Механизм электрофильного замещения

Характеристика электрофильных агентов: сильных, слабых и электрофилов средней силы. Методы синтеза ароматических нитросоединений. Основные реакции электрофильного ароматического замещения (галогенирование, ацилирование, нитрование, алкилирование).

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 16.01.2011
Размер файла 739,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

38

Введение

Электрофильное замещение, несомненно, составляет самую важную группу реакций ароматических соединений. Вряд ли найдется какой-нибудь другой класс реакций, который так детально, глубоко и всесторонне исследован как с точки зрения механизма, так и с точки зрения применения в органическом синтезе. Именно в области электрофильного ароматического замещения впервые была поставлена проблема связи между структурой и реакционной способностью, которая является основным предметом изучения в физической органической химии. В общем виде этот тип реакций ароматических соединений может быть представлен следующим образом:

Позже будет детально рассмотрено электрофильное замещение не только атома водорода, но и других атомов или групп атомов.

1. Электрофильные агенты

Электрофильные агенты мы будем для простоты обозначать символом Е+ , хотя наличие заряда не обязательно, т.к. электрофил может быть и незаряженной электронодефицитной частицей (например, SO3, Hg(OCOCH3)2 и т.п.). Условно их можно разделить на три группы: сильные, средней силы и слабые.

1.1 Сильные электрофилы

NO2+(Ион нитрония, нитроил-катион); комплексы Cl2 или Br2 с различными кислотами Льюиса (FeCl3, AlBr3, AlCl3, SbCl5 и т.д.); H2OCl + , H2OBr + , RSO2+ , HSO3+ , H2S2O7 .

1.2 Электрофилы средней силы

Комплексы алкилгалогенидов или ацилгалогенидов с кислотами Льюиса (RCl. AlCl3, RBr. GaBr3, RCOCl. AlCl3 и др.); комплексы спиртов с сильными кислотами Льюиса и Бренстеда (ROH. BF3, ROH. H3PO4, ROH. HF).

1.3 Слабые электрофилы

Катионы диазония ArN+є N, иминия CH2=N+ H2, нитрозония NO+(нитрозоил-катион); оксид углерода (IY) СО2 (один из самых слабых электрофилов).

Сильные электрофилы взаимодействуют с соединениями ряда бензола, содержащими как электронодонорные, так и практически любые электроноакцепторные заместители. Электрофилы второй группы реагируют с бензолом и его производными, содержащими электронодонорные (активирующие) заместители или атомы галогенов (слабые дезактивирующие заместители), но обычно не реагируют с производными бензола, содержащими сильные дезактивирующие электроноакцепторные заместители (NO2, SO3H, COR,CN и др.). Наконец, слабые электрофилы взаимодействуют только с производными бензола, содержащими очень сильные электронодонорные заместители (+М)-типа (OH, OR, NH2, NR2, O- и др.).

Хотя такое деление довольно условно и между электрофилами разных групп нет резких границ, оно позволяет предварительно оценить перспективность планируемого превращения.

2. Механизм электрофильного ароматического замещения

В настоящее время ароматическое электрофильное замещение рассматривается как двухстадийная реакция присоединения-отщепления с промежуточным образованием аренониевого иона, называемого -комплексом

I-Аренониевый ион (-комплекс), как правило, короткоживущий. Такой механизм получил название SEAr, т.е. SЕ (аренониевый). В этом случае на первой стадии в результате атаки электрофила циклическая ароматическая 6-электронная -система бензола исчезает и заменяется в интермедиате I на нециклическую 4-электронную сопряженную систему циклогексадиенильного катиона. На второй стадии вновь восстанавливается ароматическая -система за счет отщепления протона.

Строение аренониевого иона I изображают различными способами:

Наиболее часто употребляется первая формула, которой мы и будем придерживаться. Однако, другие приведенные формулы также полезны, т.к. они ясно показывают, что положительный заряд аренониевого иона в основном находится в орто- и пара-положениях к геминальному узлу (СНЕ) циклогексадиенильного катиона . Следовательно, -комплекс будет гораздо лучше стабилизироваться донорными заместителями, находящимися в орто- и пара-положениях, чем донорными заместителями в мета-положении.

2.2 Комплексы

Как известно, арены являются -основаниями и могут образовывать донорно-акцепторные комплексы со многими электрофильными реагентами.

Так, при пропускании сухих газообразных HCl или DCl в раствор бензола, толуола, ксилолов или других полиалкилбензолов в н-гептане при -78оС удалось обнаружить образование молекулярных комплексов состава 1:1 (Г.Браун, 1952 г.). Эти комплексы не окрашены, их растворы в ароматических углеводородах неэлектропроводны. При растворении газообразного DCl в бензоле, толуоле, ксилолах, мезитилене, пентаметилбензоле не происходит обмен H на D, следовательно, реакция (1) не идет. Поскольку растворы комплексов не проводят электрический ток, они не являются ионными частицами, т.е. это не аренониевые ионы. Такие донорно-акцепторные комплексы получили название -комплексов. Например, кристаллы комплексов бензола с бромом или хлором состава 1:1 согласно рентгеноструктурным данным состоят из цепочек чередующихся молекул -донора состава (C6H6) и акцептора (Cl2,Br2), в которых молекула галогена расположена перпендикулярно плоскости кольца вдоль оси, проходящей через его центр симметрии.

