Химические волокна
Этапы в развитии химических волокон. Классификация химических волокон. Искусственные, синтетические и минеральные волокна. Процессы синтеза волокнообразующих мономеров, полимеров и технологии получения волокон из расплавов синтетических полимеров.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.03.2011 |
Размер файла | 24,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФГОУ ВПО Костромская ГСХА
КАФЕДРА НЕОРГАНИЧЕСКОЙ И БИОЛОГИЧЕСКОЙ ХИМИИ
КУРСОВАЯ РАБОТА
Химические волокна
Выполнила: Промыслова Анастасия Сергеевна
080502 «Экономика и управление на предприятии АПК»
Личный шифр 10203
Адрес: Костромская обл., Шарьинский р-он,
с. Н-Шанга, ул.Молодёжная, д.16, кв. 4
индекс 157512
Кострома, 2011г
Содержание
1. Введение
2. Историческая справка
3. Классификация химических волокон
3.1 Искусственные волокна
3.2 Синтетические волокна
3.3 Минеральные волокна
4. Формование волокон и их структура
5. Применение
6. Заключение
7. Список используемой литературы
1.Введение
Задача создания удобной одежды, защищающей человека от внешней среды, возникла уже на самых ранних стадиях развития человеческого общества. Можно выделить по крайней мере три этапа решения этой задачи, принципиально отличающихся характером сырья, применяемого для изготовления одежды. На первом этапе одежду изготовляли из шкур животных и материалов, получаемых из стеблей растений (прообраза современных тканей); на втором были использованы материалы из природных волокон (хлопок, шерсть, лен, натуральный шелк). Мы являемся современниками третьего этапа, когда в качестве сырья для получения тканей, трикотажа, нетканых текстильных материалов, а также для производства разнообразных изделий технического назначения (канаты, сети, приводные и привязные ремни, резинотехнические изделия, фильтровальные материалы и многое другое) во все возрастающих количествах наряду с природными волокнами, а очень часто и вместо них, используют химические волокна .
Химические волокна -- волокна, получаемые из органических природных и синтетических полимеров.
Важные преимущества химические волокна перед волокнами природными - широкая сырьевая база, высокая рентабельность производства и его независимость от климатических условий. Многие химические волокна обладают также лучшими механическими свойствами (прочностью, эластичностью, износостойкостью) и меньшей сминаемостью. Недостаток некоторых химические волокна, например полиакрилонитрильных, полиэфирных, - низкая гигроскопичность.
2. Историческая справка
Впервые мысль о том, что человеком может быть создан процесс, подобный процессу получения натурального шелка, при котором в организме гусеницы шелкопряда вырабатывается вязкая жидкость, затвердевающая на воздухе с образованием тонкой прочной нити, была высказана французским ученым Р. Реомюром еще в 1734 году http://ru. wikipedia.org/wiki
Производство первого в мире химического (искусственного) волокна было организовано во Франции в г. Безансоне в 1890 году и основано на переработке раствора эфира целлюлозы (нитрата целлюлозы), применяемого в промышленности при получении бездымного пороха и некоторых видов пластмасс.
Основные этапы в развитии химических волокон
На первом этапе -- с конца XIX века до 1940-50-х годов -- разрабатывались и совершенствовались процессы получения искусственных волокон на основе природных полимеров из их растворов мокрым методом формования. Развивалось производство вискозных волокон. Некоторое развитие получили процессы сухого формования ацетатных волокон. Однако доминирующую роль в изготовлении текстильных изделий играли природные волокна, химические рассматриваются только как дополнение к природным волокнам. Изделия из химических волокон изготавливались в весьма небольших количествах.
На втором этапе -- 1940-70-е годы -- развивались процессы синтеза волокнообразующих мономеров, полимеров и технологии получения волокон из расплавов синтетических полимеров. Одновременно сохранялось и совершенствовалось производство волокон мокрым методом формования. Производство химических волокон развивалось в промышленно развитых странах. В этот период созданы основные виды химических волокон, которые можно назвать «традиционными» или «классическими». Химические волокна рассматривались как дополняющие и только частично заменяющие природные волокна. Начинали развиваться процессы модифицирования волокон.
