Химия вокруг нас
Химия вокруг человека: происхождение жизни, реакция фотосинтеза; применение в пищевой промышленности; средства повышения урожайности и борьбы с вредителями; производство строительных материалов, изделий и конструкций, синтетические моющие вещества.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 11.01.2011 |
Размер файла | 30,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Химия и пища
Химия уже давно нашла применение в пищевой промышленности Сельское хозяйство, является, конечно, основным источником пищевых продуктов, но не исключено, что со временем оно может оказаться не таким эффективным. Уже сейчас человек задумывается над тем, как более продуктивно получать равноценную пищу из других источников и это уже удается ученным-химикам и биологам. Оказывается, белок можно получать даже из углеводородов нефти! Наверное, вы слышали, что во многие пищевые продукты добавляют различные химические вещества. Одни из них придают пище привлекательный вид, другие приятный запах, третьи вкус. Но они могут выполнять и более важную роль - сохранять долго продукты, препятствовать их окислению.
Работа “весёлой кухни”: опыты за обеденным столом
Вопрос 1. Отчего свекольный борщ красный?
Каждой хозяйке известно, что если борщ варится чрезмерно долго, то он постепенно теряет свою красивую тёмно-красную окраску и жидкость в кастрюле становится бледной. Чтобы вернуть борщу прежний красный цвет, в него добавляют столовый уксус или твёрдую лимонную кислоту.
Это объясняется тем, что красящее вещество свеклы, подобно лакмусу, сохраняет красный цвет только в кислой среде.
Вопрос 2. Отчего “плавает” картофель?
В литровую банку до половины наливают воды и кладут клубень картофеля. Он остаётся на дне банки. Добавляют в банку насыщенный раствор поваренной соли, и клубень всплывает. Если долить чистой воды, то он снова опускается на дно.
Как объяснить этот опыт?
Ответ: обычно картофель в воде тонет, но при добавлении насыщенного раствора соли, удельный вес которого выше удельного веса картофеля, клубень всплывает. При доливании чистой воды раствор разбавляют и удельный вес его снова изменяется, поэтому картофель опускается на дно.
Вопрос 3. Как зажечь кусочек сахара?
Если насыпать на кусок сахара немного пепла от сигарет и поднести сахар к пламени, то он загорится, и будет гореть синевато-жёлтым пламенем. Здесь пепел служит катализатором.
Вопрос 4. Как приготовить “шипучку”, хорошо утоляющую жажду в жаркий день?
Возьмите полстакана холодной кипячёной воды, всыпьте в него четверть чайной ложки пищевой соды и одну чайную ложку сахарного песка, добавьте немного (на кончике ножа) твёрдой лимонной кислоты или лимонного сока.
Химия и сельское хозяйство
Продукты химии широко используются в сельском хозяйстве. Это средства повышения урожайности, которые помогают человеку в борьбе с различными вредителями, - насекомыми, грызунами, сорняками, грибками и плесенью. Это пестициды и вещества, влияющие на развитие и поведение насекомых. Многие органические вещества (витамины, кормовые антибиотики, стимуляторы роста, аминокислоты) служат добавками к кормам для сельскохозяйственных животных и домашней птицы. Для увеличения производства сельскохозяйственных продуктов используют удобрения. В растениеводстве и животноводстве используют различные пленочные материалы. Чтобы занятие сельским хозяйством стало прибыльным делом, нужны интенсивные методы, а это, прежде всего, использование удобрений и ядохимикатов.
Вопрос 1. Поздней осенью, распахав землю, молодой фермер решил убить двух зайцев сразу: известковать участки с кислой почвой и провести подкормку ее суперфосфатом. Однако весной оказалось, что желаемый эффект не был достигнут. Почему?(На доске записывается уравнение реакции).
Ca (H2 PO4) 2 +2 Ca (OH)2 - Ca3 (PO4)2 + 4 H2O
Вопрос 2. Опытный сосед, пожалев молодого фермера, предложил ему исправить ошибку, внеся в почву хорошо растворимое удобрение, содержащее фосфор. Он позабыл его название, но принес аккуратную запись результатов анализа (%) азота - 12,2, водорода - 5,5, фосфора - 27, кислорода - 55, 6. Что это за вещество?
