Аллотропные формы углерода
Характеристика аллотропных видоизменений элементарного углерода. Образование алмаза, фуллерена и графита, их отличия, особенности получения, физико-механические, термические, оптические, электрические и магнитные свойства, область использования.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 09.11.2010 |
Размер файла | 83,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Аллотропные формы углерода
Элементарный углерод образует три аллотропных видоизменения: алмаз, фуллерен и графит.
Алмаз - бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света. Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырех не спаренных электронов.
Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в тетраэдров к вершинам. Расстояние между атомами в тетраэдрах равно 0, 154 нм. Прочность всех связей одинакова. Таким образом, атомы в алмазе «упакованы» очень плотно. При 20оС плотность алмаза составляет 3,1515 г/см3 . Этим объясняется его исключительная твердость. Алмаз плохо проводит электрический ток. Основная масса, образования алмазов - небольшие кристаллы и алмазная пыль.
Алмазы при нагревании без доступа воздуха выше 1000оС превращается в графит. При 1750оС превращение алмаза в графит происходит быстро.
Графит - серо-черное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступает даже бумаге.
Атомы углерода в кристаллах графита находятся в состоянии sp2 - гибридизации: каждый из них образует трех ковалентные у-связи с соседними атомами. Углы между направлениями связей равна 120о. В результате образуется сетка, состоящая из правильных шестиугольников. Расстояние между соседними ядрами атомов углерода внутри слоя составляет 0,142 нм.
Графит имеет низкую механическую прочность и легко расщепляется на чешуйки, которые сами по себе очень прочны. Связь между слоями атомов углерода в графите частично имеет металлический характер. Этим объясняется тот факт, что графит хорошо проводит электрический ток, но все же не так, как металл.
При нагревании без доступа воздуха графит не претерпевает никакого изменения до 3700оС. При указанной температуре он выгоняется, не плавясь. Графит термодинамичен, устойчив в широком интервале температур и давлений. Плотность составляет 2,256 г/см3. Фуллерены (название дано в честь американского архитектора Р. Б. Фуллера 1895-1983, предложившего строить ажурные куполообразные конструкции сочетанием пяти - и шестиугольников)
Фуллереном называется третья, недавно открытая, аллотропная форма углерода. Ранее были известны только две из них - графит и алмаз. Фуллерены это микро конструкции из атомов углерода образующих сферическую структуру с полостью внутри.
Минимальное количество атомов углерода из которых строится фуллерен - шестьдесят, однако атомов углерода может быть и больше - 70, 76, 78, 82, 84, 90, 94, 96 и т. д. Чем из большего количества атомов углерода построен фуллерен, тем, естественно, больше объем полости внутри него.
При формировании фуллерена из атомов углерода, в его полости, как в закрытом сосуде, могут оказаться “законсервированными” какие-либо другие атомы или молекулы.
Фуллерены были обнаружены в составе метеоритов, а внутри них были найдены молекулы, попавшие туда во время их формирований много сотен миллионов, а может и нескольких миллиардов лет назад. Таким образом, появилась возможность изучать “законсервированные” пробы вещества из которого состояла Солнечная система в то время, когда формировались те или другие фуллерены.
1. Алмаз
Алмаз - минерал, единственный драгоценный камень, состоящий из одного элемента. Название, возможно, происходит от греч. «адамас» (непобедимый, непреодолимый) или от арабского «ал-мас» (персидское «элма») - очень твердый. Алмаз - это кристаллический углерод. Углерод существует в нескольких твердых аллотропных модификациях, т.е. в различных формах, имеющих разные физические свойства. Алмаз - одна из аллотропных модификаций углерода и самое твердое из известных веществ (твердость 10 по шкале Мооса). Другая аллотропная модификация углерода - графит - одно из самых мягких веществ. Исключительно высокая твердость алмаза имеет большое и важное практическое значение. Он широко используется в промышленности как абразив, а также в режущих инструментах и в буровых коронках.