На третьем этапе -- 1970-90-е годы -- выпуск химических волокон существенно возрос. Широко развились методы их модифицирования для улучшения потребительских свойств. Химические волокна приобрели самостоятельное значение для самых различных видов изделий и областей применения. Кроме того, они широко используются в смесях с природными волокнами. В этот же период в промышленно развитых странах созданы «волокна третьего поколения» с принципиально новыми специфическими свойствами: сверхпрочные и сверхвысокомодульные, термостойкие и трудногорючие, хемостойкие, эластомерные и др.
На четвертом этапе -- с 1990-х годов по настоящее время -- идет современный этап развития производства химических волокон, появление новых способов модифицирования, создание новых видов многотоннажных волокон: «волокон будущего» или «волокон четвертого поколения». В их числе новые волокна на основе воспроизводимого растительного сырья (лиоцелл, полилактидные), новые мономеры и полимеры, получаемые путем биохимического синтеза и волокна на их основе. Проводятся исследования по применению новых принципов получения полимеров и волокон, основанных на методах генной инженерии и биомиметики.
3.Классификация химических волокон
химический волокно полимер синтез
А) Химические волокна в зависимости от исходного сырья подразделяются на три основные группы:
- искусственные волокна получают из природных органических полимеров (например, целлюлозы, казеина, протеинов) путем извлечения полимеров из природных веществ и химического воздействия на них;
- синтетические волокна вырабатываются из синтетических органических полимеров, полученных путем реакций синтеза (полимеризации и поликонденсации) из низкомолекулярных соединений (мономеров), сырьем для которых являются продукты переработки нефти и каменного угля;
- минеральные волокна - волокна, получаемые из неорганических соединений.
Б) По химическому составу волокна подразделяются на органические и неорганические волокна.
Органические волокна образуются из полимеров, имеющих в своем составе атомы углерода, непосредственно соединённых друг с другом, или включающие наряду с углеродом атомы других элементов.
Неорганические волокна образуются из неорганических соединений (соединения из химических элементов кроме соединений углерода).
3.1 Искусственные волокна
Искусственные волокна (нити) - это химические волокна (нити), получаемые химическим превращением природных органических полимеров (например, целлюлозы, казеина, протеинов или морских водорослей).
Многие путают искусственные и синтетические волокна. Синтетические волокна имеют химический состав, подобный которому не встретить среди природных материалов. Другое дело искусственные волокна. Искусственные волокна получают из полимеров, встречающихся в природе в готовом виде (целлюлоза, белки). Например, вискоза, это та же целлюлоза, что и в хлопке. Только вискозу прядут из древесных волокон. Чтобы получить из "дров" мягкие нити, необходимы разные химические процессы.
Следует, однако, подчеркнуть, что в общем объеме производства химических волокон доля искусственных волокон составляет сейчас менее 15%. Первой и основной причиной резкого снижения доли искусственных волокон в общем объеме производства химических волокон является необходимость использования в технологическом процессе получения основного искусственного волокна токсичного и взрывоопасного сероуглерода и возможность выделения этого вещества, а также сероводорода, в атмосферу, а высокотоксичных цинксодержащих соединений - в водные бассейны.
В то же время необходимо отметить, что из существующих видов химических волокон только искусственные, и прежде всего вискозные, благодаря их высокой гидрофильности и низкой электризуемости, обеспечивают возможность получения материалов с высокими гигиеническими характеристиками (ткани и трикотаж из вискозных нитей и пряжи и из смесей вискозных и синтетических полиамидных и полиэфирных волокон). Поэтому, несмотря на весьма динамичное развитие производства синтетических волокон, реальной альтернативы искусственным волокнам на основе целлюлозы нет. Вместе с тем совершенно очевидно, что дальнейшее развитие промышленности вискозных волокон может быть обеспечено только при условии успешного решения технологических и экологических проблем, что позволит снизить вредность этого производства.
3.2 Синтетические волокна
Синтетические волокна (нити) - формируют из полимеров, не существующих в природе, а полученных путем синтеза из природных низкомолекулярных соединений.
