Расчет потенциалов ионизации

Определение потенциалов ионизации органических молекул по теореме Купманса. Результаты расчетов потенциалов ионизации методом МПДП. Результаты расчета теплот образования (полных энергий) метана и его катион-радикала. Схема зависимости энергий метана.

Рубрика Химия
Вид практическая работа
Язык русский
Дата добавления 06.03.2011
Размер файла 46,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РАСЧЕТ ПОТЕНЦИАЛОВ ИОНИЗАЦИИ

Потенциалы ионизации (ПИ) органических молекул обычно вычисляют по теореме Купманса, которая связывает ПИ k-го электрона (Ik) с энергией еk хартри-фоковской орбитали исходной молекулы, с замкнутой оболочкой: Ik= -еk. Для большинства соединений расчеты в этом приближении дают удовлетворительное согласие с экспериментальными вертикальными ПИ и поэтому широко используются для интерпретации данных фотоэлектронной спектроскопии. Кроме того, расчеты ПИ по теореме Купманса используются для изучения реакционной способности некоторых органических соединений.

Наибольшее количество опубликованных расчетов ПИ выполнено методами МЧПДП/3 и МПДП. В табл. 1.3. приведены результаты расчетов ПИ методом МПДП. Из этих данных видно, что согласие с экспериментом получается хорошее. Для соединений с тяжелыми атомами точность расчета ПИ немного снижается. Для метода МПДП характерно заметное завышение ПИ. Так, для соединений, содержащих атомы брома, ПИ получаются завышенными в среднем почти на 1 эВ, а для соединений олова и иода -- на 1,3 эВ. Однако эти ошибки носят систематический характер, и их удается уменьшить с помощью подбора соответствующих инкрементов.

Таблица 1.3 Потенциалы ионизации, эВ

Соединение

МПДП

Эксперимент

Отнесение*

Соединение

МПДП

Эксперимент

Отнесение*

Метан

13,9

30,6

14,0

22,9

1t2

1a1

Аммиак

32,9

27,0

1a1

Цианистый водород

13,4

14,3

21,6

13,6

14,0

20,0

Этан

12,7

13,3

15,1

24,8

12,1

15,0

20,4

1eg

2a1g

1eu

1a2u

Азот

14,9

16,2

21,1

15,6

17,0

18,8

2уg

1рu

1уu

Этилен

10,2

12,6

14,6

15,8

10,5

12,8

14,7

15,9

1b1u

1b1g

2ag

1b2u

Вода

12,2

14,5

19,1

40,0

12,6

14,7

18,5

32,2

1b1

2a1

1b2

1a1

Ацетилен

11,0

15,9

21,0

11,4

16,4

18,7

1рu

2уg

1уu

Диоксид

углерода

12,8

17,7

17,8

21,2

13,8

17,6

18,1

19,4

1рg

1рu

2уu

2уg

Бензол

9,4

12,5 12,6 14,4 15,2

16,8

17,5

9,2

11,5

12,3

13,8

14,7

15,4

16,9

1e1g

2e2g

1a2g

2e1u

1b2u

1b1u

2a1u

Формальдегид

11,0

14,2

16,3

16,9

10,9

14,4

16,0

16,8

2b2

1b1

2a1

1b2

Аммиак

11,2

16,7

10,9

16,0

2a1

1e

* Отнесение, сделанное на основе данных метода МПДП, для всех перечисленных в таблице соединений совпадает с общепринятым.