Алмаз кристаллизуется в кубической (изометрической) сингонии и обычно встречается в виде октаэдров или кристаллов близкой формы. При обкалывании алмаза от материнской массы отщепляются обломки минерала. Это становится возможным благодаря совершенной спайности. Цвет разнообразный. Обычно алмазы бесцветные или желтоватые, но известны также голубые, зеленые, ярко-желтые, розово-лиловые, дымчато-вишневые, красные камни; встречаются и черные алмазы. Алмаз прозрачен, иногда просвечивает, бывает и непрозрачным. Черты алмаз не дает; порошок его белый или бесцветный.
Плотность алмаза - 3,5. Показатель преломления 2,42, самый высокий среди обычных драгоценных камней. Поскольку критический угол полного внутреннего отражения у этого минерала составляет всего 24,5°, фасеты ограненного алмаза отражают больше света, чем другие камни с аналогичной огранкой, но с меньшим показателем преломления. Алмаз обладает очень сильной оптической дисперсией (0,044), вследствие чего отраженный свет разлагается на спектральные цвета. Эти оптические свойства в сочетании с необыкновенной чистотой и прозрачностью минерала придают алмазу яркий блеск, сверкание и игру.
1.1 Получение алмаза
С давних лет человек стремился получить алмаз в лаборатории. Алхимики растирали, прокаливали на «двойном жару» смеси из серы, ртути и других веществ - но безрезультатно.
Лишь после того как в 16-17 веках на смену алхимии пришла практическая химия с её количественными методами исследований, учёные поняли природу алмаза.
В 1797 году англичанин С. Теннант установил, что алмаз, сгорая в кислороде, полностью переходит в углекислый газ. Из этого следовало, что алмаз состоит из атомов углерода. Стало ясно: чтобы получить алмаз. Надо исходить из графита или других содержащих углерод веществ.
Но как заставить атомы углерода образовать кристалл алмаза? Какие для этого нужны условия?
Учёные знали, что алмаз, устойчивый при обычных температурах, при нагревании без доступа воздуха переходит в графит. Это наводило на мысль, что и обратное превращение надо искать при высоких температурах. Но как вызвать это превращение, как заставить графит перейти в алмаз?
Из сравнения плотности угля (1,3 * 10і кг/мі), графита (2,2 * 10і кг/мі) и алмаза (3,5 * 10і кг/мі) следовало, что для получения алмаза уголь и графит надо уплотнить. Сжать - применить высокое давление.
Итак, высокое давление и высокие температуры - вот что может принести успех! К такому же выводу можно было прийти, рассматривая условия образования алмазов в природе.
Действительно, изучение алмазных месторождений показывает, что образование алмазов происходит, по-видимому, глубоко в недрах Земли, в условиях высоких давлений и температур. Подземными взрывами алмазы вместе с окружающей их породой были выброшены по трубчатым прорывам на земную поверхность.
Давно было замечено, что в метеоритах, состоящих из железа, часто встречаются вкрапления графита. Но совершенно неожиданно в 1882 году алмазы были найдены в Венгрии, а позднее, в 1891 году, алмазы обнаружили в огромном метеорите, упавшем в Аризоне (США).
Считалось, что метеориты представляют собой обломки застывшей магмы, выброшенной из вулканов планет. При остывании давление внутри метеоритов повышалось, и возникали условия, в которых могли образовываться алмазы.
В 1893 году французский химик А. Муассан решил повторить в лаборатории естественный процесс образования алмазов в метеоритах - быстро охладить расплавленное железо, содержащее углерод.
В этот период Муассан изучал химические реакции, проходящие при очень высоких температурах, которые он получал с помощью вольтовой дуги в особой электрической печи.