В качестве исходного сырья для получения синтетических волокон используют продукты переработки газа, нефти и каменного угля (бензол, фенол, этилен, ацетилен...). Вид полученного полимера зависит от вида исходных веществ. По названию исходных веществ дается и название полимеру. Синтетические полимеры получают путем реакций синтеза (полимеризации или поликонденсации) из низкомолекулярных соединений (мономеров). Синтетические волокна формуют либо из расплава или раствора полимера по сухому или мокрому методу.
Производство синтетических волокон развивается более быстрыми темпами, чем производство искусственных волокон. Это объясняется доступностью исходного сырья и разнообразием свойств исходных синтетических полимеров, что позволяет получать синтетические волокна с различными свойствами, в то время как возможности варьировать свойства искусственных волокон очень ограничены, поскольку их формуют практически из одного полимера (целлюлозы или её производных).
Очень важно и то, что свойства синтетического волокна и, получаемого из него, материала можно задавать наперед. Физико-механические и физико-химические свойства синтетических волокон можно изменять в процессах формования, вытягивания, отделки и тепловой обработки, а также путём модификации, как исходного сырья (полимера), так и самого волокна. Это позволяет создавать даже из одного исходного волокнообразующего полимера волокна химические, обладающие разными свойствами.
Именно поэтому, текстильные изделия нового поколения более адаптированы к потребностям человека, обладают многофункциональными и комфортными свойствами, комплиментарно поддерживают здоровье человека, позволяют существенно повысить безопасность среды его обитания. Как ни парадоксально, использование одежды на основе нового поколения "синтетики" позволяет повысить работоспособность организма в экстремальных условиях. В связи с этим синтетические волокна существенно потеснили натуральные и искусственные волокна в производстве некоторых видов изделий. Материалы из синтетических волокон очень активно используются для производства современной модной одежды, спецодежды, одежды для экстремальных условий и спорта.
Компании с мировыми именами целенаправленно занимаются разработкой новых синтетических материалов. В настоящее время существует несколько тысяч видов химических волокон, и число их увеличивается с каждым годом. Однако основную роль в производстве химических волокон в обозримом будущем составят уже известные выпускаемые химической промышленностью волокна с улучшенными свойствами. Современные синтетические материалы, значительно более прочны и долговечны, легки, меньше мнутся, быстрее сохнут. Они могут обладать свойством быстро впитывать и отводить конденсат от поверхности тела, предохранять тело от перенагревания или переохлаждения, химического воздействия, облучения и др.
К числу наиболее распространенных и известных видов относятся следующие синтетические волокна: полиуретановые, полиамидные, полиэфирные, полиакрилонитрильные, полиолефиновые, поливинилхлоридные, поливинилспиртовые.
3.3 Минеральные волокна
К минеральным химическим нитям относятся нити из неорганических соединений - стеклянные и металлические.
А) Стеклянное волокно (стекловолокно)
Стекловолокна изготовляют из расплавленного стекла в виде:
- непрерывного волокна - элементарные нити неограниченной длины диаметром 3--100мкм;
- штапельного волокна - отрезки длиной 1--50см и диаметром 0,1--20мкм.
Непрерывное стекловолокно формуют вытягиванием из расплавленной стекломассы через фильеры (число отверстий 200--2000) при помощи механических устройств, наматывая волокно на бобину. Диаметр волокна зависит от скорости вытягивания и диаметра фильеры. Технологический процесс может быть осуществлен в одну или в две стадии. В первом случае стекловолокно вытягивают из расплавленной стекломассы (непосредственно из стеклоплавильных печей), во втором используют предварительно полученные стеклянные шарики, штабики или эрклез (кусочки оплавленного стекла), которые плавят также в стеклоплавильных печах.
Штапельное стекловолокно формуют одностадийным методом путём разделения струи расплавленного стекла паром, воздухом или горячими газами и др. методами.
Свойства стекловолокон определяются главным образом их химическим составом и характеризуются редким сочетанием высокой теплостойкости (например, теплостойкость кварцевого, кремнезёмного, каолинового волокон -- выше 1000 °С), высоких диэлектрических свойств, низкой теплопроводности, малого коэффициента термического расширения, высокой химстойкости и механической прочности.
