Свойства водорода

История открытия водорода, изучение физических и химических свойств его изотопов, определение атомной массы элемента. Реакции вещества с другими элементами. Применение водорода в промышленности, биологическая роль в фотосинтезе, азотфиксации, гомеостазе.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 24.02.2011
Размер файла 34,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат по химии

"Свойства водорода"

ВОДОРОД (лат. Hydrogenium), H, химический элемент с атомным номером 1, атомная масса 1,00794. Химический символ водорода Н читается в нашей стране "аш", как произносится эта буква по-французски.

Природный водород состоит из смеси двух стабильных нуклидов с массовыми числами 1,007825 (99,985 % в смеси) и 2,0140 (0,015 %). Кроме того, в природном водороде всегда присутствуют ничтожные количества радиоактивного нуклида -- трития 3Н (период полураспада Т1/2=12,43 года). Так как в ядре атома водорода содержится только 1 протон (меньше в ядре атома элемента протонов быть не может), то иногда говорят, что водород образует естественную нижнюю границу периодической системы элементов Д. И. Менделеева (хотя сам элемент водород расположен в самой верхней части таблицы). Элемент водород расположен в первом периоде таблицы Менделеева. Его относят и к 1-й группе (группе IА щелочных металлов), и к 7-й группе (группе VIIA галогенов).

Массы атомов у изотопов водорода различаются между собой очень сильно (в разы). Это приводит к заметным различиям в их поведении в физических процессах (дистилляция, электролиз и др.) и к определенным химическим различиям (различия в поведении изотопов одного элемента называют изотопными эффектами, для водорода изотопные эффекты наиболее существенны). Поэтому в отличие от изотопов всех остальных элементов изотопы водорода имеют специальные символы и названия. Водород с массовым числом 1 называют легким водородом, или протием (лат. Protium, от греческого protos -- первый), обозначают символом Н, а его ядро называют протоном, символ р. Водород с массовым числом 2 называют тяжелым водородом, дейтерием (лат Deuterium, от греческого deuteros -- второй), для его обозначения используют символы 2Н, или D (читается "де"), ядро d -- дейтрон. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым водородом, или тритием (лат. Tritum, от греческого tritos -- третий), символ 3Н или Т (читается "те"), ядро t -- тритон.

Конфигурация единственного электронного слоя нейтрального невозбужденного атома водорода 1s1. В соединениях проявляет степени окисления +1 и, реже, -1 (валентность I). Радиус нейтрального атома водорода 0,0529 нм. Энергия ионизации атома 13,595 эВ, сродство к электрону 0,75 эВ. По шкале Полинга электроотрицательность водорода 2,20. Водород принадлежит к числу неметаллов.

В свободном виде -- легкий горючий газ без цвета, запаха и вкуса.

Физические и химические свойства: при обычных условиях водород -- легкий (плотность при нормальных условиях 0,0899 кг/м3) бесцветный газ. Температура плавления -259,15°C, температура кипения -252,7°C. Жидкий водород (при температуре кипения) обладает плотностью 70,8 кг/м3 и является самой легкой жидкостью. Стандартный электродный потенциал Н2/Н- в водном растворе принимают равным 0. Водород плохо растворим в воде: при 0°C растворимость составляет менее 0,02 см3/мл, но хорошо растворим в некоторых металлах (губчатое железо и других), особенно хорошо -- в металлическом палладии (около 850 объемов водорода в 1 объеме металла). Теплота сгорания водорода равна 143,06 МДж/кг.

Существует в виде двухатомных молекул Н2. Константа диссоциации Н2 на атомы при 300 К 2,56·10-34. Энергия диссоциации молекулы Н2 на атомы 436 кДж/моль. Межъядерное расстояние в молекуле Н2 0,07414 нм.

Так как ядро каждого атома Н, входящего в состав молекулы, имеет свой спин, то молекулярный водород может находиться в двух формах: в форме ортоводорода (о-Н2) (оба спина имеют одинаковую ориентацию) и в форме параводорода (п-Н2) (спины имеют разную ориентацию). При обычных условиях нормальный водород представляет собой смесь 75% о-Н2 и 25% п-Н2. Физические свойства п- и о-Н2 немного различаются между собой. Так, если температура кипения чистого о-Н2 20,45 К, то чистого п-Н2 -- 20,26 К. Превращение о-Н2 в п-Н2 сопровождается выделением 1418 Дж/моль теплоты.