Муассан решил использовать свою высокотемпературную печь для получения алмазов. Он проделал в дне печи отверстие и под ним поставил сосуд с водой. В печи железо расплавлялось, насыщалось углеродом, и капельки этого насыщенного углеродом расплавленного железа падали в холодную воду. Внешние слои капельки быстро охлаждались и, сжимаясь, оказывали огромное давление на находящееся внутри и еще не успевшее остыть железо. Получившиеся железные шарики растворялись в кислотах. Внутри шариков были найдены маленькие кристаллики более или менее правильной формы размером до 0,5 - 0,7 мм. Эти кристаллики были очень твёрдые, и химический анализ - сжигание в кислороде - показал, что они состоят из чистого углерода. Четыре кристаллика были чёрного цвета, два желтоватых, остальные бесцветные. Три кристаллика с чёрными точками очень напоминали бразильские алмазы. Один был исключительно правильной формы. Кристалл самой «чистой воды» Муассан назвал «регентом».
Получение алмазов в лаборатории вызвало мировую сенсацию. Однако многочисленные попытки других учёных повторить опыты Муассана оказались безрезультатными. Только удалось получить маленький кристаллик размером 0,05 мм, который по удельному весу, свечению в ультрафиолетовых лучах и горению в кислороде был признан алмазом.
Известны имена и других учёных, занимавшихся «алмазотворением». Н.В. Каразин в России (1823г.), Каньяр-Латур и Ганналем во Франции (1829 г.) «жжением угля» получили кристаллы. Похожие на алмазы, но они оказались карбидами - соединениями металлов с углеродом. В России К.Д. Хрущев (1893 г.) пытался получить алмазы кристаллизацией углерода из расплава серебра при атмосферном давлении, а также получил прозрачные кристаллы карбидов.Всё это были поиски вслепую.
Впервые условия образования алмазов были определены в работах советского физика О.И. Лейпунского, который в 1931 году рассчитал давление и температуры, необходимые для превращения графит - алмаз.
Комментируя свои расчеты, О.И. Лейпунский писал: « Во -первых, надо нагреть графит не меньше, чем до 2000 градусов. Чтобы атомы углерода могли переходить с места на место. Во - вторых, его надо при этом сжать чудовищным давлением, не меньше чем 60 тысяч атмосфер [?6 ГПа]. Тогда он обязательно перейдёт в алмаз, подобно тому, как камень, подброшенный рукой, обязательно поднимется с земли в воздух».
Первые попытки получить искусственные алмазы предпринимались еще в конце 19 в., но все они не имели успеха.
Лишь в декабре 1954 учеными компании «Дженерал электрик» Ф.Банди, Т.Холлом, Г.М.Стронгом и Р.Х.Уэнторфом были синтезированы алмазы на аппаратуре, сконструированной П.У.Бриджменом из Гарвардского университета. Под давлением 126 600 кг/см2 и при температуре 2430° С этим ученым удалось получить из графита мелкие технические алмазы. В СССР искусственные алмазы были изготовлены в 1960 в Институте физики высоких давлений АН СССР, руководимом Л.Ф.Верещагиным, а уже в 1961 в Киеве было налажено их промышленное производство. В настоящее время технические алмазы производят в промышленных масштабах.
В 1970 Стронгу и Уэнторфу удалось получить искусственные алмазы ювелирного качества. Такие алмазы изготавливаются путем растворения порошка синтетического алмаза в ванне из расплавленного металла. Атомы углерода из растворенного порошка мигрируют к одному краю ванны, где помещаются крошечные затравочные кристаллы алмаза. Атомы углерода оседают и кристаллизуются на этих кристаллах, которые вырастают до алмазов массой в один карат и более. Для этого процесса требуются чрезвычайно высокие давления и температуры. Сегодня искусственные ювелирные алмазы стоят дороже природных, и их производство нерентабельно.
1.2 Свойства алмазов
Физико-механические свойства.
Важное значение имеет очень низкий коэффициент трения алмаза по металлу на воздухе - всего 0,1 что связано с образованием на поверхности кристалла тонких пленок адсорбированного газа, играющих роль своеобразной смазки. Когда такие пленки не образуется коэффициент трения возрастает и достигает 0,5-0,55. Низкий коэффициент трения обусловливает исключительную износостойкость алмаза на истирание , которая превышает износостойкость корунда в 90 раз , а других абразивных материалов - в сотни и тысячи раз. В результате , например , при шлифовании изделий из твердых сплавов алмазного порошка расходуется в 600-3000 раз меньше ,чем любого другого абразива.
