Химические элементы главной подгруппы III группы
Характеристика химических, биологических свойств и областей применения химических элементов подгруппы бора – тринадцатой группы элементов Периодической системы Д.И. Менделеева, в которую входят бор, а также металлы: алюминий, галлий, индий и таллий.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 08.04.2011 |
Размер файла | 43,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
Подгруппа бора -- главная подгруппа III группы. По новой классификации ИЮПАК: 13 группа элементов Периодической системы химических элементов Д. И. Менделеева, в которую входят бор B, алюминий Al, галлий Ga, индий In и таллий Tl. Все элементы данной подгруппы, за исключением бора, металлы.
1. ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕМЕНТОВ III ГРУППЫ, ГЛАВНОЙ ПОДГРУППЫ
химический бор талий алюминий
К III группе относятся бор, алюминий, галлий, индии, таллий (главная подгруппа), а также скандий, иттрий, лантан и лантаноиды, актиний и актиноиды (побочная подгруппа).
На внешнем электронном уровне элементов главной подгруппы имеется по три электрона (s2р1). Они легко отдают эти электроны или образуют три неспаренных электрона за счет перехода одного электрона на р-уровень. Для бора и алюминия характерны соединения только со степенью окисления +3. У элементов подгруппы галлия (галлий, индий, таллий) на внешнем электронном уровне также находится по три электрона, образуя конфигурацию s2р1, но они расположены после 18-электронного слоя. Поэтому в отличие от алюминия галлий обладает явно неметаллическими свойствами. Эти свойства в ряду Gа, In, Тl ослабевают, а металлические свойства усиливаются.
Электронное строение валентного слоя актиноидов во многом напоминает электронное строение валентного слоя лантаноидов. Все лантаноиды и актиноиды -- типичные металлы.
Все элементы III группы обладают очень сильным сродством к кислороду, и образование их оксидов сопровождается выделением большого количества теплоты.
Элементы III группы находят самое разнообразное применение.
Бор был открыт Ж. Гей-Люссаком и Л. Тенаром в 1808 г. Содержание его в земной коре составляет 1,2·10-3 %.
Соединения бора с металлами (б о р и д ы ) обладают высокой твердостью и термостойкостью. Поэтому их используют для получения сверхтвердых и жаропрочных специальных сплавов. Большой термостойкостью обладают карбид и нитрид бора. Последний применяют в качестве высокотемпературной смазки. Кристаллогидрат тетрабората натрия Nа2В4O7·10Н2О (бура) имеет постоянный состав, его растворы применяют в аналитической химии для установления концентрации растворов кислот.
Содержание галлия в земной коре составляет 1,9·10-3 %. Он был предсказан Д. И. Менделеевым (экаалюминий) и открыт французским химиком Р. Э. Лекок де Буабодраном в 1875 г. Свойства галлия почти полностью совпали со свойствами экаалюминия, предсказанными Д, И. Менделеевым на основе периодического закона.
Соединения галлия с элементами VI группы (серой, селеном, теллуром) являются полупроводниками. Жидким галлием наполняют высокотемпературные термометры.
Индий был открыт Т. Рихтером и Ф. Райхом в 1863 г. Содержание его в земной коре составляет 2,5·10-5 %. Добавка индия к сплавам меди увеличивает устойчивость последних к действию морской воды. Присадка этого металла к серебру увеличивает блеск серебра и препятствует его тускнению на воздухе. Индиевые покрытия предохраняют металлы от коррозии. Он входит в состав некоторых сплавов, применяющихся в стоматологии, а также некоторых легкоплавких сплавов (сплав индия, висмута, свинца, олова и кадмия плавится при 47 °С). Соединения индия с различными неметаллами обладают полупроводниковыми свойствами.
Таллий был открыт У. Круксом в 1861 г. Содержание его в земной коре составляет 10-4 %. Сплав таллия (10 %) с оловом (20 %) и свинцом (70 %) обладает очень высокой кислотоупорностью, он выдерживает действие смеси серной, соляной и азотной кислот. Таллий повышает чувствительность фотоэлементов к инфракрасному излучению, исходящему от нагретых предметов. Соединения таллия весьма ядовиты и вызывают выпадение волос.