В научной литературе неоднократно высказывались соображения о том, что при высоких давлениях (выше 10 ГПа) и при низких температурах (около 10 К и ниже) твердый водород, обычно кристаллизующийся в гексагональной решетке молекулярного типа, может переходить в вещество с металлическими свойствами, возможно, даже сверхпроводник. Однако пока однозначных данных о возможности такого перехода нет.

Высокая прочность химической связи между атомами в молекуле Н2 (что, например, используя метод молекулярных орбиталей, можно объяснить тем, что в этой молекуле электронная пара находится на связывающей орбитали, а разрыхляющая орбиталь электронами не заселена) приводит к тому, что при комнатной температуре газообразный водород химически малоактивен. Так, без нагревания, при простом смешивании водород реагирует (с взрывом) только с газообразным фтором (F):

H2 + F2 = 2HF + Q.

Если смесь водорода и хлора (Cl) при комнатной температуре облучить ультрафиолетовым светом, то наблюдается немедленное образование хлороводорода НСl. Реакция водорода с кислородом (O) происходит со взрывом, если в смесь этих газов внести катализатор -- металлический палладий (Pd) (или платину (Pt)). При поджигании смесь водорода и кислорода (O) (так называемый гремучий газ) взрывается, при этом взрыв может произойти в смесях, в которых содержание водорода составляет от 5 до 95 объемных процентов. Чистый водород на воздухе или в чистом кислороде (O) спокойно горит с выделением большого количества теплоты:

H2 + 1/2O2 = Н2О + 285,75 кДж/моль

С остальными неметаллами и металлами водород если и взаимодействует, то только при определенных условиях (нагревание, повышенное давление, присутствие катализатора). Так, с азотом (N) водород обратимо реагирует при повышенном давлении (20-30 МПа и больше) и при температуре 300-400°C в присутствии катализатора -- железа (Fe):

3H2 + N2 = 2NH3 + Q.

Также только при нагревании водород реагирует с серой (S) с образованием сероводорода H2S, с бромом (Br) -- с образованием бромоводорода НBr, с иодом (I) -- с образованием иодоводорода НI. С углем (графитом) водород реагирует с образованием смеси углеводородов различного состава. С бором (B), кремнием (Si), фосфором (P) водород непосредственно не взаимодействует, соединения этих элементов с водородом получают косвенными путями.

При нагревании водород способен вступать в реакции с щелочными, щелочноземельными металлами и магнием (Mg) с образованием соединений с ионным характером связи, в составе которых содержится водород в степени окисления -1. Так, при нагревании кальция в атмосфере водорода образуется солеобразный гидрид состава СаН2. Полимерный гидрид алюминия (AlH3)x -- один из самых сильных восстановителей -- получают косвенными путями (например, с помощью алюминийорганических соединений). Со многими переходными металлами (например, цирконием (Zr), гафнием (Hf) и др.) водород образует соединения переменного состава (твердые растворы).

Водород способен реагировать не только со многими простыми, но и со сложными веществами. Прежде всего, надо отметить способность водорода восстанавливать многие металлы из их оксидов (такие, как железо (Fe), никель (Ni), свинец (Pb), вольфрам (W), медь (Cu) и др.). Так, при нагревании до температуры 400-450°C и выше происходит восстановление железа (Fe) водородом из его любого оксида, например:

Fe2O3 + 3H2 = 2Fe + 3H2O.

водород изотоп атомный химический

Следует отметить, что восстановить водородом из оксидов можно только металлы, расположенные в ряду стандартных потенциалов за марганцем (Mn). Более активные металлы (в том числе и марганец (Mn)) до металла из оксидов не восстанавливаются.

Водород способен присоединяться по двойной или тройной связи ко многим органическим соединениям (это -- так называемые реакции гидрирования). Например, в присутствии никелевого катализатора можно осуществить гидрирование этилена С2Н4, причем образуется этан С2Н6:

С2Н4 + Н2 = С2Н6.