(Задачу ученики решают самостоятельно, конечный результат - NH4 H2 PO4)
Вопрос 3. Для опрыскивания сада фермеру понадобилось приготовить бордосскую жидкость. Можно ли ее готовить в баках из алюминия или оцинкованной жести?
(Повторяется ряд активности Met). Кроме того, если в процессе приготовления реакция этих растворов окажется кислой, возможно вытеснение меди из раствора цинком и алюминием.
CuSO4 + Zn = ZnSO4 + Cu 3CuSO4 + 2Al = Al2 (SO4)3 + 3Cu
Вопрос 4. Очень часто при хранении минеральных удобрений названия на полиэтиленовых мешках стираются. Есть много способов быстро оценить неизвестное удобрение с помощью подручных средств. Но для этого нужно хорошо знать свойство солей. (Демонстрируются опыты, обсуждаются результаты)
- Если испытываемое вещество селитра, то при растворении его в воде стакан становится “ледяным”, если вещество не растворяется в воде, то это, скорее всего, фосфаты; фосмука или суперфосфат.
- Для определения солей аммония смешиваем примерно равные части удобрения и гашеной извести (гидроксида кальция) и нагреваем. При этом появляется запах аммиака.
(NH4)2 SO4 + Ca (OH)2 = CaSO4 + 2NH3 + 2H2O
- Для определения селитры, сухое, измельченное в тонкий порошок удобрение посыпать на тлеющую лучину, при этом на ней могут появиться яркие вспышки, следовательно, мы имеем дело с селитрами;
2NaNO3 = 2NaNO2 + O2
Химия и строительство
Химия проникла и в такую отрасль промышленности, как производство строительных материалов, строительных изделий и конструкций. Так, в современном строительстве находят применение различные пластмассы, добавки в цементы и в бетоны, новые лаки, гидрофобизирующие составы и др. Это позволяет постепенно заменять традиционные строительные материалы более легкими, прочными и красивыми. Их использование связано с тем, что полимерные материалы обладают необходимым комплексом физико-химических и строительно-эксплуатационных свойств. Это, прежде всего, прочность, небольшая объемная масса (например, пено- и поропласты) и эластичность, высокая водо-, газо- и паронепроницаемость, химическая стойкость и устойчивость к коррозии. Применение пластмасс в строительстве уменьшает вес строительных конструкции. Кроме того, это дает возможность находить многие интересные инженерные и архитектурные решения.
Нередко нам приходится заниматься ремонтом самостоятельно. Многие виды ремонтных работ может освоить каждый, но химику это сделать проще, так как в основе применения большинства строительных материалов лежат чисто химические процессы. Изучив закономерности протекания этих процессов, можно сделать ремонт и быстрее и более качественно.2
Задание 1. Опытные мастера определяют окончание “схватывания” штукатурки по внешним признакам. Можно ли определить это химическим путем - с помощью индикатора?
Ответ можно найти в учебнике для 9 кл (свойства оснований)
Ответ: при полном “схватывании” весь Са (ОН)2 превращается в карбонат и проба с фенолфталеином не даёт окрашивания, если же штукатурка не схватилась полностью, то присутствующий Са (ОН)2 дает с фенолфталеином малиновое окрашивание.
Задание 2. Как лучше с точки зрения гигиены отделать потолок и стены кухни: побелить мелом, известью, окрасить масляной краской, водоэмульсионной краской, эмалью, оклеить клеёнкой?
Необходимая информация в учебниках для 8-9 кл (горение, состав и свойства природного газа , свойства строительных материалов).
Ответ: в порядке убывания гигиенических свойств материалы можно расположить так известь, мел, водоэмульсионная краска, масляная краска, эмаль, клеенка.
