Расчет энтальпии
Энтальпия как термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. Критерии оценки данного процесса и факторы, на него влияющие.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 10.01.2011 |
Размер файла | 67,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.
Энтальпия, тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.
Изменение энтальпии не зависит от пути процесса, определяясь только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра, являющегося функцией состояния, равно нулю, отсюда ДH = 0
Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:
· Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).
Молярная теплоёмкость при постоянном давлении обозначается как Cp. В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера Cp = Cv + R.
Молекулярно-кинетическая теория позволяет вычислить приблизительные значения молярной теплоёмкости для различных газов через значение универсальной газовой постоянной:
· для одноатомных газов , то есть около 20.8 Дж/(моль·К);
· для двухатомных газов , то есть около 29.1 Дж/(моль·К);
· для многоатомных газов Cp = 4R, то есть около 33.3 Дж/(моль·К).
где теплоёмкость при постоянном давлении обозначается как Cp
В системе не совершается никакой работы, кроме возможной при P = const работы расширения.
Если реакцию проводят при стандартных условиях при Т = 298 К = 25 ?С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ДHrO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.
Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т1 до Т2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений):
Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:
где ДCp(T1, Tf) - изменение теплоемкости в интервале температур от Т1 до температуры фазового перехода; ДCp(Tf, T2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и Tf - температура фазового перехода. Стандартная энтальпия сгорания
Стандартная энтальпия сгорания - ДHгоро, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.
Стандартная энтальпия растворения
Стандартная энтальпия растворения - ДHраство, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ДHреш > 0, а гидратация ионов - экзотермический, ДHгидр < 0. В зависимости от соотношения значений ДHреш и ДHгидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:
ДHраствKOHо = ДHрешо + ДHгидрК+о + ДHгидрOH-о = ?59 КДж/моль
Под энтальпией гидратации - ДHгидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.
Теплоемкость сP, cV [Дж. моль-1. К-1, кал. моль-1. К-1]
Истинная молярная теплоемкость:
при V = const cV =; P = const cP =.
Средняя молярная теплоемкость численно равна теплоте, которую надо сообщить одному молю вещества, чтобы нагреть его на 1 К: .
Теплоемкости при постоянном давлении или объеме связаны равенством
;
для идеального газа ;
для крист. вещества (, T - термические коэффициенты).
Температурная зависимость теплоемкости многих одноатомных кристаллов при T < q D/12 описывается законом кубов Дебая (q D - характеристическая температура Дебая) cV = aT3, при T cV 3R. В области средних температур применяют различные степенные полиномы (см., напр., закон Кирхгофа).
Правило Дюлонга и Пти: атомная теплоемкость при V = const для любого простого кристаллического вещества приблизительно равна сV 3R (т.е. 25 Дж. моль-1. К-1).
Правило аддитивности: (сP,i - теплоемкость составляющих соединение структурных фрагментов, напр., атомов или групп атомов).
Теплота [Дж. моль-1, кал. моль-1] Q - форма передачи энергия от более нагретого тела к менее нагретому, не связанная с переносом вещества и совершением работы.
Теплота химической реакции при постоянном объеме или давлении (т.е. тепловой эффект химической реакции) не зависит от пути проведения процесса, а определяется только начальным и конечным состоянием системы (закон Гесса):
= U, = H.
Разность тепловых эффектов при P = const (QP) и V = const (QV) равна работе, которая совершается системой ( V>0) или над системой ( V<0) за счет изменения ее объема при завершении изобарно-изотермической реакции:
- = n RT.
Стандартная теплота реакции может быть рассчитана через стандартные теплоты образования () или сгорания () веществ:
где n i,j - стехиометрические коэффициенты в уравнении химической реакции.
Для идеальных газов при T, P = const: rH = rU + n RT.
Зависимость теплового эффекта химической реакции от температуры определяется законом Кирхгофа.
= = , = = ,
т.е. влияние температуры на тепловой эффект реакции обусловлено разностью теплоемкостей продуктов реакции и исходных веществ c учетом стехиометрических коэффициентов:
.
При P = const:
.
энтальпия термодинамический энтропия давление
Если температурная зависимость cP аппроксимирована уравнением
= a + b. T + c. , то
H(T2) = H(T1)+ а. .
Теплота адсорбции - отнесенная к одному молю вещества теплота, которая выделяется при его адсорбции. Адсорбция - всегда экзотермический процесс (Q > 0). При постоянной адсорбции (Г, q = const):
, .
Величина Q является косвенным критерием определения типа адсорбции: если Q < 30 40 кДж/моль) - физическая адсорбция, Q > 40 кДж/моль - хемосорбция.