Константы устойчивости -комплексов очень слабо зависят от природы ароматического субстрата. Так, например, константы устойчивости -комплексов HCl и DCl с ароматическими углеводородами при -78оС при переходе от бензола к мезитилену (1,3,5-триметилбензолу) и дуролу (1,2,4,5-тетраметилбензолу) возрастают всего в 3-4 раза. Константы устойчивости -комплексов йода с бензолом и гексаметилбензолом различаются не более чем в десять раз.

2.3 Комплексы (аренониевые ионы)

При введении в раствор HCl и DCl в алкилбензолах AlCl3 или AlBr3 раствор начинает проводить электрический ток. Такие растворы окрашены и их окраска изменяется от желтой до оранжево-красной при переходе от пара-ксилола к пентаметилбензолу. В системах ArH-DCl-AlCl3 или ArH-DF-BF3 атомы водорода ароматического кольца уже обмениваются на дейтерий (реакция 1). Электропроводность растворов определенно указывает на образование ионов в тройной системе арен-галогенводород-галогенид алюминия. Строение таких ионов было установлено с помощью ЯМР-спектроскопии на ядрах 1Н и 13С в системе ArH-HF(жидк)-BF3 или ArH-HF-SbF5 в SO2ClF при низкой температуре. Оно полностью соответствует структуре аренониевого иона I

Устойчивость -комплексов (аренониевых ионов), в отличие от устойчивости -комплексов, очень сильно зависит от числа и природы заместителей в бензольном кольце. Так, бензолониевый ион С6Н7+ получен только в суперкислой среде HF-SbF5-SO2ClF при -134оС, тогда как мезитилен образует аренониевый ион при взаимодействии с HF в присутствии BF3 устойчивый до -30оС.

Этот -комплекс имеет желтую окраску и полностью разлагается на исходные компоненты уже при -15оС. При использовании в качестве кислоты Льюиса SbF5 образуется соль с противоионом SbF6- , которая более стабильна и не разлагается даже при +50оС.

Можно сделать следующие выводы:

Введение метильных групп в бензольное кольцо увеличивает основность арена. Причем, введение второй метильной группы в мета-положение к первой (1,3-диметилбензол или м-ксилол) увеличивает основность арена в гораздо большей степени, чем ее введение в орто- или пара-положение к уже имеющейся метильной группе (1,2-и 1,4-диметилбензолы или орто- и пара-ксилолы). Это обусловлено тем, что в орто- и пара-диметилбензолах лишь одна из метильных групп может находиться в орто- или пара-положении к возникающему в -комплексе геминальному узлу, т.е. лишь одна из групп СН3 эффективно стабилизирует положительный заряд (распределенный в орто- и пара-положениях к геминальному узлу -комплекса).

Конденсированные ароматические системы более основны, чем бензол. Это связано с уменьшением их ароматического характера.

Подобного рода -комплексы были зафиксированы при низкой температуре для многих реакций электрофильного замещения в ароматическом кольце. Ниже приводятся некоторые наиболее типичные примеры.

Стабильные при комнатной температуре бензолониевые ионы получены в случае 1,3,5-трис(диалкиламино)бензолов:

таким образом, устойчивость - комплексов должна быть большей при наличии в ароматическом ядре электронодонорных заместителей, участвующих в делокализации положительного заряда, а также при наличии комплексных противоионов типа BF4- или SbF6- (слабые основания).

Классификация заместителей

Монозамещенные бензолы С6Н5Х могут быть более или менее реакционноспособны, чем сам бензол. Если в реакцию ввести эквивалентную смесь С6Н5Х и С6Н6, то замещение будет происходить селективно: в первом случае в реакцию будет вступать преимущественно С6Н5Х, а во втором случае - преимущественно бензол.

В настоящее время заместители делят на три группы с учетом их активирующего или дезактивирующего влияния, а также ориентации замещения в бензольном кольце.

Активирующие орто-пара-ориентирующие группы. К ним относятся: NH2, NHR, NR2, NHAc, OH, OR, OAc, Alk и др.

Дезактивирующие орто-пара-ориентирующие группы. Это галогены F, Cl, Br и I.

Эти две группы (1 и 2) заместителей называют ориентантами I-го рода.

Дезактивирующие мета-ориентирующие группы. Эту группу составляют NO2, NO, SO3H, SO2R, SOR, C(O)R, COOH, COOR, CN, NR3+ ,CCl3 и др. Это ориентанты II-го рода.

Естественно, что существуют и группировки атомов промежуточного характера, обусловливающие смешанную ориентацию. К ним, например, относятся: CH2NO, CH2COCH3, CH2F, CHCl2, CH2NO2, CH2CH2NO2, CH2CH2NR3+, CH2PR3+, CH2SR2+ и др.

Приведем некоторые типичные примеры влияния ориентантов I и II-го рода:

Ориентация замещения при наличии нескольких заместителей.