Задание3. Вы собрались бетонировать дорожку на дачном участке. Когда лучше этим заняться: в жаркую сухую погоду или в дождливую, влажную?
Вам поможет информация из учебника 9 кл (строительные материалы , свойства силикатов, получение цемента )
Ответ: основным химическим процессом, происходящим при “схватывании” бетона, является гидратация. Поэтому все бетонные работы нежелательно проводить в жаркую, сухую погоду, когда вода быстро испаряется. Для нормального схватывания бетона по технологии строительных работ его надо поливать водой, поэтому для выполнения бетонных работ всегда предпочтительна влажная погода.
Задание 4. К каким процессам можно отнести процессы высыхания масляной краски и эмали: к физическим или химическим?
Ответ: высыхание масляной краски - химический процесс, эмали - физический.
Химия и синтетические моющие вещества (СМС)
Мыло - первое гигиеническое средство, с которым встречается каждый человек после рождения. Мылом как моющим средством человечество пользуется давно. Например, на Руси мыловарение было налажено уже в YIII веке, а в ряде европейских государств - и того раньше. Известно, что мыло обладает поверхностной активностью, - оно снижает поверхностное натяжение воды. Однако обычные мыла обладают и существенными недостатками. У них плохая моющая способность в воде, а в водных растворах они гидролизируются с образованием щелочи. Эта щелочь оказывает вредное действие на многие ткани (шерсть, шелк и др.) И к тому же мыловарение связано с расходом огромного качества пищевых жиров.
Правда, сейчас для этой цели используют высшие карбоновые кислоты, которые получают окислением алканов. Эти кислоты нейтрализуют щелочью и полученную соль применяют для производства туалетного и хозяйственного мыла (цифры “60” и “72” на кусках хозяйственного мыла означают процент содержания в нем натриевых солей высших кислот). И все же использование мыла для стирки тканей, очистки стеклянных, керамических, деревянных, металлических, полимерных и других изделий резко сократилось и заменено СМС, которые называют также детергентами.
Большая стирка
В современной жизни этот древнейший хозяйственный процесс полностью зависит от химических веществ. Новые стиральные порошки и пасты, отбеливатели, ополаскиватели обещают нам “сияющую белизну” и стирку “не прикладывая рук”. Казалось бы, не должно быть никаких проблем со стиркой. А они все-таки есть: то после тщательной стирки все-таки остались загрязнения, то не выводится старое пятно, неожиданно полиняла яркая футболка. Попробуем справиться с этими проблемами с помощью химии.
Задание 1. Вам пришлось стирать темные вещи с мылом в жесткой воде. После стирки и полоскания на них остался “седой” налет. Как его устранить и что можно было сделать, чтобы это предотвратить?
Вам помогут учебники: 9 кл (соединения кальция жесткость воды) 10 кл (свойства мыла)
Ответ: Мыло в жесткой воде плохо мылится и образует осадок стеарата кальция:
2 С17 Н35 СОО Na + Ca (HCO3)2 = (C17 H35 COO)2 Ca + 2Na HCO3
Этот осадок проступает на темных тканях в виде седого налета.
Избавиться от него можно, если прополоскать вещи в слабом растворе уксусной кислоты.
(C17 H35 COO)2 Ca + 2 СН3 СООН = 2 C17 H35 СООН + Ca (CH3 СОО)2
Чтобы этого не произошло, следовало предварительно смягчить воду кипячением или добавлением соды.
Задание 2. Почему трикотажные изделия из натуральной шерсти очень сильно вытягиваются и теряют форму после стирки, если сушить их в подвешенном состоянии, а хлопчатобумажный трикотаж можно сушить таким способом, и при этом он не теряет форму?
Повторите свойства и структуру белков (11 кл)
Ответ: Натуральная шерсть с точки зрения химии представляет собой фибриллярный белок, физические свойства которого обусловлено наличием различных типов химических связей (мостиков) между белковыми цепями. Водородные связи и солевые мостики разрушаются под действием воды, уменьшая жёсткость белковых цепей, поэтому во влажном состоянии все шерстяные вещи очень сильно растягиваются. Изделия из хлопчатобумажных (целлюлозных) волокон высыхают в результате физического процесса - испарения воды. Т.о., если высыхание хлопчатобумажных вещей - чисто физический процесс, то высыхание шерстяных изделий сопровождаются обратимыми химическими превращениями.