Для небольших соединений расчеты ПИ проводят неэмпирическими методами. При этом получают значения ПИ не только для валентных электронов, но и для электронов внутренних оболочек. Эти результаты можно использовать для интерпретации данных как фотоэлектронной, так и рентгеноэлектронной спектроскопии. Основной недостаток расчетов ПИ с использованием теоремы Купманса заключается в том, что в этом приближении не учитываются реорганизация электронной структуры и изменение геометрии, корреляционной энергии, а для соединений с тяжелыми атомами и релятивистских поправок при отрыве электрона. ПИ с учетом перечисленных выше эффектов можно вычислить по формуле I = Е(М) - Е(М+ *), где Е(M) и Е(М+ *) -- полные энергии молекулы и ее катион-радикала. Если использовать геометрию исходной молекулы при вычислении полной энергии катион-радикала, то получится так называемый вертикальный ПИ. Однако у большинства органических соединений учет электронной релаксации незначительно меняет ПИ, кроме того, этот вклад частично компенсируется изменением корреляционной энергии, поэтому расчеты в приближении Купманса широко используются в прикладных работах.

Кроме вертикального ПИ, можно рассчитать и адиабатический (учетом изменения геометрии молекулы при ионизации). Для этого вычисление Е(М+) следует проводить с оптимизацией геометрии. Для некоторых соединений вертикальные и адиабатические ПИ сильно отличаются. Так, для молекулы метана вертикальный ПИ больше адиабатического на 1,7 эВ, для силана -- на 1,2 эВ. Данные по вертикальным и адиабатическим ПИ используются при анализе колебательной структуры линий в фотоэлектронных спектрах (см. гл. 3) и для изучения механизмов ионизации органических соединений.

В качестве примера рассмотрим результаты работы [30], в которой было изучено влияние механических деформаций на образование заряженных частиц в полимерах. Из эксперимента известно, что при очень сильном сжатии в сочетании со сдвигом происходит спонтанная ионизация полимера, т.е. ПИ сильно деформированного полимера снижается до нуля. Механизм этого эффекта был рассмотрен [30] на примере молекулы метана.

На рис. 1.1 приведены результаты расчета теплот образования (полных энергий) метана и его катион-радикала в зависимости от угла б, а также зависимость ПИ от этого угла. Из этих данных видно, что потенциальная кривая для молекулы метана является почти параболой. Энергия деформации быстро возрастает с отклонением величины б от равновесного значения 109,5°. Для катион-радикала метана потенциальная кривая имеет качественно другую форму, которая обусловлена эффектом Яна--Теллера. Угол б, равный 109,5°, соответствует локальному максимуму полной энергии, а углы 60 и 160° - минимумам. Особо отметим, что вычисленный профиль потенциальной энергии для катион-радикала имеет существенно более пологую форму по сравнению с аналогичной кривой для молекулы метана.

Рис. 1.1. Зависимость полных энергий метана (1) и его катион-радикала (2), а также зависимость ПИ метана (3) от угла Н--С--Н.

За нуль принята полная энергия равновесной конформации метана

потенциал ионизация органический молекула

Приведенные результаты на первый взгляд противоречат нашей интуиции, однако их легко объяснить на основе анализа симметрии занятых электронами МО. Молекула метана в равновесном состоянии имеет симметрию Td, и ее верхняя занятая МО является трижды вырожденной. При удалении с нее электрона (без учета геометрической релаксации) образуется катион-радикал с трижды вырожденным основным состоянием. По теореме Яна--Теллера вырожденные состояния у нелинейных соединений неустойчивы и энергетически выгодными являются деформации геометрии, которые понижают их симметрию. Деформация валентных углов катион-радикала метана понижает его симметрию и, следовательно, энергетически выгодна, т.е. понижает его полную энергию. Из-за этого ПИ молекулы метана при деформациях, которые понижают ее симметрию, снижается.

Данный результат можно сформулировать в более общем виде: если верхняя занятая МО у молекулы вырождена или почти вырождена, то механические деформации, которые снижают симметрию молекулы и снимают вырождение, приводят к уменьшению ее ПИ. В случае вырожденных МО этот вывод обусловлен эффектом Яна--Теллера, а в случае почти вырожденных МО -- псевдоэффектом Яна--Теллера. Уменьшение ПИ приблизительно равно энергии механической деформации в основном состоянии.