Галлий, индий и таллий относятся к рассеянным элементам. Содержание их в рудах, как правило, не превышает тысячных долей процент [3].
2. ХИМИЧЕСКИЕ СВОЙСТВА БОРА. ПРИМЕНЕНИЕ
Твердый, хрупкий, блестяще-чёрный полуметалл.
Химически бор при обычных условиях довольно инертен взаимодействует активно лишь с фтором, причем кристаллический Бор менее активен, чем аморфный.
С повышением температуры активность бора возрастает и он соединяется с кислородом, серой, галогенами. При нагревании на воздухе до 700°С Бор горит красноватым пламенем, образуя борный ангидрид B2O3 - бесцветную стекловидную массу.
При нагревании выше 900 °С бор с азотом образует нитрид бора BN, при нагревании с углем -карбид бора B4C3, с металлами - бориды.
С водородом бор заметно не реагирует; его гидриды (бороводороды) получают косвенным путем. При температуре красного каления бор взаимодействует с водяным паром:
2B + 3Н2О = B2O3 + 3H2.
Бор реагирует только с горячей азотной, серной кислотой и в царской водкой, с образованием борной кислоты H3BO3.
Медленно растворяется в концентрированных растворах щелочей с образованием боратов.
При сильном нагревании бор проявляет восстановительные свойства. Он способен, например, восстановить кремний или фосфор из их оксидов:
Данное свойство бора можно объяснить очень высокой прочностью химических связей в оксиде бора B2O3.
Применение.
Элементарный бор
Бор (в виде волокон) служит упрочняющим веществом многих композиционных материалов.
Также бор часто используют в электронике для изменения типа проводимости кремния.
Бор применяется в металлургии в качестве микролегирующего элемента, значительно повышающего прокаливаемость сталей.
Соединения бора.
Карбид бора применяется в компактном виде для изготовления газодинамических подшипников.
Пербораты / пероксобораты (содержат ион [B2(O2)2(OH)4]2-) Технический продукт содержит до 10,4% «активного кислорода», на их основе производят отбеливатели, «не содержащие хлор» («персиль», «персоль» и др.).
Отдельно также стоит указать на то что сплавы бор-углерод-кремний обладают сверхвысокой твёрдостью и способны заменить любой шлифовальный материал (кроме нитрида углерода, алмаза, нитрида бора по микротвёрдости), а по стоимости и эффективности шлифования (экономической) превосходят все известные человечеству абразивные материалы.
Сплав бора с магнием (диборид магния MgB2) обладает, на данный момент, рекордно высокой критической температурой перехода в сверхпроводящее состояние среди сверхпроводников первого рода. Появление вышеуказанной статьи стимулировало большой рост работ по этой тематике.
Борная кислота (H3BO3) широко применяется в атомной энергетике в качестве поглотителя нейтронов в ядерных реакторах типа ВВЭР (PWR) на «тепловых» («медленных») нейтронах. Благодаря своим нейтронно-физическим характеристикам и возможности растворяться в воде, применение борной кислоты делает возможным плавное (не ступенчатое) регулирование мощности ядерного реактора путем изменения ее концентрации в теплоносителе - так называемое «борное регулирование».
Бороводороды и борорганические соединения
Ряд органических производных бора (бороводороды) являются чрезвычайно эффективными ракетными топливами (диборан(B2H4), пентаборан, тетраборан и др.), а некоторые полимерные соединения с водородом и углеродом являются чрезвычайно стойкими к химическим воздействиям и высоким температурам, например широко известный пластик Карборан-22.
Биологическая роль
Бор -- важный микроэлемент, необходимый для нормальной жизнедеятельности растений. Недостаток бора останавливает их развитие, вызывает у культурных растений различные болезни. В основе этого лежат нарушения окислительных и энергетических процессов в тканях, снижение биосинтеза необходимых веществ. При дефиците бора в почве в сельском хозяйстве применяют борные микроудобрения (борная кислота, бура и другие), повышающие урожай, улучшающие качество продукции и предотвращающие ряд заболеваний растений.