Задание 3. Почему стиральные порошки с биологически активными добавками особенно сильно разъедают руки?
Ответ: В эти типы порошков добавляют ферменты, разрушающие белковые загрязнения. Эти добавки будут частично разрушать и молекулы кератина, из которого состоит верхний роговой слой кожи.
Химчистка
Мы нередко сталкиваемся с ситуациями, когда в самый неподходящий момент и в самом ненужном месте сажаем пятно.
Как вывести пятна различного происхождения? Например, ржавчины, сливочного масла (свежее пятно), кофе, йода, морковного сока, вишневого сока, мясного соуса. В вашем распоряжении следующие средства: персоль, стиральный порошок (Био-С), УФ - лампа, зубной порошок, бензин, лимонная кислота .
Ответ: Ржавчину можно обесцветить раствором лимонной кислоты. Сливочное масло (свежее пятно) легко удалить бензином или зубным порошком. Кофе, морковный сок, вишневый сок обесцвечиваются под действием персоли. Мясной соус можно отстирать порошком “Био-С”. Пятна от морковного сока, в котором много каротина, обусловливающего его окраску, обесцвечиваются на солнце, т. к. каротин - природный светочувствительный пигмент, значит, его можно вывести с помощью УФ-лампы. Пятно йода можно вывести бензином, а также путем возгонки его при нагревании. В заключение урока можно изучить тексты наиболее распространенных рекламных роликов, так как реклама стала неотъемлемым атрибутом нашей жизни. Важно вдумчиво и критично относится ко всему, что обрушивают на нас рекламные фирмы со страниц газет, с экранов телевизоров и попытаться выяснить: противоречит ли ее содержание тем законам и понятиям естественных наук, которые мы изучаем в школе.
Поскольку чаще всего мы сталкиваемся с рекламой жевательной резинки, с нее и начнем.
Задание 1
“Каждый раз во время еды вы подвергаете свои зубы воздействию бактерий, вырабатывающих кислоту”, - с этого утверждения начинается реклама одной из жевательных резинок.
Как может химик прокомментировать это утверждение?
Ответ: Бактерии, вырабатывающие кислоту, постоянно присутствуют в полости рта и постоянно вырабатывают кислоту. Ошибка рекламного текста заключается в том, что наши зубы подвергаются действию этих бактерий постоянно и не только во время еды. Просто во время еды разрушительное действие бактерий усиливается.
Задание 2
Цитируем текст рекламы одного из популярных порошков: “Био-добавки нового “Лоска” любую грязь отстирают просто”.
Как вы можете прокомментировать эту цитату?
Ответ: Био-добавки предназначены для борьбы с загрязнениями веществами природного происхождения, прежде всего белковыми веществами. Многие современные порошки содержат и вещества, предназначенные для устранения загрязнений жирового происхождения, но они не могут устранить пятна от масляной краски или машинных масел, чернил. Авторы рекламы предпочли удачную рифму достоверности информации о рекламируемом товаре.
Задание 3
“Знаете ли вы, что каждый раз после мытья вы рискуете здоровьем своих волос? Мокрые волосы уязвимы и легко ломаются”,- так начинается телевизионная реклама шампуней и бальзамов-ополаскивателей для волос, укрепляющих волосы в процессе мытья.
Ответ: Да, это вполне обоснованное утверждение. Мокрые волосы действительно уязвимы и легко ломаются.
Химия в жизни человека
Значение химии в жизни человека трудно переоценить. Приведём фундаментальные области, в которых химия оказывает своё созидательное воздействие на жизнь людей.
