, добавляют 5 г хлорида натрия (высаливающий агент) и экстрагируют вещества основного характера эфиром.
Преимущество метода:
1. Высокий выход ядовитых веществ (до 60-70%). Это достигается за счет использования в качестве экстрагента амфифильного растворителя - нейтрального ацетона, который извлекает вещества кислотного и основного характера как в ионизированной, так и в молекулярной формах. Высокий выход веществ позволяет уменьшить массу навески до 5 граммов, что упрощает операции и снижает расход реактивов и времени пробоподготовки.
Недостатки метода:
Ацетон, являясь амфифильным растворителем, извлекает из биоматериала большое количество примесей, что требует дополнительной очистки извлечения. К недостаткам метода относится и его многостадийность.
Твердофазная экстракция
Лекарственные и наркотические средства, поступающие на исследование, крайне редко являются индивидуальными соединениями. Нередко объектами исследования являются поступающие из незаконного оборота синтетические наркотические средства, которые производятся в подпольных лабораториях. В подавляющем большинстве случаев они имеют в своем составе различные наполнители и добавки (сахар, соли жирных кислот, крахмал, сода, тальк и др.), либо содержат загрязнения или промежуточные и побочные продукты синтеза, содержание же наркотически активного компонента в таких препаратах очень низкое.
При этом разделение, выделение, концентрирование и очистка целевых компонентов традиционными методами (например, жидкостной экстракцией) неэффективны, а иногда просто невозможны. Решение такого рода проблем возможно при применении на стадии пробоподготовки метода твердофазной экстракции, позволяющего осуществлять одновременное разделение, выделение и концентрирование целевых компонентов из биологических жидкостей и их экстрактов, лекарственных и нативных наркотических средств. Такой подход дает возможность получения веществ в чистом виде, что в дальнейшем позволяет проводить идентификацию методами ИК-, УФ- спектроскопии, ТСХ, ГЖХ, ВЭЖХ, методом хромато-масс-спектрометрии.
В основе метода твердофазной экстракции лежит принцип колоночной хроматографии, который основан на специфическом взаимодействии выделяемого из биоматериала компонента с сорбентом, находящимся в небольшом патроне. Патрон-картридж имеет полиэтиленовую оболочку, внутри которой находится сорбент, упакованный между двумя пористыми фильтрами. Патроны могут соединяться друг с другом, представляя более широкие возможности для их использования. Чаще всего для заполнения патронов применяют сорбенты на основе силикагеля и химически модифицированного силикагеля. Для модификации силикагеля используются вещества, содержащие различные функциональные группы (нитрильные, диольные, амино- карбокси - и сульфогруппы), а также алифатические (Ci -Са) и ароматические (фенильные) группы. Выбор соответствующего типа патрона связан со свойствами определяемого вещества и осуществляется по типу подобия.
Часто в практике ХТА используются отечественные патроны фирмы "Дианак", заполненные немодифицированным силикагелем (Диапак Силикагель) и силикагелем, модифицированным гексадецильными группами Си (Диапак С|6).
При использовании патронов Диапак для большинства веществ проводят следующие операции.
1.Активация - приведение патрона в рабочее состояние путем промывки этиловым или метиловым спиртом (2-10 мл). Скорость пропускания 2,5 мл/мин.
2. Кондиционирование - пропускание буферного раствора (ацетатного или аммиачного) в зависимости от исследуемых веществ. Объем буферного раствора - 10 мл. Скорость пропускания 2,5 мл/мин.
3. Сорбция - пропускание исследуемого раствора через патрон. Объем пробы обычно 100 мл. Скорость пропускания 2,5 мл/мин.
4. Десорбция - удаление исследуемого вещества с сорбента с помощью воздуха шприцем или вакуумным насосом.
5. Элюирование образца осуществляется реагентом, который применялся на стадии активации. Объем элюента- 50-100 мл.
Высокая эффективность выпускаемых патронов позволяет использовать их для пробоподготовки широкого круга объектов - от лекарственных препаратов сложного состава до "уличных наркотиков" и биологических жидкостей (моча, кровь, сыворотка и т. д.), а также экстрактов биологических жидкостей.
