Потенциалы межмолекулярных взаимодействий

Вычисление потенциала взаимодействия между молекулами в небольших базисах. Потенциал Клементи и метод Уоршела. Модель точечных диполей в работах ученых. Энергии гидратации простых ионов и супермолекул, вычисленные с помощью модели точечных диполей.

Рубрика Химия
Вид доклад
Язык русский
Дата добавления 06.03.2011
Размер файла 14,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

9

МЕТОД АТОМ-АТОМНЫХ ПОТЕНЦИАЛОВ

В приближении супермолекулы мы рассматривали систему из сольватированного соединения и некоторого числа молекул растворителя как одну большую молекулу. Такой подход является непосредственным обобщением методов квантовой химии, разработанных для расчета свойств отдельных (изолированных) соединений на межмолекулярные взаимодействия. При этом в качестве исходных частиц приходится оперировать электронами и атомными ядрами. При изучении системы, состоящей из одной молекулы, такой подход является единственно возможным, так как только на этом уровне можно анализировать большинство химических свойств молекулы. При рассмотрении межмолекулярных взаимодействий появляется возможность оперировать не с электронами и атомными ядрами, а с отдельными молекулами. Для этого необходимо иметь потенциалы, описывающие межмолекулярные взаимодействия. В случае системы, состоящей из электронов и ядер, необходимо решать уравнение Шредингера, так как электроны следует рассматривать как квантовые частицы. При рассмотрении межмолекулярных взаимодействий молекулы можно рассматривать как классические объекты. Благодаря этому появляется возможность использовать для их описания эмпирические потенциальные функции. Это существенно упрощает задачу.

Различные эмпирические потенциалы, которые предлагались различными авторами для описания межмолекулярных взаимодействий, не удовлетворяют точности, необходимой при учете сольватации. Отсутствие достаточно надежных потенциалов делало невозможным использование такого подхода для изучения сольватации. Существенный прогресс в этой области был достигнут благодаря работам Клементи с сотрудниками. Ими была выдвинута идея использовать неэмпирические квантовохимические расчеты для определения потенциалов межмолекулярных взаимодействий [106--109]. Первоначально потенциалы генерировались в численной форме путем неэмпирического расчета энергии взаимодействия сольватированной молекулы и молекулы растворителя. Но, так как дальнейшее использование численного потенциала для построения сольватационной оболочки затруднительно, была подобрана аналитическая функция для его аппроксимации, которая представляла собой сумму атом-атомных потенциалов. При этом все атомы в молекуле были разбиты на классы в зависимости от того, к каким функциональным группам и в каких положениях в группах находится данный атом. В результате число классов во много раз превышало число различных атомов. Для атомов каждого класса подбирались свои атом-атомные потенциалы. Аналитическая форма, в которой производился поиск атом-атомных потенциалов, выбиралась разной и зависела от базиса, использованного в расчете. При вычислении потенциала взаимодействия между молекулами в небольших базисах обычно использовалась относительно простая аналитическая функция

Uij = -Aij/r6ij + Bij/r12ij + Cijqiqj/rij

где Uij - энергия взаимодействия между атомами i и j; rij - расстояние между этими атомами; qi и qj - заряды на атомах; Аij, Вij и Сij - эмпирические параметры, зависящие от того, к каким классам принадлежат атомы i и j.

Для нахождения потенциалов межмолекулярных взаимодействий неэмпирическими методами с использованием больших базисов, близких к хартри-фоковскому пределу, использовались более сложные аналитические функции. Расчеты в больших базисах были проведены для определения аналитических потенциалов, описывающих взаимодействие между молекулами воды. Расчеты в минимальном базисе были использованы для определения атом-атомных потенциалов, описывающих взаимодействие между молекулой воды и основаниями ДНК, аминокислотами и т.д.

Число классов атомов у молекул типа оснований ДНК и аминокислот составляет несколько десятков, число неизвестных параметров в атом-атомных потенциалах достигает нескольких сотен. При определении значений этих параметров приходится варьировать относительное положение и взаимную ориентацию молекул в достаточно широких пределах, практически для вычисления каждого параметра приходится делать 15 - 20 расчетов. Таким образом, для расчета потенциала межмолекулярного взаимодействия молекул среднего размера типа оснований ДНК и молекул воды необходимо сделать несколько десятков тысяч расчетов полной энергии системы неэмпирическим методом. Поэтому процедура подбора параметров связана с очень большими затратами машинного времени. Но следует отметить одно благоприятное обстоятельство: по мере накопления наборов параметров и создания их банка для каждого нового соединения объем вычислений сокращается, так как оказывается возможным отнести большинство атомов к уже известным классам, для которых все параметры аналитических потенциалов известны из расчетов других молекул [110].

