Строение молекулы воды

Атомы водорода в молекуле воды. Плотность воды при переходе ее из твердого состояния в жидкое. Особенности принципа Ле Шателье. Ассоциаты как обломки структуры льда. Термическая диссоциация воды. Морской и пресноводный лед. Град как вид атмосферного льда.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 23.12.2010
Размер файла 16,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Строение молекулы воды

Поведение воды "нелогично". Получается, что переходы воды из твёрдого состояния в жидкое и газообразное происходит при температурах, намного более высоких, чем следовало бы. Этим аномалиям найдено объяснение. Молекула воды H2О построена в виде треугольника: угол между двумя связками кислород - водород 104 градуса. Но поскольку оба водородных атома расположены по одну сторону от кислорода, электрические заряды в ней рассредоточиваются. Молекула воды полярная, что является причиной особого взаимодействия между разными её молекулами. Атомы водорода в молекуле H2О, имея частичный положительный заряд, взаимодействуют с электронами атомов кислорода соседних молекул. Такая химическая связь называется водородной. Она объединяет молекулы H2О в своеобразные полимеры пространственного строения; плоскость, в которой расположены водородные связи, перпендикулярны плоскости атомов той же молекулы H2О. Взаимодействием между молекулами воды и объясняются в первую очередь незакономерно высокие температуры её плавления и кипения. Нужно подвести дополнительную энергию, чтобы расшатать, а затем разрушить водородные связи. И энергия эта очень значительна. Вот почему, кстати, так велика теплоёмкость воды.

2. Физические свойства воды

Чистая вода представляет собой бесцветную прозрачную жидкость. Плотность воды при переходе ее из твердого состояния в жидкое не уменьшается, как почти у всех других веществ, а возрастает. При нагревании воды от 0 до 4°С плотность ее также увеличивается. При 4°С вода имеет максимальную плотность, и лишь при дальнейшем нагревании ее плотность уменьшается.

Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность воды изменялась так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались. бы до 0°С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0°С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно и водоем промерзал бы на всю его глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотность вода достигает при 4 °С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.

Большое значение в жизни природы имеет и тот факт, что вода. обладает аномально высокой теплоемкостью [4,18 Дж/(г К)], поэтому в ночное время, а также при переходе от лета к зиме вода остывает медленно, а днем или при переходе от зимы к лету так же медленно нагревается, являясь, таким образом, регулятором температуры на земном шаре.

В связи с тем, что при плавлении льда объем, занимаемый водой, уменьшается, давление понижает температуру плавления льда. Эта вытекает из принципа Ле Шателье. Действительно, пусть лед и жидкая вода находятся в равновесии при 0°С. При увеличении давления равновесие, согласно принципу Ле Шателье, сместится в сторону образования той фазы, которая при той же температуре занимает меньший объем. Этой фазой является в данном случае жидкость. Таким образом, возрастание давления при 0°С вызывает превращение льда в жидкость, а это и означает, что температура плавления льда снижается.

Молекула воды имеет угловое строение; входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине - ядро атома кислорода, Межъядерные расстояния О-Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно примерно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О-Н, а остальные четыре электрона представляют собой две неподеленных электронных пары. Молекулярная масса парообразной воды равна 18 и отвечает ее простейшей формуле. Однако молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях оказывается более, высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, т. е. соединение их в более сложные агрегаты. Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей.

В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды согласно схеме, в которой водородные связи показаны пунктиром.

Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной - из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы. При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: образуются ассоциаты - как бы обломки структуры льда, - состоящих из большего или меньшего числа молекул воды. Однако в отличии от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких “ледяных” агрегатов могут размещаться одиночные молекулы воды; при этом упаковка молекул воды становится более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, а ее плотность возрастает.

По мере нагревания воды обломков структуры льда в ней становится все меньше, что приводит к дальнейшему повышению плотности воды. В интервале температур от 0 до 4°С этот эффект преобладает над тепловым расширением, так что плотность воды продолжает возрастать. Однако при нагревании выше 4°С преобладает влияние усиления теплового движения молекул и плотность воды уменьшается. Поэтому при 4°С вода обладает максимальной плотностью.

При нагревании воды часть теплоты затрачивается на разрыв водородных связей (энергия разрыва водородной связи в воде составляет примерно 25 кДж/моль). Этим объясняется высокая теплоемкость воды. Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар.