Роль бора в животном организме не выяснена. В мышечной ткани человека содержится (0,33--1)*10 - 4% бора, в костной ткани (1,1--3,3)*10 - 4%, в крови-- 0,13мг/л. Ежедневно с пищей человек получает 1--3 мг бора. Токсичная доза-- 4г.
Один из редких типов дистрофии роговицы связан с геном, кодирующим белок-транспортер, предположительно регулирующий внутриклеточную концентрацию бора [2].
3. ХИМИЧЕСКИЕ СВОЙСТВА АЛЮМИНИЯ. ПРИМЕНЕНИЕ
Легкий, мягкий, быстро окисляющийся металл серебристо-белого цвета
Алюминий -- очень активный металл. В ряду напряжений он стоит после щелочных и щелочноземельных металлов. Однако на воздухе он довольно устойчив, так как его поверхность покрывается очень плотной пленкой оксида, предохраняющей металл от контакта с воздухом. Если с алюминиевой проволоки снять защитную оксидную пленку, то алюминий начнет энергично взаимодействовать с кислородом и водяными парами воздуха, превращаясь в рыхлую массу -- гидроксид алюминия:
4 Аl + 3 O2 + 6 Н2О = 4 Аl(ОН)3
Эта реакция сопровождается выделением теплоты.
Очищенный от защитной оксидной пленки алюминий взаимодействует с водой с выделением водорода:
2 Аl + 6 Н2О = 2 Аl(ОН)3 + 3 Н2
Алюминий хорошо растворяется в разбавленных серной и соляной кислотах:
2 Аl + 6 НСl = 2 AlСl3 + 3 Н2
2 Аl + 3 Н2SO4 = Аl2(SO4)3 +3 Н2
Разбавленная азотная кислота на холоду пассивирует алюминий, но при нагревании алюминий растворяется в ней с выделением монооксида азота, гемиоксида азота, свободного азота или аммиака, например:
8 Аl + 30 НNО3 = 8 Аl(NО3)3 + 3 N2О + 15 Н2О
Концентрированная азотная кислота пассивирует алюминий.
Так как оксид и гидроксид алюминия обладают амфотерными свойствами, алюминий легко растворяется в водных растворах всех щелочей, кроме гидроксида аммония:
2 Аl + 6 КОН + 6 Н2О = 2 К3[Аl(ОН)6] + 3 Н2
Порошкообразный алюминий легко взаимодействует с галогенами, кислородом и всеми неметаллами. Для начала реакций необходимо нагревание, затем они протекают очень интенсивно и сопровождаются выделением большого количества теплоты:
2 Аl + 3 Вr2 = 2 АlВr3 (бромид алюминия)
4 Аl + 3 O2 = 2 Аl2O3 (оксид алюминия)
2 Аl + 3 S = Аl2S3 (сульфид алюминия)
2 Аl + N2 = 2 АlN (нитрид алюминия)
4 Аl + 3 С = Аl4С3 (карбид алюминия)
Сульфид алюминия может существовать только в твердом виде. В водных растворах он подвергается полному гидролизу с образованием гидроксида алюминия и сероводорода:
Аl2S3 + 6 Н2О = 2 Аl(ОН)3 + 3 Н2S
Алюминий легко отнимает кислород и галогены у оксидов и солей других металлов. Реакция сопровождается выделением большого количества теплоты:
8 Al + 3 Fе3О4 = 9 Fе + 4 Аl2O3
Процесс восстановления металлов из их оксидов алюминием называется алюмотермией. Алюмотермией пользуются при получении некоторых редких металлов, которые образуют прочную связь с кислородом (ниобий, тантал, молибден, вольфрам и др.), а также для сваривания рельсов. Если с помощью специального запала поджечь смесь мелкого порошка алюминия и магнитного железняка Fе3О4 (термит), то реакция протекает самопроизвольно с разогреванием смеси до 3500 °С. Железо при такой температуре находится в расплавленном состоянии.
Применение.
Гидроксид алюминия обладает свойствами поглощать различные вещества, поэтому его применяют при очистке воды.
