Равновесие в химических реакциях. Принцип Ле Шателье

Особенности и закономерности протекания химических реакций. Обратимые и необратимые реакции. Принципы и условия смещения химического равновесия. Универсальность принципа Ле Шателье, примеры использования его работы. Скорость реакции и равновесие.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 08.04.2011
Размер файла 60,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию.

Кафедра естествознания.

РЕФЕРАТ

Равновесие в химических реакциях. Принцип Ле Шателье.

выполнил

Проверил преподаватель

Содержание

  • Введение
  • Равновесие в химических реакциях
  • Смещение химического равновесия. Принцип Ле Шателье
  • Скорость реакции и равновесие
  • Заключение
  • Список используемой литературы

Введение

Данная тема - Равновесие в химических реакциях - рассматривается в такой отрасли естествознания как химия.

Цель работы:

1) Изучение особенностей и закономерностей течения химических реакций, как продолжение формирования представлений о различных типах химических реакций по признаку обратимости.

2) Обобщение и конкретизация знаний о закономерностях химических реакций, формирование умений и навыков определять, объяснять особенности и, вытекающие из них условия, необходимые для протекания той или иной реакции.3) Расширить и углубить знания о многообразии химических процессов 4) Рассмотреть этот раздел химической науки как важнейший в прикладном аспекте и рассмотреть представления о химическом равновесии - как частном случае единого закона природного равновесия, стремления к компенсации, устойчивости равновесия в единстве с основной формой существования материи, движении, динамики.

Задачи:

Рассмотреть тему: “Обратимые и необратимые реакции" на конкретных примерах, используя предшествующие представления о скорости химических реакций.

Продолжить изучение особенностей обратимых химических реакций и формирование представлений о химическом равновесии как динамичном состоянии реагирующей системы.

Изучить принципы смещения химического равновесия и пронаблюдать условия смещения химического равновесия.

Равновесие в химических реакциях

Химические реакции - это явления, при которых одно (или одни) вещества превращаются в другие, доказательством этого являются видимые и невидимые изменения. Видимые: изменения цвета, запаха, вкуса, выпадение осадка, изменение окраски индикатора, поглощение и выделение тепла. Невидимые: изменение состава вещества, которое можно определить с помощью качественных и аналитических реакций. Все эти реакции можно подразделить на два типа: обратимые и необратимые реакции.

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V1) равна скорости обратной реакции (V2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (K1) и обратной (K2) реакций.

Для реакции mA + nB pC + dD константа равновесия равна

K = K1/K2 = ([C] p [D] d) / ([A] m [B] n)

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции. В состоянии равновесия молекулы не перестают испытывать соударения, и между ними не прекращается взаимодействие, но концентрации веществ остаются постоянными. Эти концентрации называются равновесными.

Равновесная концентрация - концентрация вещества, участвующего в обратимой химической реакции, достигшей состояния равновесия.

химическая реакция равновесия скорость

Равновесная концентрация обозначается формулой вещества, взятой в квадратные скобки, например:

сравновесная2) = [H2] или равновесная (HI) = [HI].

Как и любая другая концентрация, равновесная концентрация измеряется в молях на литр.

Если бы в рассмотренных нами примерах мы взяли другие концентрации исходных веществ, то после достижения равновесия получили бы другие значения равновесных концентраций. Эти новые значения (обозначим их звездочками) будут связаны со старыми следующим образом:

.

В общем случае для обратимой реакции

aA + bB dD + fF

в состоянии равновесия при постоянной температуре соблюдается соотношение

Это соотношение носит название закон действующих масс, который формулируется следующим образом:

при постоянной температуре отношение произведения равновесных концентраций продуктов реакции, взятых в степенях, равных их коэффициентам, к произведению равновесных концентраций исходных веществ, взятых в степенях, равных их коэффициентам, есть величина постоянная.

Постоянная величина (КС) называется константой равновесия данной реакции. Индекс " с" в обозначении этой величины показывает, что для расчета константы использовались концентрации.

Если константа равновесия велика, то равновесие сдвинуто в сторону продуктов прямой реакции, если мала, то - в сторону исходных веществ. Если константа равновесия очень велика, то говорят, что реакция " практически необратима", если константа равновесия очень мала, то реакция " практически не идет".

Константа равновесия - для каждой обратимой реакции величина постоянная только при постоянной температуре. Для одной и той же реакции при разных температурах константа равновесия принимает разные значения.