3. Химические свойства воды

Молекулы воды отличаются большой устойчивостью к нагреванию. Однако при температурах выше 1000 °С водяной пар начинает разлагаться на водород и кислород:

2Н О 2Н +О

Процесс разложения вещества в результате его нагревания называется термической диссоциацией. Термическая диссоциация воды протекает с поглощением теплоты. Поэтому, согласно принципу Ле Шателье, чем выше температура, тем в большей степени разлагается вода. Однако даже при 2000 °С степень термической диссоциации воды не превышает 2%, т.е. равновесие между газообразной водой и продуктами ее диссоциации - водородом и кислородом - все еще остается сдвинутым в сторону воды. При охлаждении же ниже 1000 °С равновесие практически полностью сдвигается в этом направлении.

Вода - весьма реакционноспособное вещество. Оксиды многих металлов и неметаллов соединяются с водой, образуя основания и кислоты; некоторые соли образуют с водой кристаллогидраты; наиболее активные металлы взаимодействуют с водой с выделением водорода.

Вода обладает также каталитической способностью. В отсутствие следов влаги практически не протекают некоторые обычные реакции; например, хлор не взаимодействует с металлами, фтороводород не разъедает стекло, натрий не окисляется в атмосферы воздуха.

Вода способна соединяться с рядом веществ, находящихся при обычных условиях в газообразном состоянии, образуя при этом так: называемые гидраты газов. Примерами могут служить соединения Хе 6Н О, CI 8H O, С Н 6Н О, С Н 17Н О, которые выпадают в виде кристаллов при температурах от 0 до 24°С (обычно при повышенном давлении соответствующего газа). Подобные соединения возникают в результате заполнения молекулами газа (“гостя”) межмолекулярных полостей, имеющихся в структуре воды (“хозяина”); они называются соединениями включения или клатратами.

В клатратных соединениях между молекулами “гостя” и “хозяина” образуются лишь слабые межмолекулярные связи; включенная молекула не может покинуть своего места в полости кристалла преимущественно из-за пространственных затруднений. Поэтому клатраты - неустойчивые соединения, которые могут существовать лишь при сравнительно низких температурах. Клатраты используют для разделения углеводородов и благородных газов. В последнее время образование и разрушение клатратов газов (пропана и некоторых других) успешно применяется для обессоливания воды. Нагнетая в соленую воду при повышенном давлении соответствующий газ, получают льдоподобные кристаллы клатратов, а соли остаются в растворе. Похожую на снег массу кристаллов отделяют от маточного раствора и промывают, Затем при некотором повышении температуры или уменьшении давления клатраты разлагаются, образуя пресную воду и исходный газ, который вновь используется для получения клатрата. Высокая экономичность и сравнительно мягкие условия осуществления этого процесса делают его перспективным в качестве промышленного метода опреснения морской воды.

4. Память воды

Эти опыты свидетельствуют о том, что вода «помнит» вещества, которые в ней когда-то растворяли; что вода поддается магнитной обработке; что вода меняет свои физические свойства в зависимости от цвета скатерти, на которой стоит стакан, но высокая академическая наука на эту «параллельную науку» внимания не обращает. Просто потому, что под эти факты нет объясняющей их теории? Соответственно, всегда можно усомниться: а факты ли это, господа? Или массовое помешательство, массовое неумение ставить опыты, массовое наложение случайных факторов... Это странно. Эффект памяти воды давно уже вошел в медицинскую практику: гомеопатия ныне официально признанный метод лечения, гомеопаты растворяют лекарство в таких ничтожных концентрациях, что на ведро воды остается буквально несколько молекул лекарства. Но физики вяло отмахиваются от врачей: мол, помогает ваша гомеопатия далеко не всем и вообще это все эффект плацебо.

5. Разновидности льда

вода молекула ассоциат лед град

В природе существует множество разновидностей и форм льда - морского и пресноводного, атмосферного и почвенного; от колоссальных плавучих гор-айсбергов до мельчайшей пыли, висящей в морозном воздухе.

Морской лед образуется преимущественно в высоких широтах при замерзании верхних слоев воды. В Антарктиде преобладают однолетние льды, покрытые слоем снега. Арктические льды в основном многолетние, толщина их достигает нескольких метров. Образование и существование морского льда влияют на окружающую морскую среду. При замерзании морской воды происходит как бы ее естественное опреснение вследствие различных температур замерзания воды и солевого раствора, каким является морская вода. Поэтому морской лед содержит меньше солей, чем вода, из которой он образуется.

Значительное количество запасов пресных вод находится в кристаллическом состоянии в виде материковых льдов Арктики, Антарктики и ледников высокогорных районов. Ледники являются ценными запасами пресных вод, и сейчас изучается возможность их рационального использования. В Финляндии в песчаном холме на глубине 30 м находится уникальный подземный ледник. Финские ученые полагают, что это реликтовое образование ледникового периода.