Взаимодействием оксида углерода (II) и водорода в промышленности получают метанол:

2 + СО = СН3ОН.

В соединениях, в которых атом водорода соединен с атомом более электроотрицательного элемента Э (Э = F, Cl, O, N), между молекулами образуются водородные связи (два атома Э одного и того же или двух разных элементов связаны между собой через атом Н: Э'... Н... Э'', причем все три атома расположены на одной прямой). Такие связи существуют между молекулами воды, аммиака, метанола и др. и приводят к заметному возрастанию температур кипения этих веществ, увеличению теплоты испарения и т. д.

История открытия: выделение горючего газа при взаимодействии кислот и металлов наблюдали в 16 и 17 веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш в 1766 исследовал этот газ и назвал его "горючим воздухом". При сжигании "горючий воздух" давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик А. Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и ее анализ, разложив водяной пар раскаленным железом. Таким образом, он установил, что "горючий воздух" входит в состав воды и может быть из нее получен. В 1787 Лавуазье пришел к выводу, что "горючий воздух" представляет собой простое вещество, и, следовательно, относится к числу химических элементов. Он дал ему название hydrogene (от греческого hydor -- вода и gennao -- рождаю) -- "рождающий воду". Установление состава воды положило конец "теории флогистона". Русское наименование "водород" предложил химик М. Ф. Соловьев в 1824 году. На рубеже 18 и 19 века было установлено, что атом водорода очень легкий (по сравнению с атомами других элементов), и вес (масса) атома водорода был принят за единицу сравнения атомных масс элементов. Массе атома водорода приписали значение, равное 1.

Нахождение в природе: на долю водорода приходится около 1% массы земной коры (10-е место среди всех элементов). В свободном виде водород на нашей планете практически не встречается (его следы имеются в верхних слоях атмосферы), но в составе воды распространен на Земле почти повсеместно. Элемент водород входит в состав органических и неорганических соединений живых организмов, природного газа, нефти, каменного угля. Он содержится, разумеется, в составе воды (около 11% по массе), в различных природных кристаллогидратах и минералах, в составе которых имеется одна или несколько гидроксогрупп ОН.

Водород как элемент доминирует во Вселенной. На его долю приходится около половины массы Солнца и других звезд, он присутствует в атмосфере ряда планет.

Происхождение названия

Лавуазье дал водороду название hydrogene (от др.-греч. ?дщс -- "вода" и геннЬщ -- "рождаю") -- "рождающий воду". Русское наименование "водород" предложил химик М. Ф. Соловьев в 1824 году -- по аналогии с ломоносовским "кислородом".

Распространённость во Вселенной

Водород -- самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов -- менее 0,1 %). Таким образом, водород -- основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1 % -- это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение. Основные виды сырья для промышленного получения водорода -- газы природные горючие, коксовый газ и газы нефтепереработки, а также продукты газификации твёрдых и жидких топлив (главным образом угля). Водород получают также из воды электролизом (в местах с дешёвой электроэнергией). Важнейшими способами производства водорода из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия): CH4 + H2O = CO + 3H2, и неполное окисление углеводородов кислородом: CH4 + 1/2O2 = CO + 2H2. Образующаяся окись углерода также подвергается конверсии: CO + H2O = CO2 + H2. Водород, добываемый из природного газа, самый дешёвый. Очень распространён способ производства водорода из водяного и паровоздушного газов, получаемых газификацией угля. Процесс основан на конверсии окиси углерода. Водяной газ содержит до 50% H2 и 40% CO; в паровоздушном газе, кроме H2 и CO, имеется значительное количество N2, который используется вместе с получаемым водородом для синтеза NH3. Из коксового газа и газов нефтепереработки водород выделяют путём удаления остальных компонентов газовой смеси, сжижаемых более легко, чем водород, при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор KOH или NaOH (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях водород получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской водород в баллонах.