1. Возникновение и развитие жизни человека невозможно без химии. Именно химические процессы, многие тайны которых учёные ещё не раскрыли, ответственны за тот гигантский переход от неживой материи к простейшим одноклеточным, и далее к вершине современного эволюционного процесса - человеку.
2. Большинство материальных потребностей, возникающих в жизни человека, обслуживается природной химией или получает удовлетворение в результате использования в производстве химических процессов.
3. Даже возвышенные и гуманистические устремления людей в своей основе опираются на химию человеческого организма, и, в частности, сильно зависят от химических процессов в мозге человека.
Конечно же, всё богатство и разнообразие жизни нельзя свести только к химии. Но наряду с физикой и психологией, химия как наука, представляет собой определяющий фактор развития человеческой цивилизации.
Химия жизни
Насколько сейчас известно, наша планета образовалась приблизительно 4.6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3.5 миллиарда лет. Уже 3.1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера Земли приобрела окислительный характер лишь 1.8-1.4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились на Земле приблизительно от миллиарда до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционным шагом, после зарождения самой жизни, было использование внеземного источника энергии, Солнца. В конечном итоге, именно это превратило жалкие ростки жизни, которые использовали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за её пределы.
Первые живые организмы получали энергию, разлагая молекулы небиологического происхождения с большой свободной энергией на меньшие молекулы без их окисления. Предполагается, что на ранней стадии существования Земли она имела восстановительную атмосферу, состоящую из таких газов как водород, метан, вода, аммиак и сероводород, но содержащую очень мало свободного кислорода или вообще его не имевшего. Свободный кислород разрушал бы органические соединения быстрее, чем они могли синтезироваться в результате естественно протекающих процессов (под воздействием электрического разряда, ультрафиолетового излучения, теплоты или естественной радиоактивности). В этих восстановительных условиях органические молекулы, которые образовались небиологическими способами, не могли разрушаться в результате окисления, как это происходит в наше время, а продолжали накапливаться в течении тысячелетий, до тех пор, пока, наконец, не появились компактные локализованные образования из химических веществ, которые можно уже считать живыми организмами.
Появившиеся живые организмы могли поддерживать существование за счёт разрушения естественно образующихся органических соединений, поглощая их энергию. Но если бы это был единственный источник энергии, то жизнь на нашей планете была бы крайне ограниченной. К счастью, около 3 миллиардов лет назад появились важные соединения металлов с порфиринами, и это открыло путь к использованию совершенно нового источника энергии - солнечного света. Первым шагом, который поднял жизнь на Земле над ролью простого потребителя органических соединений, было включение в неё процессов координационной химии.
По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии - фотосинтеза*, - который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоёмких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зелёных растений.
Сегодня все живые организмы можно подразделить на две категории: те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Некоторые ныне существующие бактерии сегодня являются живыми ископаемыми, потомками тех древних, способных к ферментации анаэробов, которые отступили в редкие анаэробные области мира, когда атмосфера в целом накопила большие количества свободного кислорода и приобрела окислительный характер. Поскольку организмы второй категории существуют за счёт поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на Земле.
Общая реакция фотосинтеза в зелёных растениях обратная реакции сгорания глюкозы и проходит с поглощением значительного количества энергии.
6 CO2 + 6 H2O --> C6H12O6 + 6 O2
Вода расщепляется на элементы, что создаёт источник атомов водорода для восстановления углекислого газа в глюкозу, а нежелательный газообразный кислород выделяется в атмосферу. Энергия, необходимая для осуществления этого в высшей степени несамопроизвольного процесса, обеспечивается солнечным светом. В наиболее древних формах бактериального фотосинтеза в качестве источника восстановительного водорода использовалась не вода, а сероводород, органические вещества или сам газообразный водород, но лёгкая доступность воды сделала этот источник наиболее удобным, и в настоящее время он используется всеми водорослями и зелёными растениями. Простейшими организмами, в которых осуществляется фотосинтез с высвобождением кислорода, являются сине-зелёные водоросли. Их правильнее обозначать современным названием цианобактерии, поскольку это, в самом деле, бактерии, научившиеся добывать собственную пищу из углекислого газа, воды и солнечного света.