После нахождения потенциалов расчет строения сольватационной оболочки и энергии взаимодействия между растворителем и растворенным соединением становится относительно простой задачей, аналогичной задачам конформационного анализа. Аналитическая форма, в которой в настоящее время найдены потенциалы для описания взаимодействия молекул среднего размера и молекул воды, также совпадает с наиболее широко распространенными потенциалами, которые используются в конформационных расчетах. Однако параметры в потенциалах Клементи для межмолекулярных взаимодействий имеют совершенно иную природу. В конформационном анализе потенциалы типа 6 - 12 описывают ван-дер-ваальсовы взаимодействия между атомами, а у Клементи - электронодонорные и электроноакцепторные взаимодействия. Третий член в формуле для атом-атомных потенциалов соответствует кулоновскому взаимодействию. Для электрически нейтральных молекул значение коэффициента Сij в потенциалах Клементи близко к единице. Однако для ионов оно не превышает 0,5; это связано, по-видимому, с эффектами экранирования и перераспределения заряда.

Использование потенциалов Клементи позволяет рассматривать гидратацию весьма сложных молекул большим числом молекул воды. Пока число молекул воды не превышает 10 - 15, каких-либо существенных трудностей при расчете строения гидратационной оболочки не возникает. Однако при дальнейшем увеличении числа молекул воды появляется ряд новых проблем. Для достаточно точного описания гидратационной оболочки даже небольшого соединения количество молекул воды желательно увеличить до 200 - 300. При расчете строения такой огромной гидратационной оболочки основная трудность заключается в существовании большого числа структур с близкими энергиями. Задача сводится к нахождению всех таких структур, определению вероятности реализации каждой из них и усреднению по всем найденным структурам. В таком расчете приходится учитывать температурную зависимость.

В работах Клементи показано, что для нахождения строения гидратационных оболочек можно успешно использовать метод Монте-Карло, с помощью которого были проведены расчеты строения гидратационных оболочек ряда простых ионов с учетом их взаимодействия с 200 - 250 молекулами воды. При этом возникла еще одна проблема. Распределение молекул воды в расчетах методом Монте-Карло носит вероятностный характер, поэтому перед исследователями встала задача перехода к таким простым и наглядным характеристикам гидратации, как число молекул воды в первой гидратационной сфере и ее радиус. Для получения этой информации было предложено вычислить зависимость плотности атомов водорода или кислорода от расстояния до центра иона. На таких графиках получается ряд четко выраженных максимумов. Их положение для атомов кислорода обычно связывают с радиусами гидратационных оболочек, а площадь под кривыми - с количеством молекул воды в оболочке. Ниже приведены радиусы первых гидратационных оболочек (R) и число молекул воды в них (N), вычисленные таким способом [108, 109].

Ион

R, нм

N

Li+

0,19--0,20

4

Na+

0,23--0,24

5--6

К+

0,28--0,29

5--7

F-

0,27--0,28

4--6

Cl-

0,34--0,35

6--7

Использование атом-атомных потенциалов весьма перспективно и может существенно расширить наши представления о сольватации и ее влиянии на реакционную способность органических соединений. Банк параметров в настоящее время достаточно велик, и можно надеяться, что в будущем он будет еще расширен. Однако следует подчеркнуть те допущения, которые делаются в этих расчетах.

1. Используется приближенный квантовохимический метод (для молекул среднего размера весьма грубый) для вычисления параметров атом-атомных потенциалов. В случае небольшого числа молекул растворителя ошибки могут быть невелики, но по мере увеличения их количества они будут накапливаться.

2. Ошибки в расчетах могут возникать за счет аппроксимации численного потенциала весьма простыми аналитическими функциями.

3. Атом-атомные потенциалы, которые обычно используют для изучения сольватации, не являются аддитивными функциями, а взаимодействия трех тел учесть довольно сложно и этого почти никогда не делают, хотя эти коллективные взаимодействия существенно влияют на результаты расчета (это, по-видимому, самый большой недостаток метода Клементи).

В ряде работ подход Клементи к учету сольватации был использован для изучения влияния растворителя на поверхности потенциальной энергии органических реакций [111, 112]. Эти работы будут более подробно рассмотрены ниже. Здесь же мы только отметим, что проведение таких расчетов требует очень больших затрат машинного времени. Их порядок таков: 1) вычисляют полную энергию для какой-либо точки на поверхности потенциальной энергии газофазной реакции; 2) в этой точке рассчитывают параметры атом-атомных потенциалов, описывающих взаимодействие реагентов с молекулой растворителя; 3) с помощью атом-атомных потенциалов, полученных на предыдущем этапе расчета (см. пункт 2), методом Монте-Карло вычисляют энергию сольватации.