Стекловолокно в виде жгутов (ровингов), кручёных нитей, лент, тканей различного плетения, нетканых материалов широко применяют в современной технике в качестве армирующего (упрочняющего) материала для стеклопластиков и др. композиционных материалов, а также для получения фильтровальных материалов и электроизоляционных изделий в электротехнической промышленности.
Особенности горения: не горят
Б) Металлические нити
Золотые и серебряные нити только в древности вырабатывались из чистого драгоценного металла.
Позднее их стали изготавливать из сплавов с содержанием драгоценных металлов. Затем наладили производство позолоченных и посеребренных медных (мишурных) нитей.
Мишура представляет собой тонкую сплющенную медную посеребренную или позолоченную проволоку - плющенку, обвитую вокруг текстильной нити (хлопчатобумажной, шелковой или капроновой). Мишуру использовали при выработке парчи, галунов и прочих басонных изделий.
В настоящее время металлические нити изготавливают из меди, латуни, никеля. Нити из меди и латуни выпускают также с гальваническим покрытием из золота или серебра.
Металлические нити получают путем волочения (многократного последовательного протягивания толстой проволоки через калибровочные отверстия) или разрезанием фольги.
Нити, полученные путем волочения, имеют круглое поперечное сечение. Для получения плоской нити ее расплющивают.
В настоящее время металлические нити вырабатываются в очень ограниченных количествах, используются в основном для исторических костюмов, как отделочный и декоративный материал и т.п. Для вечерних тканей в основном используется алюнит или пластилекс.
Алюнит (люрекс) - плоские разрезные нити из алюминиевой фольги в виде ленточек шириной 1--2 мм, покрытые полиэфирной пленкой различных цветов (чаще под золото или серебро). Алюнит используют в тканях для декоративного эффекта. К недостаткам алюнита относят его малую прочность. Для увеличения прочности его можно скручиваться с тонкой синтетической ниткой. В настоящее время алюнит в ряде изделий заменяют пластилексом.
Пластилекс -- ленточки из полиэтиленовой пленки, на которые в вакууме нанесен распыленный металл. Такая пленка не только прочнее алюнита, но и обладает некоторой эластичностью.
Метанит - металлизированные нити прямоугольного сечения. Из них вырабатывают платьевые и декоративные ткани с мерцающим блеском.
4. Формование волокон и их структура
К волокнообразующим полимерам предъявляют следующие основные требования: молярная масса в пределах 15000-150000 (верхний предел лимитируется вязкостью растворов или расплавов, из которых может быть получено волокно, нижний - необходимыми механическими свойствами волокна); способность плавиться без разложения или растворяться в доступных, легко регенерируемых растворителях.
Химические волокна формуют из расплавов ( 50-500 Па*с) или растворов (конц. 5-30%, 3-80 Па*с), отфильтрованных от примесей и дегазированных. Расплав или раствор продавливают через отверстия фильеры (диаметр отверстий 50-500 мкм) в среду, в которой струйки полимера затвердевают, превращаясь в волокна.
При формовании из расплава затвердевание струек происходит вследствие их охлаждения воздухом ниже температуры плавления полимера. Этот способ используют в тех случаях, когда полимер плавится без заметного разложения, например в произ-ве волокон из полиолефинов. полиэфиров, алифатических полиамидов.
Формование из раствора применяют при получении химические волокна из полимеров, температура плавления которых лежит выше температуры их разложения или близка к ней. Волокно образуется в результате испарения летучего растворителя ("сухой" способ формования) или осаждения полимера в осадительной ванне ("мокрый" способ), иногда после прохождения струек раствора через воздушную прослойку ("сухо-мокрый" способ). Сухим способом формуют, например, ацетатные и полиакрилонитрильные волокна, мокрым - вискозные, полиакрилонитрильные, поливинилхлоридные и др., сухо-мокрым - волокна из термостойких полимеров, наиболее производителен (скорость 500-1500 м/мин, иногда до 7000 м/мин), прост и экологически безопасен способ формования из расплава, наименее производителен (скорость 5-100 м/мин) и наиболее сложен мокрый способ формования из раствора, требующий регенерации реагентов и очистки выбросов. Скорость формования по сухому способу 300-800 м/мин.