Приведенное выражение для закона действующих масс справедливо только для реакций, все участники которых представляют собой либо газы, либо растворенные вещества. В других случаях уравнение для константы равновесия несколько меняется.

Например, в протекающей при высокой температуре обратимой реакции

С (гр) + СО2 2СО (г)

участвует твердый графит С (гр). Формально, пользуясь законом действующих масс, запишем выражение для константы равновесия этой реакции, обозначив ее К':

Твердый графит, лежащий на дне реактора, реагирует только с поверхности, и его " концентрация" не зависит от массы графита и постоянна при любом соотношении веществ в газовой смеси.

Умножим правую и левую части уравнения на эту постоянную величину:

Получившаяся величина и есть константа равновесия этой реакции:

Аналогичным образом, для равновесия другой обратимой реакции, протекающей также при высокой температуре,

CaCO3 (кр) СаО (кр) + СО2 (г),

получим константу равновесия

КС = [CO2].

В этом случае она просто равна равновесной концентрации углекислого газа.

С метрологической точки зрения константа равновесия не является одной физической величиной. Это группа величин с различными единицами измерений, зависящими от конкретного выражения константы через равновесные концентрации. Например, для обратимой реакции графита с углекислым газом [Kc] = 1 моль/л, такая же единица измерений и у константы равновесия реакции термического разложения карбоната кальция, а константа равновесия реакции синтеза йодоводорода - величина безразмерная. В общем случае [Kc] = 1 (моль/л) n.

Смещение химического равновесия. Принцип Ле Шателье

Перевод равновесной химической системы из одного состояния равновесия в другое называется смещением (сдвигом) химического равновесия, которое осуществляется изменением термодинамических параметров системы - температуры, концентрации, давления При смещении равновесия в прямом направлении достигается увеличение выхода продуктов, а при смещении в обратном направлении - уменьшение степени превращения реагента. И то, и другое может оказаться полезным в химической технологии. Так как почти все реакции в той или иной степени обратимы, в промышленности и лабораторной практике возникают две проблемы: как получить продукт " полезной" реакции с максимальным выходом и как уменьшить выход продуктов " вредной" реакции. И в том, и в другом случае возникает необходимость сместить равновесие либо в сторону продуктов реакции, либо в сторону исходных веществ. Чтобы научиться это делать, надо знать, от чего зависит положение равновесия любой обратимой реакции.

Положение равновесия зависит:

1) от значения константы равновесия (то есть от природы реагирующих веществ и температуры),

2) от концентрации веществ, участвующих в реакции и 3) от давления (для газовых систем оно пропорционально концентрациям веществ).

Для качественной оценки влияния на химическое равновесие всех этих очень разных факторов используют универсальный по своей сути принцип Ле Шателье (французский физикохимик и металловед Анри Луи Ле Шателье сформулировал его в 1884 году), который применим к любым равновесным системам, не только химическим.

Если на систему, находящуюся в равновесии, воздействовать извне, то равновесие в системе сместится в направлении, в котором происходит частичная компенсация этого воздействия.

В качестве примера влияния на положение равновесия концентраций веществ-участников реакции рассмотрим обратимую реакцию получения йодоводорода

H2 (г) + I2 (г) 2HI (г).

По закону действующих масс в состоянии равновесия

.

Пусть в реакторе объемом 1 литр при некоторой постоянной температуре установилось равновесие, при котором концентрации всех участников реакции одинаковы и равны 1 моль/л ([H2] = 1 моль/л; [I2] = 1 моль/л; [HI] = 1 моль/л). Следовательно, при этой температуре КС = 1. Так как объем реактора 1 литр, n (H2) = 1 моль, n (I2) = 1 моль и n (HI) = 1 моль. В момент времени t 1 введем в реактор еще 1 моль HI, его концентрация станет равной 2 моль/л. Но, чтобы КС оставалась постоянной, должны увеличиться концентрации водорода и йода, а это возможно только за счет разложения части йодоводорода по уравнению

2HI (г) = H2 (г) + I2 (г).

Пусть к моменту достижения нового состояния равновесия t 2 разложилось x моль HI и, следовательно, образовалось дополнительно по 0,5x моль H2 и I2. Новые равновесные концентрации участников реакции: [H2] = (1 + 0,5x) моль/л; [I2] = (1 + 0,5x) моль/л; [HI] = (2 - x) моль/л. Подставив числовые значения величин в выражение закона действующих масс, получим уравнение

Откуда x = 0,667. Следовательно, [H2] = 1,333 моль/л; [I2] = 1,333 моль/л; [HI] = 1,333 моль/л.