Такую цепочку расчетов приходится проводить для каждой точки поверхности потенциальной энергии, так как в ходе реакции электронная структура реагентов существенно меняется, что приводит к изменению параметров эмпирической потенциальной функции, описывающей взаимодействие с молекулой растворителя. Из-за этого нельзя пользоваться банком готовых параметров для атом-атомных потенциалов, более того, их приходится пересчитывать в каждой новой точке поверхности потенциальной энергии. Именно эта стадия расчета связана с очень большим объемом вычислений.

МОДЕЛЬ ТОЧЕЧНЫХ ДИПОЛЕЙ

потенциал взаимодействия супермолекула клементи уоршел

Основной недостаток методов приближения супермолекулы и Монте-Карло с атом-атомными потенциалами заключается в исключительной сложности расчета. Поэтому вполне естественным было появление методов, сохраняющих принцип этих подходов, т.е. учитывающих в явном виде дискретный набор молекул растворителя вокруг растворенного соединения, но моделирующих его с помощью точечных диполей. В этом приближении влияние внешнего электрического поля, созданного растворителем, на растворенное соединение приводит к появлению определенных добавочных членов, которые необходимо прибавить к матричным элементам гамильтониана.

Модель точечных диполей широко использовалась разными авторами для учета сольватации. Однако почти все эти работы имели один существенный недостаток - в них не учитывалось ван-дер-ваальсово отталкивание между растворенным соединением и молекулами растворителя и молекул растворителя между собой. Из-за этого было нельзя рассчитать геометрию сольватной оболочки и точечные диполи, моделирующие молекулы растворителя, расставлялись на основе интуитивных соображений.

Последовательная электростатическая модель, в которой учитывалось отталкивание в потенциале, описывающем межмолекулярные взаимодействия, была предложена в работе Уоршела [113]. Молекулы растворителя в ней моделировались шариками с фиксированным дипольным моментом и ван-дер-ваальсовым радиусом. Если молекул растворителя немного, то использование метода Уоршела не вызывает затруднений. Однако при увеличении количества молекул растворителя возникают трудности, связанные с поиском оптимальной структуры сольватной оболочки. Использование для этой цели метода Монте-Карло связано с очень большим объемом вычислений и не годится для решения прикладных задач, а методы оптимизации геометрии типа наискорейшего спуска позволяют найти лишь один из многочисленных локальных минимумов (не обязательно самый глубокий). Поэтому метод Уоршела в настоящее время применяется редко. В качестве примера его использования приведем работу [114], в которой с его помощью было учтено влияние гидратации на потенциальный профиль реакции OH- + CO2 > Н3СО-. Было показано, что гидратация существенно уменьшает тепловой эффект реакций. Кроме того, было установлено, что в газовой фазе эта реакция идет без активационного барьера, а в растворе - с активационным барьером.

Другой вариант модели точечных диполей был предложен в работе [115]. Чтобы избежать вычисления оптимальной структуры сольватной оболочки, дипольные моменты молекул растворителя были раздроблены и почти непрерывно и равномерно "размазаны" по объему растворителя, т.е. каждая молекула растворителя была заменена большим количеством точечных диполей с малыми дипольными моментами. Такое ''размазывание" дипольного момента молекул растворителя ранее было использовано Уоршелом при построении модели ланжевеновских диполей [113].

Точечные диполи с малыми дипольными моментами могут быть расположены в узлах любой упорядоченной решетки. Из них следует выделить ту часть точечных диполей, которые вносят существенный вклад в энергию сольватации. Положение в пространстве этой части точечных диполей должно удовлетворять следующим двум условиям. Во-первых, точечный диполь не может находиться ближе некоторого критического расстояния ни к одному из атомов растворенной молекулы. Во-вторых, энергия взаимодействия между точечными диполями и растворенной молекулой должна превышать некоторую пороговую величину. Физический смысл первого условия очевиден (точечные диполи не должны попасть внутрь растворенного соединения). Суть второго условия заключается в учете взаимодействия растворенного соединения лишь с теми точечными диполями, которые находятся в области достаточно сильного электрического поля растворенного соединения. Их дипольные моменты будут ориентированы в направлении этого поля, и поэтому будут вносить основной вклад в энергию сольватации. Дипольные моменты остальных точечных диполей из-за взаимодействия молекул растворителя между собой будут ориентированы в произвольных направлениях, поэтому энергия их взаимодействия с электрическим полем растворенного соединения будет мала. Этим вкладом в работе [115] предложено пренебречь.