Сравнительно высокие прочностные характеристики, хорошую тепло- и электропровод-ность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов.
Применяется в авиации, судостроение, машиностроение, нефте- газовой промышленности, строительстве.
Является одним из самых распространенных металлов [1].
4. ХИМИЧЕСКИЕ СВОЙСТВА ГАЛЛИЯ. ПРИМЕНЕНИЕ
По химическим свойствам галлий сходен с алюминием. На воздухе Ga покрывается оксидной пленкой, предохраняющей от дальнейшего окисления.
С мышьяком, фосфором, сурьмой образует арсенид, фосфид и антимонид галлия, с серой, селеном, теллуром -- халькогениды.
При нагревании Ga реагирует с кислородом.
С хлором и бромом галлий взаимодействует при комнатной температуре, с йодом -- при нагревании. Галогениды галлия образуют димеры Ge2X6.
Галлий образует полимерные гидриды:
4LiH + GaCl3 = Li[GaH4] + 3LiCl.
Устойчивость ионов падает в ряду BH4- > AlH4- > GaH4-. Ион BH4- устойчив в водном растворе, AlH4- и GaH4- быстро гидролизуются:
GaH4- + 4H2O = Ga(OH)3 + OH- + 4H2-.
При нагревании под давлением галлий реагирует с водой:
2Ga + 4H2O = 2GaOOH + 3H2-.
С минеральными кислотами Ga медленно реагирует с выделением водорода:
2Ga + 6HCl = 2GaCl3 + 3H2^.
Галлий растворяется в щелочах с образованием гидроксогаллатов:
2Ga + 6H2O + 2NaOH = 2Na[Ga(OH)4] + 3H2^.
Оксид и гидроксид галлия проявляют амфотерные свойства, хотя основные свойства у них по сравнению с алюминием усилены:
Ga2O3 + 6HCl = 2GaCl2;
Ga2O3 + 2NaOH + 3H2O = 2Na[Ge(OH)4];
Ga2O3 + Na2CO3 = 2NaGaO2 + CO2.
При подщелачивании раствора какой-либо соли галлия выделяется гидроксид галлия переменного состава Ge2O3·xH2O:
Ga(NO3)2 + 3NaOH = Ga(OH)3 + 3NaNO3.
При растворении Ga(OH)3 и Ga2O3 в кислотах образуются аквакомплексы [Ga(H2O)6]3+, поэтому из водных растворов соли галлия выделяются в виде кристаллогидратов, например, хлорид галлия GaCl3·6H2O, галлийкалиевые квасцы KGa(SO4)2·12H2O. Аквакомплексы галлия в растворах бесцветны.
Применение
Нитрид галлия используется в создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона. Нитрид галлия обладает превосходными химическими и механическими свойствами, типичными для всех нитридных соединений.
Нитрид галлия используется в создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона. Нитрид галлия обладает превосходными химическими и механическими свойствами, типичными для всех нитридных соединений.
Жидкий галлий отражает 88% падающего на него света, твердый - немногим меньше. Поэтому делают очень простые в изготовлении галлиевые зеркала - галлиевое покрытие можно наносить даже кистью.
Предпринимались попытки применить галлий в атомных реакторах, но вряд ли результаты этих попыток можно считать успешными. Мало того, что галлий довольно активно захватывает нейтроны (сечение захвата 2,71 барна), он еще реагирует при повышенных температурах с большинством металлов.
Галлий -- превосходный смазочный материал. На основе галлия и никеля, галлия и скандия созданы практически очень важные металлические клеи [2].
5. ХИМИЧЕСКИЕ СВОЙСТВА ИНДИЯ. ПРИМЕНЕНИЕ
В соответствии с электронной конфигурацией атома 4d105s255p1 индий в соединениях проявляет валентность 1, 2 и 3 (преимущественно).
На воздухе в твердом компактном состоянии индий стоек, но окисляется при высоких температурах, а выше 800 °C горит фиолетово-синим пламенем, давая оксид In2O3 - желтые кристаллы, хорошо растворимые в кислотах.