Скорость реакции и равновесие

Пусть есть обратимая реакция A + B C + D. Если предположить, что прямая и обратная реакция проходят в одну стадию, то скорости этих реакций будут прямо пропорциональны концентрациям реагентов: скорость прямой реакции v1 = k1 [A] [B], скорость обратной реакции v2 = k2 [C] [D] (квадратными скобками обозначены молярные концентрации реагентов). Видно, что по мере протекания прямой реакции концентрации исходных веществ А и В снижаются, соответственно, уменьшается и скорость прямой реакции. Скорость же обратной реакции, которая в начальный момент равна нулю (нет продуктов C и D), постепенно увеличивается. Рано или поздно наступит момент, когда скорости прямой и обратной реакций сравняются. После этого концентрации всех веществ - А, В, С и D не изменяются со временем. Это значит, что реакция достигла положения равновесия, а не изменяющиеся со временем концентрации веществ называются равновесными. Но, в отличие от механического равновесия, при котором всякое движение прекращается, при химическом равновесии обе реакции - и прямая, и обратная - продолжают идти, однако их скорости равны и поэтому кажется, что никаких изменений в системе не происходит. Доказать протекание прямой и обратной реакций после достижения равновесия можно множеством способов. Например, если в смесь водорода, азота и аммиака, находящуюся в положении равновесия, ввести немного изотопа водорода - дейтерия D2, то чувствительный анализ сразу обнаружит присутствие атомов дейтерия в молекулах аммиака. И наоборот, если ввести в систему немного дейтерированного аммиака NH2D, то дейтерий тут же появится в исходных веществах в виде молекул HD и D2. Другой эффектный опыт был проведен на химическом факультете МГУ. Серебряную пластинку поместили в раствор нитрата серебра, при этом никаких изменений не наблюдалось. Затем в раствор ввели ничтожное количество ионов радиоактивного серебра, после чего серебряная пластинка стала радиоактивной. Эту радиоактивность не могло "смыть" ни споласкивание пластинки водой, ни промывание ее соляной кислотой. Только травление азотной кислотой или механическая обработка поверхности мелкой наждачной бумагой сделало ее неактивной. Объяснить этот эксперимент можно единственным образом: между металлом и раствором непрерывно происходит обмен атомами серебра, т.е. в системе идет обратимая реакция Ag (тв) - е - = Ag+. Поэтому добавление радиоактивных ионов Ag+ к раствору приводило к их "внедрению" в пластинку в виде электронейтральных, но по-прежнему радиоактивных атомов. Таким образом, равновесными бывают не только химические реакции между газами или растворами, но и процессы растворения металлов, осадков. Например, твердое вещество быстрее всего растворяется, если его поместить в чистый растворитель, когда система далека от равновесия, в данном случае - от насыщенного раствора. Постепенно скорость растворения снижается, и одновременно увеличивается скорость обратного процесса - перехода вещества из раствора в кристаллический осадок. Когда раствор становится насыщенным, система достигает состояния равновесия, при этом скорости растворения и кристаллизации равны, а масса осадка со временем не меняется. Как система может "противодействовать" изменению внешних условий? Если, например, температуру равновесной смеси повышают нагреванием, сама система, конечно, не может "ослабить" внешний нагрев, однако равновесие в ней смещается таким образом, что для нагревания реакционной системы до определенной температуры требуется уже большее количество теплоты, чем в том случае, если бы равновесие не смещалось. При этом равновесие смещается так, чтобы теплота поглощалась, т.е. в сторону эндотермической реакции. Это и можно трактовать, как "стремление системы ослабить внешнее воздействие". С другой стороны, если в левой и правой частях уравнения имеется неодинаковое число газообразных молекул, то равновесие в такой системе можно сместить и путем изменения давления. При повышении давления равновесие смещается в ту сторону, где число газообразных молекул меньше (и таким способом как бы "противодействует" внешнему давлению). Если же число газообразных молекул в ходе реакции не меняется

(H2 + Br2 (г) 2HBr, СО + Н2О (г) СО2 + Н2),

то давление не влияет на положение равновесия. Следует отметить, что при изменении температуры изменяется и константа равновесия реакции, тогда как при изменении только давления она остается постоянной.