Частные методы изолирования веществ кислотного характера
* изолирование барбитуратов подщелоченной водой (метод П. Валова);
* метод Е. Грусц-Харди.
Изолирование барбитуратов подщелоченной водой (метод П. Валова)
Изолирование барбитуратов подщелоченной водой схематично можно представить следующим образом:
* Настаивание измельчённого объекта с водой, подщелоченной 20% раствором натрия гидроксида до рН = 12 и более, в течение 30 мин.
* Очистка водного извлечения путём насыщения натрия вольфраматом, фильтрование раствора.
* В кислой среде (серной кислотой до рН=2), экстрагирование эфиром, концентрирование эфирного извлечения упариванием.
Выход составляет 50% и даже до 90%, в зависимости от вида барбитурата. Метод даёт достаточно чистые извлечения, т.к. включает стадию очистки (осаждение белков натрия вольфраматом), что повышает качество последующего анализа.
Недостатком метода
Является соосаждение барбитуратов с белками при обработке натрия вольфраматом. В последней модификации метода серная кислота заменена на натрия гидросулъфат, что увеличивает выход искомых веществ.
Метод Е. Грусц-Харди - изолирование смесью спирта и хлороформа
Измельченный биологический материал растирают с сульфатом аммония, подкисляют раствором хлористоводородной кислоты до рН=2, экстрагируют смесью этилового спирта и хлороформа Экстракт отделяют, выпаривают, сухой остаток растворяют в горячей воде и фильтруют. Из фильтрата экстрагируют вещества кислотного характера эфиром. Частные методы изолирования веществ основного характера Частный метод изолирования алкалоидов водой, подкисленной серной кислотой (по В.Ф. Крамаренко)
Метод был разработан Львовской школой судебных химиков под руководством заведующего кафедрой аналитической и токсикологической химии Львовского медицинского института проф. В.Ф. Крамаренко. В 1956 - 62 г.г. целый ряд работ химиков этой школы был посвящен влиянию рН среды, природы экстрагента и присутствия в водной фазе электролита на эффективность изолирования алкалоидов из биоматериала Схематично метод можно представить из следующих этапов:
* Настаивание измельчённою объекта с водой, подкисленной 20% раствором серной кислоты до рН =2- 3, в течение двух часов. Вода берётся в количестве 1 : 2 по отношению к навеске объекта Водное извлечение филыруется. Операция повторяется двукратно.
* Очистка водного извлечения от белковых соединений путём насыщения его аммония сульфатом, настаивания в течение часа и фильтрования образовавшегося осадка.
* Очистка фильтрата от жиров, смол, пигментов путём экстракции эфиром. Эфирное извлечение отбрасывают.
* Подщелачивание водного извлечения 20% раствором натрия гидроксида и экстрагирование веществ основного характера хлороформом при рН =9-10 (трёхкратная экстракция), отделение органической фазы и концентрирование полученного извлечения упариванием.
Разработанный вначале для алкалоидов, метод применим и для изолирования других азотсодержащих веществ основного характера (синтетических лекарственных средств).
Метод достаточно быстрый. Преимуществом является хорошая очистка извлечений от соэкстрактивных веществ.
Кроме указанных выше методов изолирования, для отдельных алкалоидов, таких, как-жидкие алкалоиды - анабазин, никотин, кониин рекомендуется перегонка алкалоидов с водяным паром с последующим экстрагированием из дистиллята органическим растворителем. Для стрихнина и пахикарпина предложены такие методы, как электрофорез и электродиализ.
Исследование биологических жидкостей
1. При исследовании биожидкостей, таких как кровь, моча, плазма, слюна, сыворотка, промывные воды желудка, для изолирования «нелетучих» ядов используют прямую дробную жидкость - жидкостную экстракцию (ЖЖЭ).
Биожидкость подкисляют хлористоводородной кислотой до рН 2-3 и экстрагируют эфиром (фракция А), а затем подщелачивают до рН 9-10 и экстрагируют хлороформом (фракция Б). Во фракции А присутствуют вещества кислого, нейтрального и слабоосновного характера, во фракции Б - вещества основного характера.