Сформованные химические волокна подвергают ориентационному вытягиванию в 3-10 раз и термообработке (релаксации) с целью повышения их прочности, а также уменьшения деформируемости и усадки в условиях эксплуатации. Оптимальная температура этих операций лежит вблизи температуры максимальной скорости кристаллизации полимера, их продолжительность определяется скоростями релаксационных процессов и кристаллизации.
Заключительные операции получения химические волокна или нитей включают их промывку, сушку, обработку замасливателями, антистатиками и другими текстильно-вспомогательными веществами. В число заключительных операций входит иногда и химическое модифицирование химические волокна, например: ацеталирование поливинилспиртовых волокон формальдегидом для придания им водостойкости; прививка на волокна (особенно из полимеров, макромолекулы которых содержат реакционноспособные боковые группы) различных мономеров с целью гидрофилизации химические волокна или, наоборот, их гидрофобизации и повышения устойчивости в агрессивных средах.
При получении химических волокон из нерастворимых полимеров (например, из ароматических полиимидов) для формования используют их растворимые аналоги, которые на завершающих стадиях процесса подвергают полимераналогичным превращениям (циклизации). К новым методам получения химические волокна относятся, например, фибриллирование (расщепление) одноосно ориентированных пленок, главным образом полиолефиновых, а также формование из дисперсий полимеров.
Большинство химических волокон имеет фибриллярную аморфно-кристаллическую структуру со степенью кристалличности 50-95% и углом среднемолекулярной разориентации 25-10°. В формировании механических, термических, сорбционных и других свойств волокон важную роль играет строение аморфных областей полимера (число "проходных" макромолекул, их ориентация, разнодлинность). Существенное значение имеет также микроструктура волокон (наличие пор, трещин, характер поверхности), от которой зависят их переработка и эксплуатационные свойства текстильных изделий.
5. Применение
Штапельные волокна и жгуты, перерабатываемые как в чистом виде, так и в смеси с другими химическими или природными волокнами, предназначены главным образом для выработки тканей, трикотажа, нетканых материалов. Жгутики, как правило, окрашенные и текстурированные, применяются в производстве ковровых изделий и искусственного меха. Из текстильных комплексных нитей вырабатывают преимущественно ткани, трикотаж, чулочно-носочные изделия. Технические комплексные нити используют в производстве изделий, эксплуатируемых при больших нагрузках (шины, РТИ, канаты и др.); мононити - в производстве рыболовных снастей, сеток, сит; фибриллированные нити - как основу ковров, тарных тканей и др. Волокна со специфическими свойствами служат армирующими наполнителями композитов, материалами для изготовления спецодежды, тепло- и электроизоляции, фильтров, изделий медицинского назначения и др.
6. Заключение
Из выше сказанного можно сделать вывод, что преимущество химических волокон над природными очень велико. Если затраты труда на изготовление синтетического полиамидного шелка принять за 100%, то для искусственного вискозного шелка они составят 60%, для шерсти 450%, а для натурального шелка еще больше 25000%!
Шерсть на овце за 3 месяца отрастает в среднем на 30 мм. А на заводе химического волокна прядильная машина за 1 минуту вытягивает до 5000 м нити.
Я думаю, что в скором времени искусственные и синтетические волокна, практически полностью вытеснят натуральные, природные волокна. Ведь население планеты постоянно растёт, соответственно растёт и спрос. А химические волокна это хорошее и выгодное решение данной проблемы.
Список используемой литературы
1) Перепелкин К. Е. Химические волокна: развитие производства, методы получения, свойства, перспективы -- СПб: Издание СПГУТД, 2008. -- 354 стр.
2) Роговин 3.А. Основы химии и технологии химических волокон, 4 изд., т. 1-2, М., 1974.
3) Папков С. П. Теоретические основы производства химических волокон. М.: Химия, 1990. 390 с.