Таблица 2.1 Энергии гидратации простых ионов и супермолекул, вычисленные с помощью модели точечных диполей (кДж/моль).

Ион или комплекс

Расчет

Эксперимент

Ион или комплекс

Расчет

Эксперимент

Ионы

Супермолекулы

ОН-

420

487

Н3O2-

302

344

Н3О+

302

332

Н5O2+

206

184

NH4+

264

315

H5O3-

260

248

СН33+

210

273

H7O4+

101

92

(CH3)2NH2+

143

239

(СН3)3+

118

210

Результаты расчета энергий гидратации простых ионов и некоторых супермолекул (комплексов, образованных ионом и одной или двумя молекулами воды) методом МПДП с использованием модели точечных диполей приведены в табл. 2.1, из которой видно, что получается хорошее согласие с экспериментом. Однако не следует переоценивать возможности модели точечных диполей в описанном выше варианте. Она годится лишь для достаточно грубого качественного учета сольватационных эффектов. Основное ее достоинство - малые затраты машинного времени, поэтому ее легко применять в прикладных расчетах для получения качественно правильных результатов для реакций в полярных растворителях.

Размещено на Allbest.ru


Подобные документы

  • Парные потенциалы взаимодействия между молекулами в вакууме. Разделение межмолекулярных взаимодействий по типам. Электростатические, индукционные, дисперсионные взаимодействия. Вода как диэлектрик. Теоретические модели и параметры. Теория Дебая-Хюккеля.

    контрольная работа [829,0 K], добавлен 06.09.2009

  • Порядок образования мицелл при отсутствии взаимодействий между молекулами ПАВ, находящимися в смеси. Свойства данных мицелл и их молярный состав. Зависимость критической концентрации мицеллообразования от состава композиции ПАВ. Правила смешивания ПАВ.

    контрольная работа [1,8 M], добавлен 04.09.2009

  • Расчет величины электродного потенциала, возникающего на границе между металлом и раствором соли этого металла. Преобразование энергии в электрохимических системах. Диффузионный потенциал в электрохимических цепях. Строение двойного электрического слоя.

    курсовая работа [1,4 M], добавлен 12.09.2014

  • Причины и условия кристаллизации материальных частиц. Теории зарождения и роста идеальных кристаллов в работах Гиббса, Фольмера, Косселя и Странского. Описание точечных, линейных, двухмерных и объемных дефектов. История получения искусственных кристаллов.

    реферат [21,4 K], добавлен 18.11.2010

  • Качественная модель последовательных бимолекулярных соударений. Квазиравновесный режим образования бимолекулярных комплексов. Фигуративная точка. Адиабатические потенциалы и потенциальные поверхности. Общий подход при условии стандартизации концентраций.

    реферат [561,8 K], добавлен 30.01.2009

  • Понятие химической связи, способы ее описания. Свойства ионной связи, аспекты преобразования энергии в ней. Потенциалы отталкивания и притяжения. Признаки и компоненты ван-дер-ваальсового, ориентационного, поляризационного и дисперсионного взаимодействия.

    презентация [165,3 K], добавлен 22.10.2013

  • Анализ возникновения межмолекулярных водородных связей между функциональными группами нитрат целлюлозы и уретановых каучуков, которые приводят к получению оптимальной структуры совмещенной композиции с высоким уровнем физико-механических характеристик.

    учебное пособие [171,8 K], добавлен 18.03.2010

  • Вычисление термодинамических функций для молибдена в интервале температур 100-500К. Применение вещества, описание его физических и химических свойств. Расчет константы равновесия заданной химической реакции с помощью энтропии и приведенной энергии Гиббса.

    курсовая работа [251,8 K], добавлен 18.02.2013

  • Изменение изобарно-изотермического потенциала, свободной энтальпии при нестандартных условиях. Использование понятия энергии Гиббса в термодинамике и химии. Применение закона Гесса и уравнения изотермы Вант-Гоффа. Определение знака изобарного потенциала.

    реферат [131,9 K], добавлен 18.05.2015

  • Обзор наиболее известных методов определения констант протонизации. Природа межмолекулярных взаимодействий в концентрированных растворах красителей. Реактивы, растворы и средства измерения. Влияние "высаливания" на ассоциацию молекул родамина 6Ж.

    дипломная работа [425,7 K], добавлен 26.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.