Теплота образования - изобарный тепловой эффект химической реакции образования данного химического соединения из простых веществ, отнесенный к одному молю этого соединения. При этом считают, что простые вещества реагируют в той модификации и том агрегатном состоянии, которые устойчивы при данной температуре и давлении 1 атм.
Теплота сгорания (т.с.) - тепловой эффект сгорания 1 моля вещества и охлаждения продуктов реакции до первоначальной температуры смеси. Т.С., если не оговорено особо, отвечает сгоранию С до СО2, H2 до H2O (ж.), для остальных веществ в каждом случае указывают продукты их окисления.
Теплота фазового перехода - теплота, поглощаемая (выделяемая) в результате равновесного перехода вещества из одной фазы в другую (см. переход фазовый).
Термодинамические переменные (т. п.) - величины, количественно выражающие термодинамические свойства. Т.П. разделяют на независимые переменные (измеряемые в опыте) и функции. Прим.: давление, температура, элементный химический состав - независимые т. п., энтропия, энергия - функции. Набором значений независимых переменных задается термодинамическое состояние системы (см. также ур-ние состояния). Переменные, которые фиксированы условиями существования системы, и, следовательно, не могут изменяться в пределах рассматриваемой задачи, называют термодинамическими параметрами.
Экстенсивные - т. п., пропорциональные количеству вещества или массе системы. Прим.: объем, энтропия, внутренняя энергия, энтальпия, энергии Гиббса и Гельмгольца, заряд, площадь поверхности.
Интенсивные - т. п., не зависящие от количества вещества или массы системы. Прим.: давление, термодинамическая температура, концентрации, мольные и удельные термодинамические величины, электрический потенциал, поверхностное натяжение. Экстенсивные т. п. складываются, интенсивные - выравниваются.
Размещено на Allbest.ru
Подобные документы
Сущность метода Татевского и расчет энтальпии и энтропии. Вычисление температуры, критического давления и объема. Метод Лидерсена. Определение фазового состояние компонента. Графические зависимости "плотность-температура" для жидкой и паровой фаз.
курсовая работа [446,3 K], добавлен 28.02.2009Прогнозирование энтальпий образования органических веществ. Уравнения Кирхгофа. Изотермические изменения энтальпии. Величины теплоемкостей. Таблицы Ли-Кеслера. Зависимость энтальпии образования циклогексана от давления при избранных температурах.
реферат [77,5 K], добавлен 17.01.2009Энтальпия образования. Прогнозирование энтальпии образования. Прогнозирование органических соединений методом Бенсона по атомам с их первым окружением. Алканы. Групповые составляющие для расчета идеально-газовых свойств по Бенсону. Циклоалканы. Алкены.
курсовая работа [223,4 K], добавлен 17.01.2009Энтальпия - термодинамическая функция состояния и сумма внутренней энергии и работы против внешних сил. Энтальпия образования сложного вещества. Определение энтальпии реакции нейтрализации. Описание эксперимента, вычисление относительной ошибки измерения.
лабораторная работа [73,7 K], добавлен 18.05.2012Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции. Влияние внешних условий на химическое равновесие. Влияние давления, концентрации и температуры на положение равновесия. Типы химических связей.
реферат [127,3 K], добавлен 13.01.2011Для четырех соединений, приведенных в таблице, рекомендованными методами вычислить критическую (жидкость-пар) температуру, критическое давление, критический объем, ацентрический фактор. Рассчет энтальпии и энтропии образования методом Татевского.
реферат [461,5 K], добавлен 06.03.2009Расчеты и прогнозирование свойств органических соединений. Таблица Бенсона – парциальные вклады. Циклогексановый цикл для энтропии и теплоемкости. Рассчет ацентрического фактора. Критические температура и давление. Изотермические изменения энтальпии.
курсовая работа [2,2 M], добавлен 04.01.2009Определение термодинамической системы, ее параметры и виды. Начала термодинамики. Функции состояния системы: внутренняя энергия, энтальпия, энтропия, химический потенциал. Изобарный, изохорный и изотермический процессы. Тепловой эффект реакции.
реферат [87,7 K], добавлен 20.03.2009Спектроскопия как физический метод исследования веществ, его точность и широкое применение в различных областях химии. Термодинамические параметры реакции (константы равновесия, энтальпии и энтропии реакции) бис-ацетилацетоната меди (II) с пиридином.
курсовая работа [1,2 M], добавлен 09.03.2012Определение объема воздуха необходимого для полного сгорания заданного количества пропана. Вычисление изменения энтальпии, энтропии и энергии Гиббса, при помощи следствий из закона Гесса. Определение молярных масс эквивалентов окислителя и восстановителя.
контрольная работа [23,1 K], добавлен 08.02.2012