При наличии двух групп в бензольном кольце возможны случаи согласованной или несогласованной ориентации. Согласованная ориентация наблюдается при наличии двух ориентантов I-го рода или двух ориентантов II-го рода в мета-положении друг к другу. Согласованная ориентация также наблюдается при наличии в пара- или орто-положении одного ориентанта I-го рода и одного ориентанта II-го рода. Среди огромного числа примеров согласованной ориентации двух и более заместителей приведем только некоторые наиболее наглядные примеры:

Для приведенных ниже дизамещенных производных бензола цифрами обозначены выходы орто-, мета- и пара-изомеров в реакции нитрования при согласованной ориентации двух групп.

Если два имеющихся заместителя обладают различным ориентирующим влиянием, их целесообразно разделить на три класса:

Сильные активирующие орто-пара-ориентанты (NR2,NHR,NH2,OH,OR).

Алкильные группы и галогены.

Дезактивирующие мета-ориентанты.

Если два заместителя принадлежат к разным классам, всегда преобладает ориентирующий эффект активирующего заместителя (орто-пара-ориентанта) по сравнению с мета-ориентантом, например, в нитровании:

Наконец, если при несогласованной ориентации оба заместителя принадлежат к одному классу, следует ожидать образования смеси изомерных продуктов.

Последний пример интересен в том отношении, что он демонстрирует более высокую активирующую способность NHCOOCH3-группы по сравнению с алкоксильной группой. Эти правила необходимо соблюдать при выборе пути синтеза полизамещенных производных бензола.

Электрофильное замещение в конденсированных бензоидных ароматических системах.

Электрофильное замещение в соединениях данного типа также протекает с частичным нарушением ароматической системы на стадии образования -комплекса. Потери энергии стабилизации в этом случае существенно ниже, чем в случае бензола или соединений с изолированными бензольными ядрами. Напомним величины энергии стабилизации (кДж/моль) для ароматических соединений, рассматриваемых в данном разделе: бензол - 150; нафталин - 255; бифенил - 300; антрацен - 350; фенантрен - 385. Потери энергии стабилизации (кДж/моль) при образовании -комплексов и нарушении ароматической системы в одном кольце составляют следующие величины: бензол - 150; бифенил - 150; нафталин - 105. Центральные ядра: антрацен - 50; фенантрен - 50. Периферийные ядра: антрацен - 95; фенантрен - 130. Эти цифры получены следующим образом: например, энергия стабилизации фенантрена равна 385 кДж/моль; после нарушения ароматичности в центральном кольце остается ароматическая система бифенила с энергией стабилизации 300 кДж/моль. Следовательно, потеря энергии стабилизации в этом случае составляет величину 85кДж/моль (385 кДж/моль - 300 кДж/моль). При нарушении ароматичности в периферийном кольце фенантрена остается ароматическая система нафталина с энергией стабилизации 255кДж/моль. Потеря энергии стабилизации в этом случае равна 130 кДж/моль (385 кДж/моль - 255 кДж/моль).

Из приведенных данных можно сделать два важных вывода:

Нафталин, антрацен и фенантрен должны легче вступать в реакции электрофильного замещения, чем бензол и соединения с изолированными бензольными ядрами.

В свою очередь, центральные ядр а в антрацене и фенантрене будут более реакционноспособными, чем периферийные. Электрофильное замещение в этих системах в большинстве случаев будет идти в 9,10-положения.

Электрофильное замещение в нафталине приводит к одинаковой потере энергии стабилизации (на стадии образования -комплекса) как при атаке электрофила в - положение, так и при его атаке в -положение нафталиновой системы. Однако, для аренониевого иона, образующегося в первом случае, можно изобразить две энергетически выгодные резонансные структуры, тогда как во втором случае - только одну.

Энергетически менее выгодные резонансные структуры, в которых нарушена ароматичность обоих колец, мы не приводим, хотя полностью исключить участие второго кольца в делокализации положительного заряда в -комплексе нельзя.

Электрофильное замещение в конденсированных системах может протекать как по классическому механизму SE(Ar) с образованием аренониевых ионов, так и по ионому механизму присоединения-отщепления.

Доказано, что галогенирование и нитрование антрацена в мягких условиях протекают через промежуточное образование продуктов 9,10-присоединения, которые легко превращаются в 9-производные антрацена (при избытке электрофильного реагента образуются 9,10-дизамещенные производные антрацена.

Приведенные примеры демонстрируют "диеновый" характер антрацена и его склонность к реакциям 1,4-присоединения, характерным для сопряженных диенов.

В тоже время, ацилирование антрацена проводят в условиях, типичных для процессов SE(Ar).

В фенантрене углерод-углеродная связь 9-10 проявляет свойства двойной связи в алкенах (гидрирование, озонолиз, галогенирование). Так, бромирование фенантрена при низкой температуре в растворе CCl4 приводит к преимущественному образованию продукта 9,10-присоединения.

В более жестких условиях или в присутствии кислоты Льюиса образуется только 9-бромфенантрен.

Экспериментальные данные показывают, что не всегда можно заранее предсказать результат конкретной реакции электрофильного замещения в конденсированных системах. Следует помнить, что при этом реализуются не только общие закономерности, изложенные выше, но и проявляются индивидуальные особенности каждой конденсированной системы. Например, нитрование фенантрена протекает неоднозначно и выход 9-нитрофенантрена составляет не более 35% (кроме 9-фенантрена образуются 9,10-динитрофенантрен, 1-, 2-, 3- и 4-мононитрофенантрены). Ацилирование фенантрена вообще не приводит к образованию 9-ацетилфенантрена, а протекает следующим образом:

3. Основные реакции электрофильного ароматического замещения

3.1 Нитрование

электрофильный агент ароматическое замещение

Нитрование является механистическим прототипом всех остальных реакций электрофильного ароматического замещения. Эта реакция находит широкое синтетическое применение и механизм ее изучен наиболее подробно.