Для алмаза также характерны самый высокий (по сравнению со всеми известными в природе материалами) модуль упругости и самый низкий коэффициент сжатия.
Термические свойства.
Температура плавления алмаза составляет 3700-4000 С .На воздухе алмаз сгорает при 850-1000 С, а в струе чистого кислорода горит слабо-голубым пламенем при 720-800 С, полностью превращаясь в конечном счете в углекислый газ.При нагреве до 2000-3000 С без доступа воздуха алмаз переходит в графит.
Рассматриваемый минерал обладает исключительно высокой теплопроводностью ,что обусловливает быстрый отвод тепла возникающего в процессе обработки деталей инструментом , изготовленным из него. Кроме того ,для алмаза характерен низкий температурный коэффициент линейного расширения (ниже , чем у твердых сплавов и стали). Это свойство алмаза учитывается при вставке его в оправу из разных металлов и других материалов.
Оптические свойства.
Средний показатель преломления бесцветных кристаллов алмаза в желтом цвете равен примерно 2,417 ,а для различных цветов спектра он варьирует от 2,402 (для красного) до 2,465 (для фиолетового). Способность кристаллов разлагать белый цвет на отдельные составляющие называется дисперсией. Для алмаза дисперсия равна 0,063. Как показатели преломления , так и дисперсия алмаза намного превышают аналогичные свойства всех других природных прозрачных веществ, что и обусловливает в сочетании с твердостью непревзойденные качества алмазов как драгоценных камней. Высокое преломление в совокупности с чрезвычайно сильной дисперсией вызывает характерный блеск отполированного алмаза, названный алмазным.
Одним из важнейших свойств алмазов является люминесценция. Под действием видимого света и особенно катодных, ультрафиолетовых и рентгеновских лучей алмазы начинают люминесцировать- светиться различными цветами. Рентгенолюминесценция широко применяется на практике для извлечения алмазов из природы.
Электрические и магнитные свойства.
Алмаз относится к изоляторам: его удельное электрическое сопротивление очень велико. Некоторые кристаллы, однако, имеют низкое удельное сопротивление и обладают свойствами полупроводников. Эти алмазы, как правило, голубого цвета. Очень высоко ценятся и исключительно редки. Алмаз относится к немагнитным минералам, но некоторые их разновидности имеют слабые парамагнитные свойства, которые в основном связаны с присутствием примеси азота. Иногда магнитные свойства придают алмазам и механические включения в них магнитных минералов- магнетита и ильменита. Это необходимо учитывать при извлечении алмазов из породы, так как при магнитной сепарации <магнитные> алмазы будут попадать в магнитную фракцию и могут быть пропущены.
Окраска
Большинство природных алмазов бесцветно, однако нередки такие камни самых разнообразных цветов и оттенков. Наиболее часто встречаются алмазы со слабым желтоватым оттенком, а также зеленоватые. В месторождениях Южной Африки зачастую попадаются бурые алмазы; за счет значительных примесей аморфного углерода они могут приобретать совершенно черную окраску. А вот розовые, рубиново - красные, розовато-лиловые и синие очень редки. Что касается алмазов сапфирово - синего цвета, то это, как уже отмечалось, явление исключительное, и ценятся они соответственно очень высоко.
Поверхность алмазов из наиболее древних месторождений (возраст которых превышает I млрд. лет) имеет зеленую окраску, которая, однако, исчезает при механической обработке кристалла. Ученые объясняют возникновение зеленой <рубашки> на алмазах продолжительным воздействием на них естественного радиоактивного облучения. Сейчас это явление воспроизведено экспериментально.