В высоких широтах Земли снег не тает полностью даже летом. Из года в год нарастают слои снежного покрова. Образовавшиеся в теплую погоду талые воды впитываются в снег, а при замерзании сырой снежной массы образуются фирновые зерна - снег становится похожим на светлые икринки. Фирн - своеобразная промежуточная форма между снегом и льдом. Тяжесть новых слоев спрессовывает фирн в монолитную ледяную массу. Кое-где остаются мелкие пустоты, заполненные пузырьками воздуха. Он с легким треском освобождается при таянии льда.

Так в течение тысячелетий накапливается ледяной покров Гренландии - родины айсбергов. Под собственным весом белый гигантский щит постепенно обретает пластичность и начинает медленно сползать в океан. Ежегодно на побережье этого крупнейшего в мире острова, откалываясь от оконечностей ледников, рождаются 10...15 тысяч айсбергов. Примечателен береговой ледник Ринг, разламывающийся через каждые две недели. В течение нескольких минут от отвесных склонов этого ледника отделяются и с шумом погружаются в океан громадины весом в сотни тысяч тонн. В одиночку и группами отправляются они в далекое плавание по океану, постепенно достигая южных побережий, вплоть до Азорских островов и Флориды.

Многие айсберги оседают на мелях и постепенно тают, однако в периоды солнечной активности Северная Атлантика буквально заполняется этими ледяными плавучими горами, нередко окутанными плотным туманом. Чтобы предотвратить столкновение кораблей с айсбергами, в Атлантике с 1914 года действует специальная служба - Международный ледовый патруль. Он вооружен эхолотами и гидролокаторами, способными выявлять подводные очертания айсбергов. Специальные анализаторы, сигнализирующие о внезапном падении солености и температуры воды, предупреждают о приближении ледяных гигантов. Чтобы сделать айсберги более заметными издали, их обстреливают снарядами, начиненными яркими светящимися красками. Любой корабль, находящийся в опасной акватории, может получить необходимую информацию и снимки ледяного покрова океана с помощью спутников.

Еще более мощный поставщик айсбергов - Антарктида, необозримый ледовый континент. Антарктические айсберги плавают по огромной территории холодных южных морей, не стесненных материковыми границами, иногда поднимаются до южных побережий Африки и Австралии.

Форма этих айсбергов имеет свои особенности: зачастую это так называемые столовые айсберги - плоские ледовые поля, мало возвышающиеся над водой. Будучи обломками шельфового льда, они имеют солоноватые нижние слои, но основная их масса - пресный чистейший лед.

Самым крупным из антарктических считают айсберг, обнаруженный исследователями в 1964 году. Образовавшийся после разлома шельфовых ледников Эмери и Западного, этот гигант достигал 175 км в длину и 75 км в ширину, а его площадь составляла 12 тыс. кв. км.

Айсберги, подобные этому, поднимаются над водой на сотни метров. А поскольку примерно 6/7 их высоты скрыто под водой, то их несет подповерхностное течение, направление которого не всегда совпадает с поверхностным. Поэтому айсберги часто меняют курс, что увеличивает опасность столкновения с ними.

При длительном дрейфе в айсбергах зачастую образуются целые системы сквозных промоин. Такие айсберги называют поющими: в ветреную погоду они неожиданно издают фантастические звуки.

Способность генерировать звуки обнаружена и у льдов, не имеющих заметных полостей. Полярные льды в напряженном состоянии многоголосо звучат, подобно огромному органу. Характер звучания льда зависит от температуры окружающего воздуха, но природа этого явления пока остается загадкой.

Еще в начале нашего века в айсбергах видели лишь угрозу, теперь люди начинают активно использовать их для различных целей. Основная задача - использовать эти гигантские ледяные «консервы» как источники водоснабжения. Особенно важно это для безводных побережий Австралийского и Южноамериканского континентов, сравнительно близких к Антарктическому бассейну. Конечно, дальняя транспортировка айсбергов - дело сложное и непривычное. Немало трудностей связано и с тем, чтобы заставить айсберги таять в нужном режиме. Однако по предварительным расчетам стоимость талой воды из прибуксированных айсбергов все равно оказывается намного ниже опресненной морской. Кроме того, эта вода сразу пригодна для питья.