К сожалению, фотосинтез приводит к высвобождению опасного побочного продукта, кислорода. Кислород был не только бесполезен для ранних организмов, он конкурировал с ними, окисляя естественно образующиеся органические соединения прежде, чем они могли быть окислены в процессе метаболизма этими организмами. Кислород представлял собой гораздо более эффективный «пожиратель» энергоёмких соединений, чем живая материя. Ещё хуже было то, что слой озона, который постепенно образовывался из кислорода в верхней части атмосферы, преграждал доступ ультрафиолетовому излучению Солнца и ещё более замедлял естественный синтез органических соединений. Со всех современных точек зрения, появление свободного кислорода в атмосфере представляло собой угрозу для жизни.
Но, как часто случается, жизнь сумела обойти это препятствие и даже обратила его в преимущество. Отходами жизнедеятельности первичных простейших организмов были такие соединения, как молочная кислота и этанол. Эти вещества намного менее энергоёмки по сравнению с сахарами, но они способны высвобождать большое количество энергии, если полностью окисляются до СО2 и Н2О. В результате эволюции возникли живые организмы, способные «фиксировать» опасный кислород в виде Н2О и СО2, а взамен получать энергию сгорания того, что прежде было их отходами. Преимущества сжигания пищи с помощью кислорода оказались столь велики, что подавляющее большинство форм жизни - растения и животные - пользуются в настоящее время кислородным дыханием.
Когда появились новые источники энергии, возникла новая проблема, связанная уже не с получением пищи или кислорода, а с транспортировкой кислорода в надлежащее место организма. Малые организмы могли обходиться простой диффузией газов через содержащиеся в них жидкости, но этого недостаточно для многоклеточных существ. Так перед эволюцией возникла очередная преграда.
Выход из тупика в третий раз оказался возможен благодаря процессам координационной химии. Появились такие молекулы, состоящие из железа, порфирина и белка, в которых железо могло связывать молекулу кислорода, не окисляясь при этом. Кислород просто переносится в различные участки организма, чтобы высвободиться при надлежащих условиях - кислотности и недостатке кислорода. Одна из таких молекул, гемоглобин, переносит О2 в крови, а другая, миоглобин, получает и запасает (хранит) кислород в мышечных тканях до тех пор, пока он не понадобится в химических процессах. В результате появления миоглобина и гемоглобина были сняты ограничения на размеры живых организмов. Это привело к появлению разнообразных многоклеточных, и, в конечном итоге, человека.
* Фотосинтез - это процесс преобразования энергии света в энергию химической связи получающихся веществ.
** Метаболизм - расщепление богатых энергией веществ и извлечение их энергии.
Химия как зеркало жизни человека
Оглянитесь вокруг, и Вы увидите, что жизнь современного человека невозможна без химии. Мы используем химию при производстве пищевых продуктов. Мы передвигаемся на автомобилях, металл, резина и пластик которых сделаны с использованием химических процессов. Мы используем духи, туалетную воду, мыло и дезодоранты, производство которых немыслимо без химии. Есть даже мнение, что самое возвышенное чувство человека, любовь, это набор определённых химических реакций в организме.
Такой подход к рассмотрению роли химии в жизни человека, является, на мой взгляд, упрощённым, и я предлагаю Вам его углубить и расширить, перейдя в совершенно новую плоскость оценки химии и её влияния на человеческое общество.
Относительно недавно человек понял, что сознательное подражание природе в технике может дать великолепный результат. Скопировав крыло птицы, мы создали самолёт. Рассмотрев способ передвижения червя, получили гусеницы трактора. Внимательнее приглядевшись к движениям кожи дельфинов и акул, смогли значительно увеличить скорость торпеды, при её движении в воде. Таких примеров можно привести ещё много, а ещё больше их станет, если мы чаще будем применять этот подход.