Применение. В промышленном масштабе водород стали получать в конце 18 в. для наполнения воздушных шаров. В настоящее время водород широко применяют в химической промышленности, главным образом для производства аммиака. Крупным потребителем водорода является также производство метилового и других спиртов, синтетического бензина (синтина) и других продуктов, получаемых синтезом из водорода и окиси углерода. Водород применяют для гидрогенизации твёрдого и тяжёлого жидкого топлив, жиров и др., для синтеза HCl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы водорода -- дейтерий и тритий.

Как горючий (воспламеняемый) воздух водород известен довольно давно. Его получали действием кислот на металлы, наблюдали горение и взрывы гремучего газа Парацельс, Бойль, Лемери и другие ученые XVI - XVIII вв. С распространением теории флогистона некоторые химики пытались получить водород в качестве "свободного флогистона". В диссертации Ломоносова "О металлическом блеске" описано получение водорода действием "кислотных спиртов" (например, "соляного спирта", т. е. соляной кислоты) на железо и другие металлы; русский ученый первым (1745) выдвинул гипотезу, о том, что водород ("горючий пар" - vapor inflammabilis) представляет собой флогистон. Кавендиш, подробно исследовавший свойства водорода, выдвинул подобную же гипотезу в 1766 г. Он называл водород "воспламеняемым воздухом", полученным из "металлов" (Inflammable air from metals), и полагал, как и все флогистики, что при растворении в кислотах металл теряет свой флогистон. Лавуазье, занимавшийся в 1779 г. исследованием состава воды путем ее синтеза и разложения, назвал водород Hydrogine (гидроген), или Hydrogene (гидрожен), от греч. гидор - вода и гайноме - произвожу, рождаю.

Номенклатурная комиссия 1787 г. приняла словопроизводство Hydrogene от геннао, рождаю. В "Таблице простых тел" Лавуазье водород (Hydrogene) упомянут в числе пяти (свет, теплота, кислород, азот, водород) "простых тел, относящихся ко всем трем царствам природы и которые следует рассматривать как элементы тел"; в качестве старых синонимов названия Hydrogene Лавуазье называет горючий газ (Gaz inflammable), основание горючего газа. В русской химической литературе конца XVIII и начала XIX в. встречаются два рода названий водорода: флогистические (горючий газ, горючий воздух, воспламенительный воздух, загораемый воздух) и антифлогистические (водотвор, водотворное существо, водотворный газ, водородный газ, водород). Обе группы слов представляют собой переводы французских названий водорода.

Изотопы водорода были открыты в 30-x годах текущего столетия и быстро приобрели большое значение в науке и технике. В конце 1931 г. Юри, Брекуэдд и Мэрфи исследовали остаток после длительного выпаривания жидкого водорода и обнаружили в нем тяжелый водород с атомным весом 2. Этот изотоп назвали дейтерием (Deuterium, D) от греч. - другой, второй. Спустя четыре года в воде, подвергнутой длительному электролизу, был обнаружен еще более тяжелый изотоп водорода 3Н, который назвали тритием (Tritium, Т), от греч. - третий.

Особенности обращения: водород не ядовит, но при обращении с ним нужно постоянно учитывать его высокую пожаро- и взрывоопасность, причем взрывоопасность водорода повышена из-за высокой способности газа к диффузии даже через некоторые твердые материалы. Перед началом любых операций по нагреванию в атмосфере водорода следует убедиться в его чистоте (при поджигании водорода в перевернутой вверх дном пробирке звук должен быть глухой, а не лающий).

Биологическая роль: биологическое значение водорода определяется тем, что он входит в состав молекул воды и всех важнейших групп природных соединений, в том числе белков, нуклеиновых кислот, липидов, углеводов. Примерно 10 % массы живых организмов приходится на водород. Способность водорода образовывать водородную связь играет решающую роль в поддержании пространственной четвертичной структуры белков, а также в осуществлении принципа комплементарности в построении и функциях нуклеиновых кислот (то есть в хранении и реализации генетической информации), вообще в осуществлении "узнавания" на молекулярном уровне. Водород (ион Н+) принимает участие в важнейших динамических процессах и реакциях в организме -- в биологическом окислении, обеспечивающим живые клетки энергией, в фотосинтезе у растений, в реакциях биосинтеза, в азотфиксации и бактериальном фотосинтезе, в поддержании кислотно-щелочного равновесия и гомеостаза, в процессах мембранного транспорта. Таким образом, наряду с кислородом (O) и углеродом (C) водород образует структурную и функциональную основы явлений жизни.