Несколько примеров использования принципа Ле Шателье для предсказания смещения химического равновесия. Реакция 2SO2 + O2 2SO3 (г) экзотермична. Если повысить температуру, преимущество получит эндотермическая реакция разложения SО3 и равновесие сместится влево. Если же понизить температуру, равновесие сместится вправо. Так, смесь SО2 и О2, взятых в стехиометрическом соотношении 2: 1 (, при температуре 400° С и атмосферном давлении превращается в SО3 с выходом около 95%, т.е. состояние равновесия в этих условиях почти полностью смещено в сторону SО3. При 600° С равновесная смесь содержит уже 76% SО3, а при 800° С - только 25%. Именно поэтому при сжигании серы на воздухе образуется в основном SО2 и лишь около 4% SО3. Из уравнения реакции следует также, что повышение общего давления в системе будет сдвигать равновесие вправо, а при понижении давления равновесие будет смещаться влево.

Реакцию отщепления водорода от циклогексана с образованием бензола

С6Н12 С6Н6 + 3Н2

проводят газовой фазе, также в присутствии катализатора. Реакция эта идет с затратой энергии (эндотермическая), но с увеличением числа молекул. Поэтому влияние температуры и давления на нее будет прямо противоположным тому, которое наблюдается в случае синтеза аммиака. А именно: увеличению равновесной концентрации бензола в смеси способствует повышение температуры и понижение давления, поэтому реакцию проводят в промышленности при невысоких давлениях (2-3 атм) и высоких температурах (450-500° С). Здесь повышение температуры "дважды благоприятно": оно не только увеличивает скорость реакции, но и способствует сдвигу равновесия в сторону образования целевого продукта. Конечно, еще большее снижение давления (например, до 0,1 атм) вызвало бы дальнейшее смещение равновесия вправо, однако при этом в реакторе будет находиться слишком мало вещества, уменьшится и скорость реакции, так что общая производительность не повысится, а понизится. Этот пример еще раз показывает, что экономически обоснованный промышленный синтез - это удачное лавирование между "Сциллой и Харибдой".

Принцип Ле Шателье "работает" и в так называемом галогенном цикле, который используют для получения титана, никеля, гафния, ванадия, ниобия, тантала и других металлов высокой чистоты. Реакция металла с галогеном, например, Ti + 2I2 TiI4 идет с выделением теплоты и потому при повышение температуры равновесие смещается влево. Так, при 600° С титан легко образует летучий иодид (равновесие смещено вправо), а при 110° С иодид распадается (равновесие смещено влево) с выделением очень чистого металла. Такой цикл работает и в галогенных лампах, где испарившийся со спирали и осевший на более холодных стенках вольфрам образует с галогенами летучие соединения, которые на раскаленной спирали вновь распадаются, и вольфрам оказывается перенесенным на прежнее место.

Кроме изменения температуры и давления существует еще один действенный способ влиять на положение равновесия. Представим, что из равновесной смеси

А + В C + D

выводится какое-либо вещество. В соответствии с принципом Ле Шателье, система тут же "отзовется" на такое воздействие: равновесие начнет смещаться так, чтобы скомпенсировать потерю данного вещества. Например, если из зоны реакции выводить вещество С или D (или оба сразу), равновесие будет смещаться вправо, а если выводить вещества А или В - влево. Введение какого-либо вещества в систему также будет смещать равновесие, но уже в другую сторону.

Удалять вещества из зоны реакции можно разными способами. Например, если в плотно закрытом сосуде с водой есть сернистый газ, установится равновесие между газообразным, растворенным и прореагировавшим диоксидом серы:

О2 (г) SО2 (р) + Н2О H2SO3.

Если сосуд открыть, сернистый газ постепенно начнет улетучиваться и больше не сможет участвовать в процессе - равновесие начнет смещаться влево, вплоть до полного разложения сернистой кислоты. Аналогичный процесс можно наблюдать каждый раз при открывании бутылки с лимонадом или минеральной водой: равновесие СО2 (г) СО2 (р) + Н2О Н2СО3 по мере улетучивания СО2 смещается влево.

Вывод реагента из системы возможен не только при образовании газообразных веществ, но и путем связывания того или иного реагента с образованием нерастворимого соединения, выпадающего в осадок. Например, если в водный раствор СО2 ввести избыток соли кальция, то ионы Са2+ будут образовывать осадок СаСО3, реагируя с угольной кислотой; равновесие СО2 (р) + Н2О Н2СО3 будет смещаться вправо, пока в воде не останется растворенного газа.