А что же химия? Неужели она, являясь на самом деле более «тонкой» и глубокой наукой, по сравнению с механикой макрообъектов, не даст нам никаких намёков и подсказок, рассмотрев которые, человек сделал бы очередной шаг в своём развитии. Оказывается, такие подсказки есть, просто их никто ещё не пытался найти и использовать. И оказалось, что эти подсказки касаются более высокой области, чем даваемые механикой.
Мир людей богат и разнообразен, но всё же поведение каждого человека в отдельности, и устойчивых человеческих групп или общностей, можно свести к определённому набору качеств. И здесь мы можем провести аналогию между атомом и человеком. Действительно, хотя количество различных атомов и ограничено, они могут располагаться в молекулах совершенно различными способами и на самом деле взаимодействовать по-разному, в зависимости от того, с чем приходится вступать в реакцию. Таков и человек.
Теперь дадим сравнение свойств атома (с точки зрения химии) и человека (с точки зрения человеческих взаимоотношений).
Самыми активными являются атомы щелочных металлов. Их отталкивающая защита из электронов мала и слаба, но зато они могут взаимодействовать практически со всеми химическими элементами. Человек такого типа, тоже может прекрасно общаться и уживаться с другими людьми. Но он потеряет при этом свою индивидуальность. Ведь и щелочные металлы не встречаются в чистом виде в природе, а находятся только в виде соединений.
С другой стороны инертные газа создают вокруг себя непреодолимый барьер из восьми электронов, и надо создать особые условия, чтобы заставить их вступить в реакцию. Так и люди. Отгораживаясь от всего мира, человек или общество, теряет способность к изменениям и к развитию, потому что взаимодействие - это взаимное действие. В его процессе изменяются обе стороны.
И наконец, идеал мира химических элементов - углерод. В этом элементе гармонично сочетаются защищённость (4 электрона) и открытость (4 вакансии). Причём распределение электронов может достаточно легко изменяться, не требуя больших энергетических затрат. Углерод способен образовать двойные и тройные связи, взаимодействуя с себе подобными.
В поисках идеала человека мы должны использовать эту информацию. Проявляя в своём поведении разумный компромисс между отстаиванием своих интересов (защита) и учётом мнения оппонента, изменяя слегка свои подходы к решению проблем, как атом углерода в процессе реакций изменяет расположение своих электронов и вакансий, мы продвинемся в деле получения результатов значительно дальше, чем, если бы сохраняли свою позицию неизменной.
С учётом того, что такой подход может быть применён большим количеством людей, то они, как одинаковые атомы углерода, смогут образовать прочные (двойные и тройные) связи. Тоже самое можно сказать и в отношении человеческих общностей (небольших групп, общественных объединений и целых государств).
Развивая эту мысль можно предположить, что наиболее перспективным путём развития человечества является направление, при котором в обществе будет существовать большое разнообразие взглядов и мнений, будет разрешено законом значительное количество способов действия, но большинство людей будет обладать универсальностью, способностью понимать других людей и взаимодействовать с ними, схожей с универсальность атома углерода. При таких условиях жизнь общества будет гармоничной и стабильной.
Пример водорода, в этом вопросе также очень показателен. Сократите сферу своего влияния (или уменьшите область своих запросов) и Вы, подобно атому водорода, сможете взаимодействовать и объединяться со значительно большим числом людей (элементов).
Итак, резюмируя всё выше сказанное, отметим, что химия в жизни человека может стать путеводной звездой для гармоничного развития всего человеческого общества.
химия жизнь пищевой урожайность строительный
Прикладные вопросы влияния химии на развитие жизни человека
В предыдущей главе мы осветили философский подход к оценке химии в жизни человека. Это был, так сказать общий взгляд. Здесь же мы рассмотрим роль химии и её влияние на жизнь человека с позиций стратегии.