И еще одно, несколько неожиданное свойство айсбергов и многолетних толщ материковых льдов обнаружили ученые. Оказалось, что это идеальные «кладовые памяти» нашей планеты. Вследствие циркуляции воздушных масс мельчайшие частицы взвешенных в воздухе примесей отлагаются повсеместно на земной поверхности, но практически нигде, кроме ледяных массивов, они недоступны последующему наблюдению. В Антарктиде лед наращивался многие тысячелетия и теперь толщина его достигает примерно четырех с половиной километров. Здесь надежно законсервированы земная и космическая пыль, вулканический пепел, микроорганизмы и даже воздух давно минувших времен. Все это позволяет понять ход природных процессов, познать далекое прошлое нашей планеты.

Ученые все глубже изучают «память» ледяных покровов Земли, постигают значение ее для познания общепланетарных явлений стабильности климата, процессов перераспределения энергии на Земле и т.д. Хотя ледяные монолиты не образуют непрерывного слоя, их начинают выделять в отдельную сферу - гляциосферу, наравне с атмосферой, гидросферой и литосферой. Льды планеты, составляющие десятую часть ее поверхности, - один из важнейших компонентов окружающего мира.

По сравнению с ледяными гигантами особенно ощутима миниатюрность почвенного игольчатого льда - еще одной разновидности льда, встречающейся на нашей планете. Такой лед можно наблюдать при медленном охлаждении песчаных и гумусовых почв, когда температура окружающей среды постепенно переходит через нулевую отметку.

Изысканным геометрическим совершенством отличаются многие формы атмосферного льда - снег, иней, ледяная пыль, крупа, град.

Снег образуется в облаках при определенных температурных условиях: капельки переохлажденной воды намерзают на ледяные мельчайшие кристаллики, содержащиеся в облаках. Особенно интенсивно они растут там, где в слое облака преобладают переохлажденные капли. В тропосфере основная масса облаков пребывает при температуре ниже 0°С, но попадающие туда при испарении с поверхности планеты водяные пары не сразу превращаются в лед. В заметных количествах кристаллики льда появляются там лишь в температурном интервале от -12 до -16°С, интенсивное кристаллообразование идет при -22°С, однако еще и при -41°С в облаках обнаруживают отдельные капли переохлажденной воды.

Облака получают влагу от восходящих воздушных потоков и циркулирующих в атмосфере воздушных масс. В этих массах содержится основное количество (90%) атмосфер - нойвлаги. Сложный режим восходящих потоков воздуха, питающих облака влагой, вносит разнообразие в образование и рост ледяных кристалликов в облаке. Постепенно они приобретают такие размеры и вес, что преодолевают подъемную силу восходящих потоков воздуха, и выпадают на землю в виде снега.

Надо льдом давление насыщенного пара всегда меньше, чем над переохлажденной водой при этой же температуре. Когда капля воды в процессе образования снежинки сближается с кристалликом льда, из окружающей ее оболочки насыщенного водяного пара к ледяной поверхности, от большего давления к меньшему, устремляются молекулы воды. Оседая на кристаллике, они увеличивают его размеры. А капли постепенно испаряются: за счет слагающих их молекул воды они создают все новые паровые оболочки и тут же их теряют.

Структура снежного кристалла зависит от температуры, количества водяных паров, за счет которых он растет, и интенсивности их поступления. Все это создает удивительное разнообразие его форм. Специалисты, изучающие формы снежинок для определения их связи с ходом атмосферных процессов, насчитывают тысячи их разновидностей.

Но при всем многообразии снежинки преимущественно имеют вид шести- и двенадцатилучевых звездочек - дендритов, а также шестиугольных пластинок и шестигранных призм. В температурном промежутке от -8 до -12°С в облаке идет образование главным образом дендритов. В этих условиях отмечается наибольший перепад между давлением насыщенного пара над водой и над ледяной поверхностью.

При -15°С появляются интересные смежные формы - «запонки». Это кристаллические иголочки льда, с обеих сторон заканчивающиеся наросшими в виде основания ледяными звездочками или пластинками. Фигурку, у которой оба основания составляют пластинки, называют цузуми за сходство с традиционным японским барабаном. Есть предположение, что почти все плоские смежные кристаллы - это цузуми с предельно укороченным столбиком. Лишь при сравнительно слабых морозах с неба летят снежинки-звездочки.

В высоких широтах - в Заполярье, Антарктиде - чаще всего стоят суровые холода (-30…-50°С и ниже), и на землю ложится очень «неласковый» снег: каждая снежинка - это заостренный с одного конца граненый стерженек. Такие кристаллы обычно образуются в перистых облаках на высоте 7...10 километров над поверхностью Земли, то есть почти в стратосфере.