Дейтерий (тяжелый водород) - один из двух стабильных изотопов водорода, ядро которого состоит из одного протона и одного нейтрона. Молекула дейтерия двухатомна. Содержание в природном водороде - 0,012-0,016%. Температура плавления - 254,5° С, температура кипения - 249,5° С. Тяжелая вода (оксид дейтерия) - изотопная разновидность воды; плотность 1,1, температура плавления - 3,8° С, температура кипения - 101,4° С.

В 1932 одно за другим следовали выдающиеся открытия в области физики: были открыты нейтрон и позитрон, разработана протоно-нейтронная теория строения ядер и релятивистская квантовая механика, построен первый циклотрон и изобретен электронный микроскоп, проведена первая реакция ядерного синтеза, экспериментально измерена скорость движения молекул. Недаром физики назвали этот год anno mirabilis - год чудес. В этом же году был открыт и второй изотоп водорода, названный дейтерием (от греческого deuteros - второй, символ D). Но что нового можно обнаружить в обычной воде? В начале XIX века лондонский врач и химик Уильям Праут выдвинул гипотезу, согласно которой из самого легкого элемента - водорода могли возникнуть все остальные элементы путем конденсации. В этом случае атомные массы всех элементов должны быть кратны массе атома водорода. Определения атомных масс, которые оказались дробными, эту гипотезу не подтвердили, и химики часто осмеивали её ее как лишенную научного содержания. В 1917 немецкий ученый К. Шерингер предположил, что атомы разных элементов построены не только из протия (от греческого protos - первый), т.е. "легкого" водорода с атомной массой 1, а из разных изотопов водорода. К тому времени уже было известно, что один и тот же элемент может иметь изотопы с разной массой.