Методы синтеза ароматических нитросоединений.

Для нитрования бензола, толуола, ксилолов и ароматических соединений, содержащих электроноакцепторные заместители, применяют нитрующую смесь, например:

1,3,5-Тринитробензол можно получить нитрованием 1,3-динитробензола в течение многих часов концентрированной азотной кислотой в олеуме, однако выход продукта невелик. Гораздо удобнее получать 1,3,5-тринитробензол из 2,4,6-тринитротолуола (взрывчатое соединение тротил), которое в свою очередь получают нитрованием толуола при 70оС нитрующей смесью.

Следует заметить, что соединения с акцепторными группами, такими как СHO, COOH, COOR, CN, при нитровании нитрующей смесью наряду с обычным мета-изомером дают значительные количества орто-изомера; пара-изомер при этом образуется в малых количествах

Хлорбензол при 50-70оС дает смесь орто- и пара-нитробензола (33-35 и 65-67% соответственно).

Нитрующая смесь является довольно сильным окислителем, поэтому ее нельзя использовать для прямого нитрования фенола и анилина, а также их производных с донорными заместителями. НО-Группу в фенолах можно защитить алкилированием (снимается защита действием конц.HI), а NH2-группу в анилинах - ацилированием (снимается защита щелочным или кислотным гидролизом). При этом мы по прежнему имеем сильные ориентанты I-го рода (более сильные, чем алкильные группы), а склонность ароматической системы к окислению резко уменьшается. Соединения ряда бензола, содержащие сильные электронодонорные заместители, можно нитровать азотной кислотой разной концентрации (фенолы и их простые эфиры), азотной кислотой в уксусной кислоте (фенолы), ацетилнитратом (простые эфиры фенолов, ацетанилид). Ацетилнитрат, образующийся при растворении HNO3 в уксусном ангидриде, взрывоопасен, поэтому его обычно не выделяют в индивидуальном виде, а используют его растворы в уксусном ангидриде. Варьируя условия реакций (температуру, нитрующие агенты), можно проводить нитрование региоселективно.

Орто-нитрофенол отгоняют с водяным паром из реакционной смеси.

После снятия ацетильной защиты получают свободные орто- и пара-анилины. Мета-нитроанилин получают парциальным восстановлением мета-динитробензола сероводородом в водном или спиртовом аммиаке.

Ди- и тринитросоединения, содержащие нитрогруппы в орто- или пара-положении друг к другу, или в орто- или пара-положении к электроноакцепторной группе получают окислением амино-группы с помощью реактива Эммонса, представляющего собой раствор пертрифторуксусной кислоты CF3CO3H в хлористом метилене.

Нафталин нитруется в более мягких условиях, чем бензол

3.2 Галогенирование

В реакциях замещения аренового водорода на галогены активность галогенов уменьшается в ряду Cl2>Br2>>I2. В качестве электрофильных галогенирующих агентов используются молекулярные галогены или комплексы галогенов с разнообразными кислотами Льюиса (FeCl3, FeBr3, AlCl3, AlBr3 галогениды Ga,Sb,Sn,TiCl4 и др.). Очень часто применяют растворы Сl2 и Br2 в уксусной кислоте.

Галогенирование аренов молекулярными галогенами в отсутствие кислот Льюиса или Бренстеда, поляризующих связь галоген-галоген, эффективно лишь для полиалкилбензолов, фенолов, простых эфиров одно- и многоатомных фенолов, и ароматических аминов. В других случаях необходим катализ кислотами Льюиса или Бренстеда. Активные субстраты хлорируются хлором в уксусной кислоте, где электрофилом является просто элементарный хлор. Реакция имеет второй кинетический порядок (скорость=k[ArH][Cl2]). На ее скорость не влияют добавки сильных кислот или оснований. При добавлении ионов Cl- (общий ион) и СH3COO- в обоих случаях проявляется лишь нормальный солевой эффект. На основании этого можно сделать вывод, что электрофилами в этом случае не являются ни Cl+ , ни CH3COОCl. Поэтому был предложен очень простой двухстадийный механизм:

Такой же механизм наблюдается и в других органических растворителях.

Бромирование происходит аналогично, однако при сохранении первого порядка по ArH, порядок по брому часто отличается от первого. Вероятно, это связано с более легкой обратимостью первой стадии. Галогенирование свободными галогенами активных ароматических субстратов протекает очень легко и часто приводит к полигалоидпроизводным. Например, анилин и фенол при действии бромной воды мгновенно превращаются в нерастворимые 2,4,6-трибромпроизводные, причем в случае фенола при избытке бромной воды реакция протекает более глубоко.

Поэтому, для получения моногалоидзамещенных производных фенола и анилина используют специальные приемы:

Понижают активность галогена и увеличивают"объем" галогенирующей частицы (например, используют комплексы хлора и брома с уксусной кислотой, комплекс брома с диоксаном - диоксанбромид).