В слое воздуха, непосредственно примыкающем к земной поверхности, у атмосферного льда свои особенности. Тут можно наблюдать иней, красиво искрящийся зимой на ветвях деревьев, на проводах. Он представляет собой дендритные кристаллики, отлагающиеся из влажного воздуха, процесс охлаждения которого проходит через точку росы. Очень мелкие, чрезвычайно легкие ледяные кристаллики размером около 0,1 мм, так называемая алмазная пыль, висят в воздухе, почти не оседая. Особенно эффектны и нарядны они в солнечные морозные дни. Такие кристаллики образуются в холодном влажном воздухе при температуре около -20°C. При более низких температурах иногда в воздухе наблюдаются явления типа инверсионных. Подобно тому, как на фоне голубого неба сконденсированная водяная влага сохраняет некоторое время белые узоры от пролетевшего реактивного самолета - инверсионный след, так и зимой позади идущего человека может появиться образованная ледяными кристалликами полоса протяженностью 300...400 м, остающаяся в воздухе несколько минут.

Крупа и град - часто встречающиеся виды атмосферного льда. Они образуются, подобно снегу, в относительно высоких слоях атмосферы. Белая легкая крупа, холодный предшественник зимних снегопадов, представляет собой маленькие снежные комочки с налипшими капельками переохлажденной воды. Примерно по такой же схеме образуются и зерна града - этого ледяного посланца атмосферы в летние дни. Только при градообра-зовании процесс намерзания на ледяные кристаллы капель воды повторяется многократно, чередуясь с намерзанием кристалликов льда.

Размещено на Allbest.ru


Подобные документы

  • Строение молекулы воды. Водородные связи между молекулами воды. Физические свойства воды. Жесткость как одно из свойств воды. Процесс очистки воды. Использованием воды, способы ее восстановления. Значимость воды для человека на сегодняшний день.

    презентация [672,3 K], добавлен 24.04.2012

  • Свойства воды как наиболее распространенного химического соединения. Структура молекулы воды и атома водорода. Анализ изменения свойств воды под воздействием различных факторов. Схема модели гидроксила, иона гидроксония и молекул перекиси водорода.

    реферат [347,0 K], добавлен 06.10.2010

  • Химическая формула молекулы воды и ее строение. Систематическое наименование – оксид водорода. Физические и химические свойства, агрегатные состояния. Требования к качеству воды, зависимость ее вкуса от минерального состава, температуры и наличия газов.

    презентация [6,1 M], добавлен 26.10.2011

  • Распространение воды на планете Земля. Изотопный состав воды. Строение молекулы воды. Физические свойства воды, их аномальность. Аномалия плотности. Переохлажденная вода. Аномалия сжимаемости. Поверхностное натяжение. Аномалия теплоемкости.

    курсовая работа [143,0 K], добавлен 16.05.2005

  • Распределение воды в природе, ее биологическая роль и строение молекулы. Химические и физические свойства воды. Исследования способности воды к структурированию и влияния информации на форму ее кристаллов. Перспективы использования структурированной воды.

    реферат [641,8 K], добавлен 29.10.2013

  • Вода (оксид водорода) — бинарное неорганическое соединение. Описание строения молекулы воды, ее физических и химических свойств. Общий запас воды на Земле, сферы ее применения. Рассмотрение аномалий данной жидкости, отличающих ее от других природных тел.

    реферат [1,2 M], добавлен 27.04.2015

  • Классификация методов умягчения воды. Термический метод умягчения воды. Технологические схемы, конструктивные элементы установок реагентного умягчения воды. Термохимический метод умягчения воды. Особенности умягчения воды диализом, ее магнитная обработка.

    реферат [2,3 M], добавлен 09.03.2011

  • Традиционные приемы хлорирования воды, содержащей фенолы. Общие недостатки аэраторов, построенных на принципе контакта пленки воды с воздухом. Дезодорация воды, удаление токсичных органических и минеральных микрозагрязнений. Аэрирование воды в пенном слое

    реферат [256,7 K], добавлен 26.01.2011

  • Структура молекулы воды, водородные связи между ними. Идея "информационной памяти воды" Масаро Эмото, критика результатов его экспериментов. Практическое применение информационной памяти воды в гомеопатии. Вода с измененной молекулярной структурой.

    реферат [2,0 M], добавлен 24.12.2012

  • Изучение физико-химических свойств воды. Химическая природа воды и ее память (структура, свойства, состав). Схема образования связей в молекуле воды. Состояние водных объектов города Рязани. Антропогенное и техногенное воздействие на воду. Лечение водой.

    реферат [439,9 K], добавлен 27.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.