Равновесие можно сместить и добавлением реагента. Так, при сливании разбавленных растворов FeCl3 и KSCN появляется красновато-оранжевая окраска в результате образования тиоцианата (роданида) железа:

FeCl3 + 3KSCN Fe (SCN) 3 + 3KCl.

Если в раствор внести дополнительно FeCl3 или KSCN, окраска раствора усилится, что свидетельствует о смещении равновесия вправо (как бы ослабляя внешнее воздействие). Если же добавить к раствору избыток KCl, то равновесие сместится влево с ослаблением окраски до светло-желтой. В формулировке принципа Ле Шателье недаром указывается, что предсказывать результаты внешнего воздействия можно только для систем, находящихся в состоянии равновесия. Если этим указанием пренебречь, легко прийти к совершенно неверным выводам. Например, известно, что твердые щелочи (KOH, NaOH) растворяются в воде с выделением большого количества теплоты - раствор разогревается почти так же сильно, как и при смешении с водой концентрированной серной кислоты. Если забыть, что принцип применим только к равновесным системам, можно сделать неверный вывод о том, что при повышении температуры растворимость КОН в воде должна снижаться, так как именно такое смещение равновесия между осадком и насыщенным раствором приводит к "ослаблению внешнего воздействия". Однако процесс растворения КОН в воде - вовсе не равновесный, поскольку в нем участвует безводная щелочь, тогда как осадок, находящийся в равновесии с насыщенным раствором, представляет собой гидраты КОН (в основном KOH·2H2O). Переход же этого гидрата из осадка в раствор является эндотермическим процессом, т.е. сопровождается не нагреванием, а охлаждением раствора, так что принцип Ле Шателье для равновесного процесса выполняется и в этом случае. Точно так же при растворении безводных солей - CaCl2, CuSO4 и др. в воде раствор нагревается, а при растворении кристаллогидратов CuSO4·5H2O, CaCl2·6H2O - охлаждается. В учебниках и популярной литературе можно найти еще один интересный и поучительный пример ошибочного использования принципа Ле Шателье. Если в прозрачный газовый шприц поместить равновесную смесь бурого диоксида азота NO2 и бесцветного тетраоксида N2O4, а потом с помощью поршня быстро сжать газ, то интенсивность окраски сразу же усилится, а через некоторое время (десятки секунд) вновь ослабится, хотя и не достигнет первоначальной. Этот опыт обычно объясняют так. Быстрое сжатие смеси приводит к увеличению давления и, следовательно, концентрации обоих компонентов, поэтому смесь становится более темной. Но повышение давления, в соответствии с принципом Ле Шателье, сдвигает равновесие в системе 2NO2 N2O4 в сторону бесцветного N2O4 (уменьшается число молекул), поэтому смесь постепенно светлеет, приближаясь к новому положению равновесия, которое соответствует повышенному давлению. Ошибочность такого объяснения следует из того, что обе реакции - диссоциация N2O4 и димеризация NO2 - происходят чрезвычайно быстро, так что равновесие в любом случае устанавливается за миллионные доли секунды, поэтому невозможно вдвинуть поршень настолько быстро, чтобы нарушить равновесие. Объясняется этот опыт иначе: сжатие газа вызывает значительно повышение температуры (с этим явлением знаком каждый, кому приходилось накачивать шину велосипедным насосом). И в соответствии с тем же принципом Ле Шателье, равновесие мгновенно сдвигается в сторону эндотермической реакции, идущей с поглощением теплоты, т.е. в сторону диссоциации N2O4 - смесь темнеет. Затем газы в шприце медленно остывают до комнатной температуры, и равновесие снова сдвигается в сторону тетраоксида - смесь светлеет.

Заключение

Принцип Ле Шателье прекрасно действует и в тех случаях, которые не имеют никакого отношения к химии. В нормально действующей экономике общая сумма находящихся в обращении денег находится в равновесии с теми товарами, которые можно на эти деньги купить. Что будет, если "внешним воздействием" окажется желание правительства напечатать денег побольше, чтобы рассчитаться с долгами? В строгом соответствии с принципом Ле Шателье, равновесие между товаром и деньгами будет смещаться таким образом, чтобы ослабить удовольствие граждан от обладания большим количеством денег. А именно, цены на товары и услуги вырастут, и таким путем будет достигнуто новое равновесие. Другой пример.

В одном из городов США было решено избавиться от постоянных пробок путем расширения магистралей и строительства транспортных развязок.