Понижают активность субстрата и увеличивают "объем" ориентирующего заместителя (например, ацилируют NH2-группу в анилине).

Механизм галогенирования при катализе кислотами Льюиса или Бренстеда часто называют галогенированием "положительным бромом" или "положительным хлором", но эти названия чисто условны. При бромировании бромом в присутствии кислот Льюиса в этих реакциях участвует комплекс галогена с кислотой Льюиса, например, [Br + ...Br-FeBr3 - ]. В качестве катализатора обычно берут FeCl3 или FeBr3, которые можно получать из металлического железа и Cl2 или Br2 прямо в реакционном сосуде. Более активные катализаторы AlCl3 или AlBr3 нередко приводят к образованию продуктов полигалогенирования. Так, например, при бромировании бензола в присутствии AlBr3 замещаются все шесть атомов водорода и образуется гексабромбензол. Поэтому AlHal3 мало пригодны для галогенирования бензола, моно- и диалкилбензолов, галогенбензолов. Сильные кислоты Льюиса эффективны при галогенировании нитробензола, бензойной кислоты и других соединений, содержащих электроноакцепторные заместители. Во всех случаях атакующим агентом, по-видимому, является комплекс Hal2 с кислотой Льюиса. До сих пор нет прямых доказательств участия в реакции катионов Cl+ или Br+, как кинетически независимых частиц.

Толуол в присутствии FeBr3, бромируется существенно быстрее, чем бензол (kтолуол/kбензол=160). При этом получается смесь пара- и орто-изомеров в соотношении ~2:1, и совсем не получается мета-изомера, а при хлорировании толуола орто- и пара-изомеры образуются в примерно равных количествах.

Следует также отметить, что введение хлора или брома в бензольное кольцо уменьшает скорость дальнейшего замещения не более чем в 7-8 раз в отличие от нитрования, где скорость реакции введения второго заместителя уменьшается в 107раз. Поэтому хлорирование и бромирование бензола всегда приводит к смеси дигалогенпроизводных. При хлорировании хлорбензола сначала образуется смесь орто- и пара-дихлорбензолов в соотношении 3:7, а при дальнейшем хлорировании получается смесь 1,2,3- и 1,2,4-трихлорбензолов.

Напротив, каталитическое галогенирование соединений с электроноакцепторными заместителями протекает более селективно.

Нафталин галогенируется гораздо легче, чем бензол. Реакцию можно проводить как в присутствии кислоты Льюиса, так и без нее.

Бром реагирует еще более селективно, чем хлор:

Широкое применение в синтетической практике находят такие галогенирующие агенты, как трифторацетилгипобромит и особенно трифторацетилгипоиодит (CF3COOHal). Эти гипогалогениты образуются при действии соответствующего галогена на трифторацетаты серебра или ртути.

Можно использовать также ацетилгипогалогениты, однако трифторацетилгипогалогениты гораздо более реакционноспособны. Например, скорости бромирования при действии Br2, CH3COOBr и CF3COOBr составляют 1:106:1010.

Молекулярный иод является слишком слабым электрофильным агентом. Только очень активные ароматические соединения, такие, как ароматические амины или фенолят-ион реагируют непосредственно с I2. В качестве более активного иодирующего агента иногда используют хлорид иода ICl. Удобным методом иодирования ароматических соединений является использование смеси молекулярного иода и окислителей (окислительное иодирование), лучшим из которых является, по-видимому, HIO4, но азотная кислота употребляется наиболее часто, как более дешевая.

Очень хорошие результаты получаются при иодировании ароматических соединений смесью I2 с хлоридом меди (II) CuCl2. Хлорная медь выполняет, вероятно, двоякую функцию и кислоты Льюиса и окислителя:

Ввиду чрезвычайной активности фтора, прямое фторирование практически не применяют для введения фтора в ароматическое кольцо. Арилфториды получают термическим разложением тетрафторборатов арилдиазониев (реакция Шимана).

3.3 Алкилирование по Фриделю-Крафтсу

Реакция Ш.Фриделя-Дж.Крафтса (1877 г.) представляет собой удобный метод прямого введения алкильной группы в ароматическое кольцо. Алкилирование ароматических соединений осуществляется под действием алкилгалогенидов, только в присутствии в качестве катализатора подходящей кислоты Льюиса: AlBr3, AlCl3, GaBr3, GaCl3, BF3, SbF5, SbCl5, FeCl3, SnCl4, ZnCl2 и др.

Наиболее активными катализаторами являются безводные сублимированные бромиды алюминия и галлия, пятифтористая сурьма, хлориды алюминия и галлия, менее активны галогениды железа (III), SbCl5, к малоактивным катализаторам относятся SnCl4 и ZnCl2. В целом активность кислот Льюиса, как катализаторов алкилирования бензола, уменьшается в ряду AlBr3> GaBr3> AlCl3> GaCl3> FeCl3> SbCl5> TiCl4> BF3> BCl3> SnCl4> SbCl3. Самым распространенным катализатором этой реакции является предварительно сублимированный хлористый алюминий.

Реакция алкилирования ароматических углеводородов в органическом синтезе.