Больших успехов в открытии изотопов нерадиоактивных элементов достиг английский физик Фрэнсис Уильям Астон с помощью сконструированного им масс-спектрографа. В этом приборе изучаемые атомы или молекулы бомбардируются пучком электронов и превращаются в положительно заряженные ионы. Пучок этих ионов далее подвергается действию электрического и магнитного поля, и их траектории отклоняются от прямой. Это отклонение тем сильнее, чем больше заряд иона и чем меньше его масса. Из значений отклоняющих напряжений непосредственно получают относительные массы ионов. А из интенсивности пучка ионов с данной массой можно судить об относительном содержании в образце этих ионов. Гипотеза Шерингера предполагала, что и у самого легкого элемента - водорода тоже могут быть изотопы. Однако попытки обнаружить тяжелый водород, предпринятые в 1919 Отто Штерном и Максом Фольмером, оказались безуспешными. Не удалось обнаружить его и Астону. Это означало одно из двух: либо у водорода тяжелого изотопа вовсе нет, либо его содержание в природном водороде слишком мало и чувствительности имевшегося в распоряжении Астона прибора недостаточно для его обнаружения. Правильным оказалось второе предположение, однако тяжелый водород прятался от исследователей в течение еще многих лет, маскируясь под ошибки эксперимента. В 1927 Астон очень точно для того времени измерил отношение масс атомов водорода и кислорода-16; у него получилось 1,00778:16,0000, что, казалось, находится в прекрасном соответствии с результатами самых точных измерений атомной массы водорода химическим путем: у химиков это отношение получалось равным 1,00777:16,0000. Однако единодушие физиков и химиков было недолгим: оказалось, что природный кислород, с которым работали химики, - плохой эталон для измерения атомных масс, поскольку кислород представляет собой смесь изотопов, причем их относительное содержание в разных источниках не вполне постоянно. Точные измерения в начале 30-х соотношения 18O:16O = 1:630 существенным образом изменили все прежние расчеты и данные об атомных массах. Пришлось в срочном порядке отказываться от "химической" шкалы атомных масс и переходить на "физическую" шкалу, основанную на кислороде-16. Такой пересчет данных химических анализов дал отношение масс Н:16О = 1,00799:16,0000, что уже заметно отличалось от измерений Астона. Кто же ошибся - физики или химики, выполнившие определения атомных масс? И те и другие ручались за точность своих определений, расхождение в результатах далеко выходило за пределы экспериментальных ошибок. В 1931 было высказано предположение о том, что причина небольшого расхождения - наличие в обычном водороде более тяжелого изотопа. Расчеты показали, что расхождение устраняется в том случае, если на 5000 атомов обычного водорода приходится всего один атом его вдвое более тяжелой разновидности атомов дейтерия. Дело оставалось за малым - обнаружить этот изотоп экспериментально. Но как это сделать, если его действительно так мало? С учетом чувствительности имевшейся в то время аппаратуры выход был один: сконцентрировать тяжелый водород, увеличив тем самым его содержание в обычном водороде, - примерно так же, как концентрируют спирт, перегоняя его смесь с водой. Если перегонять смесь обычного и тяжелого водорода, остаток должен обогащаться более тяжелым изотопом. После этого можно было снова попытаться обнаружить тяжелый изотоп водорода аналитически. В конце 1931 группа американских физиков - Гарольд Юри со своими учениками, Фердинандом Брикведде и Джорджем Мерфи, взяли 4 л жидкого водорода и подвергли его фракционной перегонке, получив в остатке всего 1 мл, т.е. уменьшив объем в 4 тысячи раз. Этот последний миллилитр жидкости после ее испарения и был исследован спектроскопическим методом. Талантливый спектроскопист Гарольд Клейтон Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету предполагаемого атома дейтерия. Соотношение интенсивностей линий нового изотопа (Юри назвал его дейтерием) и обычного водорода показало, что в исследованном обогащенном образце нового изотопа в 800 раз меньше, чем обычного водорода. Значит, в исходном водороде тяжелого изотопа еще меньше. Но насколько? Пытаясь оценить так называемый коэффициент обогащения при испарении жидкого водорода, исследователи поняли, что в своих опытах использовали самый неподходящий источник водорода. Дело в том, что он был получен, как обычно, путем электролиза воды. А ведь при электролизе легкий водород должен выделяться быстрее, чем тяжелый. Получается, что образец был сначала обеднен тяжелым водородом, а затем снова обогащался им! После того, как дейтерий был обнаружен спектроскопически, Эдвард Уошберн предложил разделять изотопы водорода электролизом. Эксперименты показали, что при электролизе воды легкий водород действительно выделяется быстрее, чем тяжелый. Именно это открытие стало ключевым для получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932, а уже в июле были опубликованы результаты по электролитическому разделению изотопов. В 1934 за открытие тяжелого водорода Юри была присуждена Нобелевская премия по химии. (Уошберн тоже был представлен к премии, но скончался в том же году, а по положению о Нобелевских премиях они вручаются только прижизненно.) Когда был открыт нейтрон, стало ясно, что в ядре дейтерия, в отличие от протия, помимо протона находится также нейтрон. Поэтому ядро дейтерия - дейтрон вдвое тяжелее протона; его масса в углеродных единицах равна 2,0141018. В среднем в природном водороде содержится 0,0156% дейтерия. В прибрежной морской воде его немного больше, в поверхностных водах суши - меньше, в природном газе - еще меньше (0,011-0,013%). По химическим свойствам дейтерий схож с протием, но огромное различие в их массах приводит к заметному замедлению реакций с участием атомов дейтерия. Так, реакция дейтерированного углеводорода R-D с хлором или кислородом замедляется, в зависимости от температуры, в 5-10 раз по сравнению с реакцией R-Н. С помощью дейтерия можно "пометить" водородсодержащие молекулы и изучить механизмы их реакций. Так, в частности, были изучены реакции синтеза аммиака, окисления углеводородов, ряд других важных процессов.