На некоторое время это помогло, но затем обрадованные жители начали покупать больше автомобилей, так что вскоре пробки возникли вновь, - но при новом "положении равновесия" между дорогами и бульшим числом автомобилей.

Итак, сделаем основные выводы способов смещения химического равновесия.

Принцип Ле-Шателье. Если на систему, находящуюся в равновесии, производится внешнее воздействие (изменяются концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет это воздействие

V1

A + Б

В

V2

1. Давление. Увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т.е. к образованию меньшего числа молекул).

V1

A + Б

В

; увеличение P приводит к V1 > V2

V2

2

1

2. Увеличение температуры смещает положение равновесия в сторону эндотермической реакции (т.е. в сторону реакции, протекающей с поглощением теплоты)

V1

A + Б

В + Q, то увеличение Ct приводит к V2 > V1

V2

V1

A + Б

В - Q, то увеличение Ct приводит к V1 > V2

V2

3. Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции. Увеличение концентраций исходных веществ [A] или [Б] или [А] и [Б]: V1 > V2.

4. Катализаторы не влияют на положение равновесия.

Список используемой литературы

1. Шелинский, Г.И. Основы теории химических процессов М.: Просвещение, 1989

2. Карпенков С.Х. Концепции современного естествознания Москва "Высшая школа" 2007

3. http://elementy.ru/

4. http://exsolver. narod.ru/Books/Econom/History1/c33.html

Размещено на Allbest.ru


Подобные документы

  • Характеристика химического равновесия в растворах и гомогенных системах. Анализ зависимости константы равновесия от температуры и природы реагирующих веществ. Описания процесса синтеза аммиака. Фазовая диаграмма воды. Исследование принципа Ле Шателье.

    презентация [4,2 M], добавлен 23.11.2014

  • Гомогенные и гетерогенные реакции: мрамора с соляной кислотой. Факторы, влияющие на скорость химических реакций. Закон действующих масс. Правило Вант-Гоффа. Катализатор нейтрализации выхлопных газов автомобиля. Три признака химического равновесия.

    презентация [304,0 K], добавлен 27.04.2013

  • Зависимость химической реакции от концентрации реагирующих веществ при постоянной температуре. Скорость химических реакций в гетерогенных системах. Влияние концентрации исходных веществ и продуктов реакции на химическое равновесие в гомогенной системе.

    контрольная работа [43,3 K], добавлен 04.04.2009

  • Изменение энтропии в химических и фазовых переходах. Простые и сложные вещества. Скорость химической реакции. Смещение химического равновесия, принцип Ле Шателье. Модель атома Томсона. Классификация элементарных частиц. Двойственная природа электрона.

    шпаргалка [364,1 K], добавлен 12.01.2012

  • Факторы, влияющие на скорость реакции: концентрация реагирующих веществ или давление, природа реагирующих веществ, температура процесса и наличие катализатора. Пример гомогенных и гетерогенных реакций. Принцип Ле Шателье. Распределение молекул по энергии.

    лекция [144,0 K], добавлен 22.04.2013

  • Гомогенная и гетерогенная реакции. Факторы, влияющие на химическое равновесие. Применение принципа Ле-Шателье на примере обратимой химической реакции. Молярная концентрация эквивалента, ее определение. Математическое выражение второго закона Рауля.

    контрольная работа [420,4 K], добавлен 26.07.2012

  • Скорость и стадии гетерогенной реакции. Принцип действия ферментов. Химическое равновесие, обратимость химических реакций. Растворы и их природа. Электролитическая диссоциация. Возникновение электродного потенциала. Гальванические элементы и электролиз.

    методичка [1,8 M], добавлен 26.12.2012

  • Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции. Влияние внешних условий на химическое равновесие. Влияние давления, концентрации и температуры на положение равновесия. Типы химических связей.

    реферат [127,3 K], добавлен 13.01.2011

  • Понятие и виды сложных реакций. Обратимые реакции различных порядков. Простейший случай двух параллельных необратимых реакций первого порядка. Механизм и стадии последовательных реакций. Особенности и скорость протекания цепных и сопряженных реакций.

    лекция [143,1 K], добавлен 28.02.2009

  • Понятие и расчет скорости химических реакций, ее научное и практическое значение и применение. Формулировка закона действующих масс. Факторы, влияющие на скорость химических реакций. Примеры реакций, протекающих в гомогенных и гетерогенных системах.

    презентация [1,6 M], добавлен 30.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.