ЖЖЭ соответствует второй стадии изолирования ядов из биоматериала в рассмотренных ранее общих методах, поэтому все факторы, определяющие эффективность изолирования на этой стадии, имеют место здесь.
Для некоторых веществ основного характера (морфин) при изолировании его из биожидкостей предварительно проводят кислотный гидролиз, чтобы разрушить его комплекс с глюкуроновой кислотой, в виде которого он находится в жидкостях. При прямой ЖЖЭ совместно с ядом из биожидкостей могут экстрагироваться сопутствующие вещества, что заставляет в дальнейшем прибегать к различным методам очистки.
В последнее время для изолирования ядов из биожидкостей применяется сорбция их на синтетических смолах, модифицированных силикагелях и активированном угле. Вещества сорбируются на твердом носителе, а потом элюируются из него органическим растворителем (по фракциям). Метод позволяет не проводить дополнительную обработку пробы и изолирование, дает возможность одновременно сконцентрировать вещество и провести очистку. Это приводит к повышению чувствительности метода. Однако, при неизвестном яде сорбция не всегда может быть использована ввиду опасности его потери из-за недостаточной сорбции.
Очистка изолируемых веществ от сопутствующих компонентов
При изолировании ядовитых веществ из биоматериала совместно с ними экстрагируются т.н. соэкстрактивные вещества - примеси белков, продуктов их гидролиза - пептидов и аминокислот, липидов и ряда других соединений, которые являются естественными компонентами биоматериала.
Соэкстрактивные вещества в дальнейшем мешают проведению анализа:
1. Маскируют окраску при проведении реакций окрашивания (обугливание соэкстрактивных веществ под действием концентрированной серной кислоты).
2. Снижают чувствительность микрокристаллических реакций и приводят к образованию кристаллов неправильной формы, либо к их полиморфизму (многообразие форм).
3. Искажают спектры веществ при спектральном исследовании в УФ- и ИК-областях.
4. Дают искаженные результаты количественного определения веществ.
5. Многие продукты гнилостного разложения биоматериала дают такие же реакции, как и некоторые ядовитые вещества (например, трупные алкалоиды - путресцин, кадаверин - дают реакции с общеалкалоидными реактивами).
Для получения надежных результатов необходима очистка исследуемых вещесгв от соэкстрактивных веществ биоматериала. Очистка может быть проведена при подготовке объекта, в процессе изолирования или после него.
На 1 этапе изолирования возможна только грубая очистка, которая проводитяс путем:
1 - удаления механических загрязнений (мелких частиц биоматериала) фильтрованием, центрифугированием;
2 - осаждения примесей при добавлении соответствующих реагентов, например, осаждение белков абсолютным спиртом, ацетоном, трихлоруксусной кислотой, вольфрамовой, фосфорно-вольфрамовой, фосфорно-молибденовой кислотами, насыщение электролитами (Na2S04, (NHUfeSCi, NaCl). При этом возможно соосаждение искомых веществ, что ведет к их частичной потере;
3 - изменения состава фаз, т.е. введения другого органического растворителя (связано с большими потерями веществ).
На 2 этапе изолирования или после него возможна более тонкая очистка, которая может осуществляться путем:
1 - реэкстракции, т.е. переведения веществ из одной жидкой фазы в другую при изменении рН раствора (например, очистка барбитуратов и алкалоидов за счет различной растворимости их солеобразных и молекулярных форм в воде и органических растворителях). При этом примеси отделяются от экстрагируемого вещества за счет нерастворимости в используемом экстрагенте. Либо, наоборот, экстрагирование примесей из раствора подходящим экстрагентом (эфир в методе В.Ф. Крамаренко).
2 - сублимации - для веществ, способных возгоняться без разложения при нагревании (салициловая, бензойная кислоты, барбитураты, жидкие алкалоиды).
3 - хроматографии - ионообменной, гель-хроматографии, адсорбционной хроматографии на колонках, тонкослойной хроматографии. Последний вид хроматографии используется часто, т.к. наряду с очисткой дает возможность разделить вещества (их метаболиты) при комбинированных отравлениях и провести их предварительную идентификацию по величинам Rf (хроматографический скрининг «нелетучих» ядов.