Если принять за главную цель существования человеческой цивилизации её гармоничное и всестороннее развитие, особенно в интеллектуальных вопросах, то встаёт вопрос, что на этом пути может сделать химия. Изучая поведение людей и особенно влияние на их поведение того, чем они питаются, можно сделать однозначное заключение. В натуральной здоровой пище содержатся вещества, которые могут не только повысить физическую отдачу организма, но и стимулировать его мозговую деятельность. Поэтому, применяя такую пищу в нужное время в нужных количествах, мы могли бы ускорить развитие человеческой цивилизации, не затрачивая на это больше ресурсов, чем сейчас. Такой подход является новой социальной инновацией, а, следовательно, роль химии в жизни человека возрастёт еще больше.
Необходимо провести крупномасштабные научные исследования в этой области и применить их результаты в повседневной жизни. Ведь даже такое социальное зло, как алкоголизм можно победить, грамотно используя «пищевой вопрос» в отношении страдающих этим недугом людей.
Скажу даже больше. Применение такого подхода в вопросах питания, находящихся в заключении людей, однозначно способно снизить уровень рецидива преступлений.
Этот же метод можно применить и к планированию рождаемости.
Конечно, в каждой из предложенных областей, мы не должны посягать на свободу выбора человека. Но учитывая, что - мы то, что мы едим - применение вышеупомянутых стратегий является вполне обоснованной альтернативой современным способам. Размещено на Allbest.ru
Подобные документы
Органическая химия и медицина. Какие бывают лекарства и почему они лечат. Полимеры в медицине. Применение различных полимерных материалов в сельском хозяйстве. Органическая химия и ее применение в пищевой промышленности. Добавки в продукты питания.
доклад [19,4 K], добавлен 13.01.2010Изучение химического состава пищевых продуктов, его полноценности и безопасности. Изменения основных пищевых веществ при технологической обработке. Концепция рационального и здорового питания. Применение полимерных материалов в пищевой промышленности.
курс лекций [1,8 M], добавлен 19.09.2014Коллоидная химия как наука, изучающая физико-химические свойства гетерогенных, высоко-дисперсных систем и высоко-молекулярных соединений. Производство и методы очищения коллоидных растворов. Применение гелей в пищевой промышленности, косметике и медицине.
презентация [6,3 M], добавлен 26.01.2015Химический взгляд на природу, истоки и современное состояние. Предмет познания химической науки и ее структура. Взаимосвязь химии и физики. Взаимосвязь химии и биологии. Химия изучает качественное многообразие материальных носителей химических явлений.
реферат [99,4 K], добавлен 15.03.2004Химия и производство, научные принципы его организации. Основа химической промышленности; технология использования воды. Уравнение множественной регрессии: теорема Гаусса-Маркова; формирование вектора и матрицы коэффициентов на основе системы уравнений.
презентация [3,2 M], добавлен 18.05.2013Краткая история возникновения химии как важнейшей отрасли естествознания и науки, изучающей вещества и их превращения. Алхимия и первые сведения о химических превращениях. Описание вещества, атомная, математическая химия и родоначальники российской химии.
курсовая работа [25,5 K], добавлен 25.04.2011Элективный курс "Химия и медицина": содержание данного курса обучения, перечень тематик, структура и количество часов. Развитие исследований по химии природных веществ. Современная химия и медицина. Примеры решения заданий, объяснение их с позиций химии.
методичка [32,7 K], добавлен 14.03.2011Основные понятия и законы химии. Классификация неорганических веществ. Периодический закон и Периодическая система элементов Д.И. Менделеева. Основы термодинамических расчетов. Катализ химических реакций. Способы выражения концентрации растворов.
курс лекций [333,8 K], добавлен 24.06.2015Задачи и методы качественного и количественного анализа. Аналитическая система катионов. Закон действующих масс. Теория электролитической диссоциации. Окислительно-восстановительные реакции. Характеристика комплексных соединений. Буферные растворы.
курс лекций [618,3 K], добавлен 15.12.2011Сущность и предмет аналитической химии как науки. Задачи и методы качественного и количественного анализа химических веществ. Примеры качественных реакций на катионы. Характеристика явлений, сопровождающих реакции мокрым (в растворах) и сухим путями.
презентация [1,0 M], добавлен 27.04.2013