Ароматические углеводороды легко алкилируются под действием самых разнообразных алкилгалогенидов, аллилгалогенидов, бензилгалогенидов и триарилметилгалогенидов в присутствии AlCl3 или AlBr3, а также FeCl3 или FeBr3 при 0-25оС или при более высокой температуре. Реакционная способность уменьшается в ряду (C6H5)3CX> (C6H5)2CHX> C6H5CH2X> CH2=CHCH2X> R3CX> R2CHX> RCH2X> CH3X.

Алкилирование аренов по Фриделю-Крафтсу как синтетический метод имеет три серьезных недостатка, ограничивающих его применение в органическом синтезе. Один из них заключается в том, что первоначально образующийся продукт алкилирования более реакционноспособен, чем исходный арен. Поэтому алкилирование аренов алкилгалогенидами при соотношении реагентов, близком к эквимольному, приводит к образованию значительного количества продуктов полиалкилирования. В этом отношении алкилирование сильно отличается от нитрования и галогенирования. Для того, чтобы свести полиалкилирование к минимуму, используют большой избыток ароматического углеводорода. В этом случае он выполняет роль и реагента, и растворителя.

Другой недостаток метода алкилирования по Фриделю-Крафтсу связан с изомеризацией алкилирующего агента в ходе реакции, в результате чего образуется смесь изомерных продуктов алкилирования. Классическим примером является алкилирование бензола н-пропилхлоридом, где получается смесь н-пропил- и изопропилбензолов, в которой изомеризованный продукт оказывается доминирующим.

Изопропилбензол получается в результате изомеризации 1-хлорпропана в 2-хлорпропан под действием кислоты Льюиса.

Вторичные алкилгалогениды в реакции алкилирования ароматических углеводородов более реакционноспособны, чем первичные, поэтому доля изомеризованного продукта оказывается выше, чем алкилбензола с первичной алкильной группой.

Таким образом, из первичных алкилгалогенидов образуется смесь первичных и вторичных алкилбензолов. По этой причине н-алкил-бензолы целесообразно получать не алкилированием, а ацилированием аренов по Фриделю-Крафтсу с последующим восстановлением жирно-ароматических кетонов по Клемменсену.

При алкилировании бензола неопентилхлоридом или изобутилхлоридом получается только трет-алкилбензол.

Третье ограничение, препятствуещее применению реакции алкилирования по Фриделю-Крафтсу, связано с миграцией алкильных групп в конечном продукте реакции. Алкилирование толуола 2-хлорпропаном и AlCl3 в ацетонитриле при 0оС приводит к смеси 63% орто-цимола (орто-изопропилтолуола), 25% пара-цимола и 12% мета-цимола. Однако уже при 25оС в присутствии AlCl3 (2 моля) и HCl образуется только мета-изомер цимола. При растворении смеси трех изомерных цимолов в смеси безводной HF и BF3 уже через10 минут образуется чистый мета-цимол. Аналогичный результат наблюдается при алкилировании пара-ксилола 2-хлорпропаном, где наряду с ожидаемым продуктом 2,5-диметилкумолом получается и 3,5-диметилкумол.

Алкилирование по Фриделю-Крафтсу относится к немногочисленной группе обратимых реакций электрофильного ароматического замещения, подчиняющихся термодинамическому контролю, когда в продуктах реакции преобладает более стабильные 1,3-диалкил- или 1,3,5,-триалкилбензолы.

Изомеризация первоначально образующихся продуктов алкилирования в присутствии галогеноводорода и кислоты Льюиса происходит на стадии образования аренониевого иона за счет внутримолекулярного 1,2-сдвига алкильной группы. Для взаимных превращений пара-, мета- и орто-ксилолов изомеризация описывается следующим образом:

В результате перемещения метильной группы в аренониевых ионах между тремя изомерами ксилола устанавливается равновесие, в котором всегда преобладает наиболее стабильный мета-ксилол. В зависимости от температуры в смеси содержится 52-60% мета-ксилола, 23-24% пара-ксилола и 16-25% орто-ксилола. В жестких условиях изомеризация алкилбензолов приобретает межмолекулярный характер, в результате чего из ксилолов образуется смесь, содержащая три-, тетра- и пентаметилбензолы наряду с эквивалентными количествами толуола и бензола.

Ароматические соединения, содержащие электроноакцепторные заместители NO2, NO,CN,COOR и др., не алкилируются в условиях реакции Фриделя-Крафтса. Ароматические амины и фенолы связывают кислоты Льюиса в нереакционноспособный донорно-акцепторный комплекс, где неподеленная пара электронов кислорода или азота координируется с атомом металла кислоты Льюиса. Поэтому для алкилирования этих соединений в ароматическое ядро используют другие методы.

Для алкилирования ароматических углеводородов вместо алкилгалогенидов можно использовать спирты; в качестве катализаторов в этом случае берут BF3, фосфорную, полифосфорную или серную кислоты.

Катализатор следует применять в стехиометрическом количестве, так как вода, образующаяся в результате реакции, связывает BF3 или другой кислотный агент. Недостатки этого метода алкилирования те же, что и при алкилировании с помощью алкилгалогенидов.