6. Составить примерный план анализа при подозрении на отравление производными барбитуровой кислоты (фенобарбитал, барбитал, этаминал)
В современной медицине применяется большое число барбитуратов (производных барбитуровой кислоты). Барбитураты представляют собой одну из групп веществ, имеющих большое токсикологическое значение. Сама барбитуровая кислота (малонилмочевина) не применяется в медицине, зато широко используются ее производные.
Барбитуровая кислота со щелочами образует соли. Кислотные свойства барбитуровой кислоты обусловлены наличием атомов водорода в -- NH-группах, находящихся рядом с карбонильной группой --СО--.
Применяемые в медицине барбитураты являются 5,5-замещен-ными (барбамил, барбитал, фенобарбитал и др.) и 1,5,5-замещен-ными (гексенал, гексабарбитал, бензонал и др.) барбитуровой кислоты.
Выделение барбитуратов из биологического материала
Для выделения барбитуратов из биологического материала долгое время применялись методы, которые были разработаны для выделения алкалоидов. В последние десятилетия для выделения барбитуратов из объектов биологического происхождения предложен ряд специальных методов, которые описаны ниже.
Изолирование барбитуратов водой, подкисленной щавелевой кислотой. Оптимальные условия изолирования барбитуратов из биологического материала водой, подкисленной щавелевой кислотой, и способ очистки полученных вытяжек разработала М. Д. Швайкова с сотрудниками. Согласно этому методу, в коническую колбу или стакан вносят 100 г тщательно измельченных органов трупов, прибавляют 200 мл воды, подкисляют насыщенным водным раствором щавелевой кислоты до рН = 2 (по универсальному индикатору) и оставляют на 2 ч при частом перемешивании. Затем содержимое колбы переносят в стакан для центрифугирования вместимостью 500 мл и центрифугируют в течение 30 мин (3000 об/мин). Центрифугат сливают с осадка и процеживают через ватный тампон. Процеженную жидкость собирают в делительную воронку и проверяют рН этой жидкости. В случае необходимости жидкость доводят до рН = 2. Содержимое делительной воронки взбалтывают с тремя порциями хлороформа (по 20, 15 и 15 мл) в течение 5 мин. Если образуется эмульсия, то ее разрушают центрифугированием.
Хлороформные вытяжки соединяют, доводят хлороформом до 50 мл и переносят в делительную воронку, в которую прибавляют 25 мл 0,1 н. раствора гидроксида натрия, и взбалтывают. Водную фазу отделяют от хлороформной вытяжки. Эту вытяжку взбалтывают с двумя порциями воды по 1,5 мл. Первую и вторую порции воды (по 1,5 мл), которыми промывали хлороформные вытяжки, присоединяют к щелочной водной фазе. Потом водную фазу подкисляют соляной кислотой до рН = 2, вносят в делительную воронку и взбалтывают с двумя новыми порциями хлороформа (по 20 мл) в течение 5 мин. Хлороформные вытяжки соединяют и доводят хлороформом до 50 мл. В этих вытяжках определяют наличие и количественное содержание барбитуратов.
Изолирование барбитуратов водой, подкисленной серной кислотой. Метод выделения барбитуратов из биологического материала, основанный на изолировании этих веществ водой, подкисленной серной кислотой, разработала В. И. Попова. Согласно этому методу, биологический материал настаивают с водой, подкисленной серной кислотой (рН = 2...3). Полученные вытяжки освобождают от примесей методом гель-хроматографии. Для этой цели используется гель сефадекса G = 25.
В стакан вносят 100 г измельченного биологического материала, прибавляют 80 мл 0,02 н. раствора серной кислоты, перемешивают и проверяют рН среды. При необходимости смесь доводят до рН = 2...3 (по универсальному индикатору) 30 %-м раствором серной кислоты. Смесь биологического материала и подкисленной воды настаивают в течение 2 ч при частом перемешивании. Затем вытяжку сливают, а биологический материал еще 2 раза настаивают с новыми порциями 0,02 н. раствора серной кислоты (по 80 мл) в течение 1 ч. Кислые водные вытяжки соединяют, процеживают через сложенную в три слоя марлю и центрифугируют в течение 25--30 мин.