4 In + 3 O2= 2 In2O3
При нагревании индий легко соединяется с галогенами, образуя растворимые галогениды InCl3, InBr3, InI3. Нагреванием индия в токе HCl получают хлорид InCl2, а при пропускании паров InCl2 над нагретым In образуется InCl.
2 In+3 Cl 2= 2 InCl3
С серой индий образует сульфиды In2S3, InS; они дают соединения InS·In2S3 и 3InS·In2S3. В воде в присутствии окислителей индий медленно корродирует с поверхности:
4In + 3O2+6H2O = 4In(ОН)3.
В кислотах индий растворим, его нормальный электродный потенциал равен -0,34 в, в щелочах практически не растворяется.
In + 4HNO3 = In(NO3)3 + NO- + 2H2O
Слабоосновной оксид индия In2O3 в воде практически нерастворим, но легко растворяется в кислотах:
In2O3 + 6HCl = 2InCl3 + 3H2O
Соли индия легко гидролизуются; продукт гидролиза - основные соли или гидрооксид In(OH)3. Гидроксид индия получают, действуя раствором аммиака на соли индия. Основные свойства у In(OH)3 преобладают над кислотными.
InCl3 +3 NH4OH = In(OH)3 + 3NH4Cl
In(OH)3 - хорошо растворим в кислотах и плохо - в растворах щелочей, с образованием солей - индатов
In(ОН)3 + 3KOH = K3[In(OH)6].
Соединения индия низших степеней окисления довольно неустойчивы; галогениды InHal и черный оксид In2O - очень сильные восстановители [4].
Применение
Применяют для нанесения покрытий на поверхность зеркал, рефлекторов и подшипников. Индий -- легирующая добавка к полупроводниковым германию и кремнию.
Герметизирующий материал в вакуумных приборах и космических аппаратах, материал для соединения пьезоэлектрических кристаллов. Используется как компонент легкоплавких сплавов, применяемых в качестве припоев, в термоограничителях, предохранителях, сигнальных устройствах, в радиационных контурах ядерных реакторов[4].
6. ХИМИЧЕСКИЕ СВОЙСТВА ТАЛЛИЯ. ПРИМЕНЕНИЕ
Мягкий металл синевато-белого цвета
Конфигурация внешней электронной оболочки атома Tl 6s26р1; в соединениях имеет степень окисления +1 [Tl (I)] и +3 [Tl (III)].
Таллий взаимодействует с кислородом комнатной температуре. На воздухе покрывается оксидной пленкой.
4Tl + 3O2 = 2Tl2O3
Tl + O2 = Tl2O
Оксид таллия (I) получают обезвоживанием гидроксида таллия (I):
2TlOH=Tl2O+H2O.
Таллий реагирует при комнатной температуре с галогенами
Tl + 3Cl = TlCl3
При нагревании реагирует с фосфором, мышьяком, серой.
5Tl + 3P = Tl5P3
Хорошо растворяется в азотной, хуже в серной кислотах, не растворяется в галогенводородных, муравьиной, щавелевой и уксусной кислотах.
Tl + 2HNO3(разб.)= TlNO3 + NO2 + H2O
Не взаимодействует с растворами щелочей; свежеперегнанная вода, не содержащая кислорода, не действует на таллий.
Основные соединения с кислородом: оксид (I) Tl2О и оксид (III) Tl2О3. Оксид Таллия (I) и соли Tl (I) нитрат, сульфат, карбонат - растворимы
Треххлористый таллий, ТlСl3, получается при взаимодействии хлора с ТlСl - под водой, причем образуется раствор, из которого под колоколом воздушного насоса выделяются расплывчатые призмы состава ТlCl3 •Н2O. Если нагреть смесь спиртовых растворов ТlСl 3 и аммиака, то получается белый кристаллический осадок состава Tl(NH3)3Cl3, который водою разлагается на нашатырь и окись таллия фиолетового цвета:
2Tl(NH3)3Cl3 + 3H2O = Tl2O3 + 6NH4Cl.