4) Юркевич В. В., Пакшвер А. Б. Технология производств химических волокон. М.: Химия, 1987. 304 с.
5) Зазулина З. А., Дружинина Т. В., Конкин А. А. Основы технологии химических волокон. М.: Химия, 1985. 343 с.
6) Бузов Б. А., Модестова Т. А., Алыменкова Н. Д. Материаловедение швейного производства: Учеб. для вузов,- 4-е изд., перераб и доп.,- М., Легпромбытиздат, 1986--424.
7) Перепёлкин К. Е. Современные химические волокна и перспективы их применения в текстильной промышленности. Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д. И. Менделеева), 2002, т. XLVI, № 1, с. 31-48.
8) http://ru. wikipedia.org/wiki
9) Жиряков В.Г. Органическая химия. 6-е изд., М.: «Химия», 1987, 408 с.
10) Ермилов А.С., ? Теоретические основы процессов получения и переработки полимерных материалов: курс лекций/ А.С. Ермилов. - Пермь: Изд-во Перм. гос. Техн. ун-та, 2009. - 159с.
Размещено на Allbest.ru
Подобные документы
Основные виды химических волокон: искусственные и синтетические. Свойства и сферы использования вискозы. Достоинства и недостатки ацетатного волокна. Характеристика полиамидного (капрон, нейлон), полиэфирного (лавсан) и акрилового (нитрон) волокон.
презентация [613,6 K], добавлен 05.11.2012Физико-механические и физико-химические свойства синтетических волокон. Первое полимерное соединение. Получение синтетических волокон и их классификация. Карбоцепные и гетероцепные, полиакрилонитрильные, поливинилхлоридные, полиамидные волокна.
презентация [2,4 M], добавлен 20.04.2015Сущность волокон, их классификация, технология получения из природных органических полимеров. Достоинства и недостатки вискозных и ацетатных волокон, сфера их применения. Формование триацетатной их разновидности, признаки и свойства ткани из них.
презентация [2,7 M], добавлен 13.11.2013Формование волокон из раствора полимеров. Образование жидкой нити и фиксация ее в процессе формования. Сведения об отвердении нити. Фиксация нити при испарении растворителя. Диффузионный процесс при формовании волокон. Ориентационное вытягивание волокон.
курсовая работа [323,7 K], добавлен 04.01.2010Природні волокна рослинного, тваринного та мінерального походження. Види штучних та синтетичних хімічних волокон. Схема виробництва волокна, його переваги та недоліки. Розчинники целюлози. Полімери синтетичних волокон. Реакції добування полімерів.
презентация [2,6 M], добавлен 12.10.2014История изобретения искусственных и синтетических нитей. Получение и отличительные особенности внешнего вида вискозных, полинозных и медноамиачных химических волокон. Изготовление ацетатных нитей, их деформационные и электроизоляционные свойства.
реферат [259,5 K], добавлен 22.03.2014Важные преимущества химических волокон перед волокнами природными. Изучение истории и тенденций развития производства и потребления химических волокон в Республике Беларусь. Оценка развития новых разработок. Нанотехнологии в заключительной отделке.
реферат [2,0 M], добавлен 08.05.2014Основные характеристики полимерных волокон. Методы снижения горючести ПАН волокон. Влияние состава модифицирующей ванны на эффективность взаимодействия ЗГ с ПАН волокном. Применение модифицированных волокон при изготовлении ковров и напольных покрытий.
статья [98,1 K], добавлен 26.07.2009Технология получения прядильного раствора. Изменение свойств акрилонитрильных волокон при замене итаконовой кислоты в сополимере. Органические растворители, используемые для получения ПАН волокон. Полимеризация ПАН в диметилацетамиде и этиленкарбонате.
курсовая работа [574,0 K], добавлен 11.10.2010Классификация углеводородов, их функциональные производные. Реакции полимеризации, особые механические и химические свойства полимеров. Общие принципы производства искусственных волокон. Ацетатное волокно, химическое строение, получение, свойства.
контрольная работа [184,0 K], добавлен 29.03.2013