Надосадочную жидкость (центрифугат) сливают с осадка и очищают от примесей методом гель-хроматографии. Этот метод обеспечивает хорошую очистку барбитуратов, выделенных из биологического материала.
После очистки вытяжек из биологического материала с помощью метода гель-хроматографии получают большие объемы элюатов, в одном миллилитре которых содержатся малые количества барбитуратов. Поэтому барбитураты, находящиеся в элюатах, подвергают экстракционному концентрированию. С этой целью объединенные кислые элюаты 3 раза взбалтывают с новыми порциями хлороформа (по 50 мл) в течение 7 мин. Хлороформные вытяжки, полученные после каждой экстракции, соединяют и на водяной бане при 70 °С отгоняют из них 120--130 мл хлороформа. Оставшуюся упаренную хлороформную вытяжку при комнатной температуре выпаривают досуха. Сухие остатки используют для идентификации и количественного определения барбитуратов при помощи соответствующих реакций и методов.
Изолирование барбитуратов подщелоченной водой. Подщелоченную воду для изолирования барбитуратов из биологического материала впервые применил П. Валов. Для осаждения примесей, переходящих из биологического материала в вытяжки, он использовал вольфрамат натрия. В настоящее время известно несколько модификаций метода Валова. Одна из модификаций метода Валова, предложенная М. Д. Швайковой с сотрудниками, приводится ниже.
Подобные документы
Распределение ядов в организме. Характеристика токсо-биологической группы "пестициды". Токсическое действие и клиническая картина острых отравлений пиретроидами и нитросоединениями. Иммунохимические методы анализа в химико-токсикологическом анализе.
контрольная работа [2,7 M], добавлен 01.04.2012Изучение состава и свойств барбитуровой кислоты, методы её синтеза. Таутомерные формы барбитуровой кислоты и пути её метаболизма. Содержание алкильных или арильных заместителей в производных барбитуровой кислоты. Барбитураты и их применение в медицине.
реферат [286,7 K], добавлен 02.06.2014Состояние химии змеиных ядов, их получение и физико-химические свойства. Этапы изучения химического состава и структуры токсических полипептидов змеиных ядов, их терминология и классификация. Химия постсинаптических и пресинаптических нейротоксинов.
реферат [135,0 K], добавлен 18.06.2013Общая характеристика лекарственных средств, производных барбитуровой кислоты. Химическое строение таблеток бензонала и порошка тиопентала натрия. Хроматографический анализ производных барбитуровой кислоты. Реакции идентификации лекарственных средств.
курсовая работа [830,6 K], добавлен 13.10.2017Понятие количественного и качественного состава в аналитической химии. Влияние количества вещества на род анализа. Химические, физические, физико-химические, биологические методы определения его состава. Методы и основные этапы химического анализа.
презентация [59,0 K], добавлен 01.09.2016Установка титра методом отдельных навесок. Константа диссоциации синильной кислоты. Классификация методов осаждения. Значение ионов H и OH в водных растворах электролитов. Полярографические методы анализа. Нахождение степени диссоциации циановодорода.
контрольная работа [87,4 K], добавлен 20.11.2012Проведение анализа вещества для установление качественного или количественного его состава. Химические, физические и физико-химические методы разделения и определения структурных составляющих гетерогенных систем. Статистическая обработка результатов.
реферат [38,1 K], добавлен 19.10.2015Производные, химия имидазола. Получение, строение, химические свойства имидазола. Неконденсированные и конденсированные производные имидазола. Пуриновые основания. Производные тиазола. Производные пенициллина.
курсовая работа [624,6 K], добавлен 29.05.2004Строение и схема получения малонового эфира. Синтез ацетоуксусного эфира из уксусной кислоты, его использование для образования различных кетонов. Таутомерные формы и производные барбитуровой кислоты. Восстановление a,b-Непредельных альдегидов и кетонов.
лекция [270,8 K], добавлен 03.02.2009Альдегиды и их основные производные. Следствие удлинения алкильного радикала в молекуле альдегида. Физико-химические свойства альдегидов. Методы анализа альдегидов. Причины нестойкости раствора формальдегида, особенности хранения и области применения.
курсовая работа [839,9 K], добавлен 01.03.2015