Хромат, бихромат, галогениды (за исключением фторида), а также оксид Таллия (III) - малорастворимы в воде. Tl (III) образует большое число комплексных соединений с неорганических и органических лигандами. Галогениды Tl (III) хорошо растворимы в воде.
Наибольшее практическое значение имеют соединения Tl (I) [4].
Применение
В технике таллий применяется главным образом в виде соединений. Монокристаллы твердых растворов галогенидов TlBr - TlI и TlCl - TlBr (известные в технике как КРС-5 и КРС-6) используют для изготовления оптических деталей в приборах инфракрасной техники; кристаллы TlCl и TlCl-TlBr- в качестве радиаторов счетчиков Черенкова.
Tl2О входит в состав некоторых оптических стекол; сульфиды, оксисульфиды, селениды, теллуриды - компоненты полупроводниковых материалов, использующихся при изготовлении фотосопротивлений, полупроводниковых выпрямителей, видиконов.
ВЫВОД
С увеличением атомной массы усиливается металлический характер элементов. Бор -- неметалл, остальные элементы - типичные металлы.
Бор значительно отличается по свойствам от остальных элементов и больше похож на углерод и кремний. Остальные элементы -- легкоплавкие металлы, In и Тl -- чрезвычайно мягкие.
Все элементы группы трехвалентны, но с увеличением атомного номера более характерной становится валентность 1
Бор в природе не встречается, алюминий - наиболее распространенный металл, галлий - рассеянный элемент, больших скоплений не образует, индий - рассеянный, редкий элемент, таллий- рассеянный элемент.
Размещено на Allbest.ru
Подобные документы
Металлы. Методы получения металлов. Химические свойства металлов. Характеристика металлов главной подгруппы I группы. Характеристика элементов главной подгруппы II группы. Характеристика элементов главной подгруппы III группы. Алюминий. Переходные металлы
реферат [24,0 K], добавлен 18.05.2006Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.
презентация [1,8 M], добавлен 23.04.2014Общая характеристика р-элементов III группы, их основные физические и химические свойства. Описание самых распространенных элементов: бора, алюминия, подгруппы галлия. Их биологическая роль, применение и распространенность. Причины парникового эффекта.
дипломная работа [221,3 K], добавлен 08.08.2015Открытие периодического закона и разработка периодической системы химических элементов Д.И. Менделеевым. Поиск функциональных соответствий между индивидуальными свойствами элементов и их атомными весами. Периоды, группы, подгруппы Периодической системы.
реферат [44,5 K], добавлен 21.11.2009Общая характеристика элементов подгруппы меди. Основные химические реакции меди и ее соединений. Изучение свойств серебра и золота. Рассмотрение особенностей подгруппы цинка. Получение цинка из руд. Исследование химических свойств цинка и ртути.
презентация [565,3 K], добавлен 19.11.2015Кремний — элемент главной подгруппы четвертой группы третьего периода периодической системы химических элементов Д.И. Менделеева; распространение в природе. Разновидности минералов на основе оксида кремния. Области применения соединений кремния; стекло.
презентация [7,3 M], добавлен 16.05.2011Элемент главной подгруппы второй группы, четвертого периода периодической системы химических элементов Д. И. Менделеева. История и происхождение названия. Нахождение кальция в природе. Физические и химические свойства. Применение металлического кальция.
реферат [21,9 K], добавлен 01.12.2012История открытия химических элементов. Запасы и добыча разведанных месторождений индия и таллия. Физические и химические свойства элементов, их получение и применение. Опасность отравления таллием (солями), использование берлинской лазури как антидота.
презентация [109,0 K], добавлен 11.03.2014Молибден — элемент побочной подгруппы шестой группы пятого периода периодической системы химических элементов Д.И. Менделеева. Биологическая роль молибдена, его достоинства и недостатки. Нахождение молибдена в природе, содержание его в земной коре.
презентация [465,2 K], добавлен 11.03.2014Характеристика строения атома, аллотропии, способа получения, окислительных и восстановительных свойств серы. Исследование истории открытия химических элементов теллура, полония, селена, физических свойств и работы с ними, основных областей применения.
презентация [4,4 M], добавлен 27.11.2011