Два изомерных спирта - пентанол-2 и пентанол-3 при взаимодействии с бензолом в присутствии BF3 образуют смесь 2-фенилбутана и 3-фенилбутана в одном и том же соотношении 2:1

Оба катиона (или донорно-акцепторных комплекса), образующихся из изомерных спиртов, являются вторичными и близки по стабильности, поэтому соотношение продуктов алкилирования 2:1 отражает статистическую предпочтительность 2-пентилкатиона.

Наиболее дешевыми реагентами для алкилирования аренов в промышленном масштабе являются алкены - этилен, пропилен, изобутилен и др. Эти реакции лежат в основе крупнотоннажного производства этилбензола, кумола. Типичными катализаторами таких процессов служат системы HCl - AlCl3, или HF - BF3; H3PO4, HF.

Наряду с моноалкилбензолами всегда образуются продукты диалкилирования.

Кроме спиртов и алкенов для алкилирования ароматических систем довольно широко используется формальдегид. Так в присутствии минеральных кислот реакция бензола с формальдегидом приводит к дифенилметану с высоким выходом (при использовании 85%-ной серной кислоты выход составляет 80%).

Если реакцию алкилирования ароматических соединений формальдегидом проводить в присутствии избытка газообразного хлористого водорода, то ее результатом будет образование соответствующих хлорметильных производных (реакция хлорметилирования).

Толуол и анизол хлорметилируются в системе CH2O-ZnCl2-HCl исключительно в пара-положение. Реакция хлорметилирования протекает через первоначальное образование гидроксиметильных производных, которые в присутствии избытка HCl (газ) превращаются в хлорметильные производные.

3.4 Ацилирование по Фриделю-Крафтсу

Введение ацильной группы в ароматическое кольцо с помощью ацилирующего агента и кислоты Льюиса называют ацилированием по Фриделю-Крафтсу. Ацилирующими агентами обычно являются галогенангидриды и ангидриды кислот в присутствии галогенидов алюминия, трифторида бора или пентафторида сурьмы в качестве кислот Льюиса. Ацилгалогениды и ангидриды кислот образуют с кислотой Льюиса донорно-акцепторные комплексы состава 1:1 и 1:2. Спектральными методами было установлено, что хлорид алюминия, трифторид бора и пентафторид сурьмы координируются по карбонильному атому кислорода, так как он более основен чем соседний атом хлора. Электрофильным агентом в реакции ацилирования ароматических соединений является либо этот донорно-акцепторный комплекс, либо катион ацилия, образующийся при его диссоциации.

Координация по кислороду, а также образование катиона ацилия СН3СО+ доказано рентгеноструктурным анализом твердых комплексов ацетилхлорида с AlCl3 состава 1:1. Ацилгалогениды при взаимодействии с пятифтористой сурьмой в апротонной среде образуют ионно построенные соли RC+ =O SbF5X- , включающие катион ацилия.

Можно полагать, что медленной стадией реакции является атака одного из трех электрофилов (RCO+ , RCOCl . AlCl3, RCOCl . Al2Cl6 ) на арен, приводящая к -комплексу. Эффективность этих ацилирующих частиц зависит от природы субстрата, ацилгалогенида и растворителя, а также от количества взятого катализатора.

При ацилировании аренов ацилгалогенидами, катализируемом хлоридом или бромидом алюминия в полярных апротонных растворителях (нитробензоле, нитрометане и др.), ацилирующим агентом является катион ацилия, тогда как в малополярной среде (хлористом метилене, дихлорэтане или тетрахлорэтане) в реакции принимает участие донорно-акцепторный комплекс. Природа ацилгалогенида также оказывает влияние на образование и стабильность солей ацилия. Галогенангидриды ароматических карбоновых кислот легче превращаются в ацилиевые соли по сравнению с аналогами жирного ряда. Механизм реакции ацилирования аренов по Фриделю-Крафтсу под действием донорно-акцепторного комплекса

Ароматический кетон представляет собой более сильное основание Льюиса, чем ацилгалогенид и образует стабильный комплекс с AlCl3 или другой кислотой Льюиса. Поэтому для ацилирования ароматических соединений ацилгалогенидами требуется несколько больше эквимолярного количества катализатора, а при ацилировании ангидридами кислот два моля катализатора (т.к. они содержат два карбонильных атома кислорода). Кетон выделяют, разлагая его комплекс с AlCl3 водой или соляной кислотой.

Ацилирование по Фриделю-Крафтсу полностью лишено тех недостатков, которые присущи реакции алкилирования. При ацилировании вводится только одна ацильная группа, поскольку ароматические кетоны не вступают в дальнейшую реакцию (так же, как и другие арены, содержащие сильные электроноакцепторные группы: NO2, CN, COOR). Еще одним преимуществом этой реакции по сравнению с алкилированием является отсутствие перегруппировок в ацилирующем агенте. Кроме того, для ацилирования не характерны реакции диспропорционирования продуктов реакции. Все эти особенности делают ацилирование по Фриделю-Крафтсу важнейшим методом синтеза жирноароматических и ароматических кетонов, которые получаются, как правило, с очень высоким выходами. Первоначально в качестве растворителя использовали сероуглерод, нитрометан, нитробензол или избыток жидкого ароматического углеводорода. В настоящее время предпочтение отдается тетрахлорэтану, 1,2-дихлорэтану и прежде всего легко летучему хлористому метилену, хорошо растворяющему хлорид и бромид алюминия.