Аналогичный результат был получен и для пропана, причем было показано, что при механической деформации молекулы, когда изменяется несколько геометрических параметров, в уменьшение ПИ вносит вклад суммарная энергия деформации. В этом заключается качественное различие в механизмах влияния деформаций на ионизацию и на деструкцию (разрыв валентных связей) полимера. Например, для разрыва макромолекулы полиэтилена требуется сосредоточить на одной валентной связи С--С энергию 3,5 эВ, что при квазиоднородном растяжении достаточно большого участка цепи макромолекулы требует десятки электрон-вольт упругой энергии. Для ионизации полиэтилена необходимо затратить заметно больше энергии, чем на разрыв одной связи С--С (потенциал ионизации полиэтилена составляет около 7 эВ), но эта энергия может быть рассредоточена по нескольким степеням свободы, так как в снижение ПИ вносит вклад суммарная энергия деформации фрагмента полимерной цепи. Поэтому ионизация может происходить легче, чем деструкция.

Размещено на Allbest.ru


Подобные документы

  • Характеристика адсорбционных методов. Расчет изотермы адсорбции молекулярно-растворенных органических веществ на активных углях. Методы выбора и контроля адсорбентов для очистки воды. Влияние ионизации и ассоциации молекул в растворе на их адсорбцию.

    курсовая работа [2,0 M], добавлен 17.08.2009

  • Основные приближения метода потенциалов. Ковалентная связь как вид химической связи, характеризуемый увеличением электронной плотности. Свойства и структура ковалентных кристаллов. Особенности двух- и многоатомных молекул. Оценка энергии связи в металлах.

    презентация [297,1 K], добавлен 22.10.2013

  • Структура и свойства свободной воды, влияние ионов на ее состояние. Образование гидратных оболочек ионов при различных концентрациях. Изменение потенциальных барьеров молекул воды. Возникновение и природа потенциалов самопроизвольной поляризации.

    презентация [2,2 M], добавлен 28.10.2013

  • Окислительная димеризация метана. Механизм каталитической активации метана. Получение органических соединений окислительным метилированием. Окислительные превращения органических соединений, содержащих метильную группу, в присутствии катализатора.

    диссертация [990,2 K], добавлен 11.10.2013

  • Взаимное влияние атомов и способы его передачи в органических молекулах. Роль ионизации в проявлении биологической активности. Фосфолипиды как структурные компоненты клеточных мембран. Стереохимия органических соединений. Реакции аминокислот, белки.

    курс лекций [1,8 M], добавлен 05.03.2013

  • Наиболее важный представитель органических веществ в атмосфере. Природа естественных и антропогенных источников метана. Доли отдельных источников в общем потоке метана в атмосферу. Повышение температуры атмосферы.

    реферат [160,6 K], добавлен 25.10.2006

  • Этапы первичной переработки природного газа, его состав и принципиальная схема паровоздушной конверсии метана. Схема химических превращений, физико-химические основы, термодинамика и кинетика процесса, сущность и преимущество каталитической конверсии.

    курсовая работа [1011,5 K], добавлен 11.03.2009

  • Технологическая схема производства аммиака и получения синтез-газа. Эксергетический анализ основных стадий паровоздушной конверсии метана. Термодинамический анализ процесса горения в трубчатой печи. Определение эксергетического КПД шахтного реактора.

    дипломная работа [1,3 M], добавлен 05.11.2012

  • Конверсия метана природного газа с водяным паром — основной промышленный способ производства водорода. Виды каталитических конверсий. Схема устройства трубчатого контактного аппарата. Принципиальная технологическая схема конверсии метана природного газа.

    курсовая работа [3,2 M], добавлен 20.11.2012

  • Основные условия образования химической связи. Потенциал ионизации. Ковалентная связь. Перекрывание атомных орбиталей. Процесс смещения электронной пары к наиболее электроотрицательному атому. Координационная связь. Межмолекулярное взаимодействие.

    курс лекций [811,3 K], добавлен 18.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.