Интересные факты

ПРОТИЙ, ДЕЙТЕРИЙ, ТРИТИЙ... Физические и химические свойства изотопов всех элементов, кроме водорода, практически одинаковы: ведь для атомов, ядра которых состоят из нескольких протонов и нейтронов, не так уж важно -- одним нейтроном меньше или одним нейтроном больше. А вот ядро водорода -- это один-единственный протон, и если к нему присовокупить нейтрон, масса ядра возрастёт вдвое, а если два нейтрона -- втрое. Поэтому лёгкий водород (протий) кипит при минус 252,6° С, а температура кипения его изотопов отличается от этой величины на 3,2° (дейтерий) и 4,5° (тритий). Для изотопов это очень большое различие!

При сгорании водорода в чистом кислороде развивается температура до 2800° C -- такое пламя легко плавит кварц и большинство металлов. Но с помощью водорода можно достичь и более высокой температуры, если использовать его не как источник, а как переносчик и концентратор энергии.

Водород -- самое распространённое вещество во Вселенной (примерно 90 % всех атомов во вселенной).

Водород -- самый лёгкий газ. Масса 1 литра водорода в газообразном состоянии составляет всего 0,08988 грамм.

Хорватское название водорода -- Vodik, ввел в употребление филолог Богослав Шулек.

Размещено на Allbest.ru


Подобные документы

  • Характеристика химических и физических свойств водорода. Различия в массе атомов у изотопов водорода. Конфигурация единственного электронного слоя нейтрального невозбужденного атома водорода. История открытия, нахождение в природе, методы получения.

    презентация [104,1 K], добавлен 14.01.2011

  • Положение водорода в периодической системе химических элементов и особенности строения его атома. Свойства газа, распространенность и нахождение в природе. Химические реакции получения водорода в промышленности и лабораторным путем и способы применения.

    презентация [2,2 M], добавлен 13.02.2011

  • Английский естествоиспытатель, физик и химик Генри Кавендиш - первооткрыватель водорода. Физические и химические свойства элемента, его содержание в природе. Основные методы получения и области применения водорода. Механизм действия водородной бомбы.

    презентация [4,5 M], добавлен 17.09.2012

  • Физические свойства пероксида водорода - бесцветной прозрачной жидкости со слабым своеобразным запахом. Получение вещества в лабораторных и промышленных условиях. Восстановительные и окислительные свойства пероксида водорода, его бактерицидные свойства.

    презентация [149,3 K], добавлен 23.09.2014

  • Изотопы водорода как разновидности атомов химического элемента водорода, имеющие разное содержание нейтронов в ядре, общая характеристика. Сущность понятия "легкая вода". Знакомство с основными достоинствами протиевой воды, анализ способов получения.

    курсовая работа [1,1 M], добавлен 31.05.2013

  • Изучение влияния веществ на процесс разложения пероксида водорода в водных растворах. Воздействие различных химических катализаторов на скорость разложения пероксида водорода. Действие твина-80 на разложение пероксида водорода при различных температурах.

    реферат [562,1 K], добавлен 18.01.2011

  • История открытия водорода. Общая характеристика вещества. Расположение элемента в периодической системе, строение его атома, химические и физические свойства, нахождение в природе. Практическое применение газа для полезного и вредного использования.

    презентация [208,2 K], добавлен 19.05.2014

  • Представления об участии атома водорода в образовании двух химических связей. Примеры соединений с водородной связью. Структура димера фторида водорода. Ассоциаты молекул фторида водорода. Методы молекулярной спектроскопии. Суммарный электрический заряд.

    курсовая работа [119,1 K], добавлен 13.12.2010

  • Общие теории гомогенного катализа. Стадии процесса катализа и скорость реакции. Кинетика каталитической реакции диспропорционирования пероксида водорода в присутствии различных количеств катализатора Fe2+, влияние pH на скорость протекания реакции.

    контрольная работа [1,6 M], добавлен 18.09.2012

  • Реакция, на которой основан эксперимент. Реакция металла с кислотой. Малярная масса эквивалента металла. Определение погрешности опыта. Кислотно-основные или ионно-обменные реакции. Определение объема выделившегося водорода к нормальным условиям.

    лабораторная работа [76,9 K], добавлен 13.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.