Возможно, такая селективность ацилирования нафталина связана с большим объемом комплекса CH3COCl . AlCl3 . PhNO2 по сравнению с комплексом CH3COCl . AlCl3 . CS2. Наиболее активными ацилирующими агентами являются смешанные ангидриды карбоновых кислот и трифторметансульфокислоты, обычно получаемые из ацилгалогенида и трифторметансульфокислоты непосредственно в реакционной смеси. Эти реагенты ацилируют бензол и другие ароматические углеводороды в отсутствие катализатора.

Ориентация входящей ацильной группы зависит от природы ацильной группы. Для хлоранангидридов и ангидридов алифатических кислот при реакции с аренами, содержащими заместители I-го рода, наблюдается очень высокая селективность замещения в пара-положение:

Соотношение орто/пара-изомеров в этом случае не превышает 0.03 и колеблется в интервале 0.01-0.03. Содержание мета-изомера также не превышает 0.5%. таким образом, ацилирование ароматических соединений хлорангидридами жирных кислот осуществляется чрезвычайно региоселективно в пара-положение. Доля орто-изомера резко возрастает при переходе к галогенангидридам ароматических карбоновых кислот. Для которых орто/пара-отношение изменяется в пределах 0.1 до 0.8. Эти данные находятся в хорошем соответствии с предположением о том, что для производных жирных кислот ацилирующим агентом является объемистый комплекс AlkCOCl . AlCl3, котрый атакует в ароматический субстрат в пространственно незатрудненное пара-положение. Меньшая селективность хлорангидридов ароматических кислот, возможно, объясняется тем, что в реакции принимает участие катион ацилия или его контактная ионная пара.

Важное значение для синтеза бициклических и полициклических кетонов имеет внутримолекулярное ацилирование по Фриделю-Крафтсу. Имеется много вариантов этой реакции, некоторые наиболее типичные примеры приведены ниже.

Размещено на Allbest.ru


Подобные документы

  • Органические соединения, содержащие атом гидроксила. Способы получения фенолов, их кислотные свойства. Реакции электрофильного замещения в ароматическом кольце, конденсация фенолов с альдегидами и кетонами, алкилирование, ацилирование по Фриделю-Крафтсу.

    курсовая работа [200,3 K], добавлен 14.05.2012

  • Основные механизмы замещения протона в ароматической молекуле на электрофильный реагент. Синхронный процесс изменения заряда на субстрате в процессе реакции. Нитрование, галогенирование, сульфирование. Алкилирование и ацилирование по Фриделю-Крафтсу.

    реферат [290,0 K], добавлен 16.10.2012

  • Реакции электрофильного замещения: их условия и предъявляемые требования, механизм и основные этапы. Правила ориентации электрофильного замещения под влиянием заместителей в кольце. Реакции боковых цепей аренов, присоединения к ароматическому кольцу.

    контрольная работа [314,9 K], добавлен 05.08.2013

  • Химические свойства: реакции электрофильного замещения, присоединения, гидрирование и галогенирования. Алкилирование по Фриделю-Крафтсу. Правила ориентации в бензольном кольце. Влияние заместителей в ядре на и распределение изомеров при нитровании.

    реферат [290,9 K], добавлен 21.02.2009

  • Строение бензола и его реакционная способность. Доноры электронов, активаторы ароматического ядра. Реакционная способность нафталина. Реакции электрофильного присоединения и окисления. Реакции нуклеофильного замещения в галогенаренах и галогенбензилах.

    контрольная работа [1,4 M], добавлен 28.02.2013

  • Характеристика, электронное строение и свойства фенолов. Механизм нуклеофильного и электрофильного замещения. Щелочное плавление бензосульфокислоты. Реакция гидрокси-де-диазонирования. Гидролиз сложных эфиров. Электролитическое восстановление хионов.

    курсовая работа [135,7 K], добавлен 28.02.2012

  • Ароматические углеводороды: общая характеристика. Номенклатура и изомерия, физические и химические свойства ароматических углеводородов. Механизм реакций электрофильного и нуклеофильного замещения в ароматическом ряду. Применение аренов, их токсичность.

    реферат [1,2 M], добавлен 11.12.2011

  • Насыщенные и ароматические альдегиды. Синтез альдегидов. Физические свойства, строение альдегидов. Реакция Канниццаро, электрофильного замещения. Методика синтеза м-нитробензальдегида путем нитрования бензальдегида смесью нитрата калия и серной кислоты.

    курсовая работа [251,1 K], добавлен 02.11.2008

  • Понятие и сущность соединений. Описание и характеристика ароматических гетероциклических соединений. Получение и образование соединений. Реакции по атомному азоту, электрофильного замечания и нуклеинового замещения. Окисление и восстановление. Хинолин.

    лекция [289,7 K], добавлен 03.02.2009

  • Структурные формулы углеводородов, типы гибридного состояния углеродных атомов в молекулах. Уравнения последовательно протекающих реакций, названия продуктов этих реакций. Реакция электрофильного замещения в ароматическом кольце ароматических соединений.

    контрольная работа [402,0 K], добавлен 14.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.