В США, Великобритании и ряде других странах искусственное окрашивание природных алмазов производят в лабораторных условиях. Если <бомбардировать> алмаз электронами с энергией 1МэВ, а потом с определенной скоростью охлаждать, то он приобретает синеватый цвет. Если энергия облучения достигает 1,5МэВ, то алмаз становится сине - зеленым. Оттенок цвета зависит от продолжительности излучения. К сожалению, искусственно окрашенные голубые алмазы, в отличие от природных голубых, не приобретают полупроводниковых свойств.
При облучении нейтронами алмаз окрашивается в зеленый цвет, густота которого также определяется продолжительностью излучения. Гамма - лучи придают алмазу равномерную голубовато - зеленую окраску.
Прочие свойства
Алмаз - минерал весьма устойчивый. Он не поддается воздействию самых сильных кислот и их смесей (соляной, серной, азотной, плавиковой, <царской водки>), даже доведенных до температуры кипения. Не реагирует он и со щелочами. В то же время алмаз легко окисляется и сгорает в смеси соды с расплавленной натриевой или калиевой селитрой. Расплавленные карбонаты щелочей при 1000 - 1200 С также окисляют алмаз. При нагревании до 800 С в присутствии железа или сплавов на его основе алмаз растворяется, поэтому алмазные резцы не применяются при обработке стали и чугуна.
Алмаз с чистой поверхностью гидрофобен, т.е не смачивается водой. Из - за этого свойства он может проникать сквозь влажные слои гравийно - песчаных отложений и концентрироваться вместе с минералами значительно большей плотности гранатами, ильменитами. После называют минералами - спутниками алмаза: они помогают геологам отыскивать алмазные месторождения.
В то же время алмазы способны прилипать к некоторым видам жиров, на чем основаны некоторые способы извлечения алмазов из раздробленной алмазоносной породы.
1.3 Применение алмазов
Алмазы издавна использовались в качестве самых изысканных украшений и большое валютное значение. Прозрачные бесцветные или красиво окрашенные кристаллы алмаза, пригодные для огранки, являются драгоценными камнями 1-го класса, так же как сапфир, рубин, изумруд, александрит, эвклаз. Ювелиры разделяют алмазы почти на 1000 сортов в зависимости от прозрачности, тона, густоты и равномерности окраски, наличия трещин, минеральных включений и некоторых других признаков.
С конца XIX века алмазы начинают применяться на производстве. В настоящее время экономический потенциал наиболее развитых государств в значительной мере связывается с использованием ими алмазов. Достаточно напомнить, что по оценкам западных экономистов промышленный потенциал США в случае отказа от импорта алмазов упадет в 2-3 раза. Применение алмазного инструмента существенно повышает чистоту обработки деталей, а производительность труда возрастает при этом в среднем на 50 %.
Массу алмазов принято измерять в каратах. Каратом в Древней Греции называли семена рожкового дерева, по форме напоминающие крупную горошину. После высушивания семена имели сравнительно постоянную массу - от 150 до 220 мг.
В промышленности используются преимущественно алмазы, непригодные для огранки: непрозрачные, с многочисленными включениями, трещинами, мелкозернистые сростки, алмазная крошка и т.п. Единой классификации технических алмазов не существует, поскольку каждая отрасль промышленности предъявляет свои требования к их сортировке.
Какие же свойства алмаза определяют его широкое использование в различных областях народного хозяйства? В первую очередь, конечно, исключительная твердость, которая, если судить по скорости истирания, в 50 раз выше, чем у корунда, и в десятки раз выше, чем у лучших сплавов, применяемых для изготовления резцов. Алмаз применяется для бурения горных пород и механической обработке самых разнообразных материалов.
Бурение скважин в толщах горных пород, слагающих земную кору, в широких масштабах применяется при поиске и разведке месторождений полезных ископаемых, а также при эксплуатации нефтяных и газовых залежей. Не обойтись без бурения и при выполнении всевозможных взрывных и инженерно-геологических работ, предшествующих возведению крупных зданий, плотин и многих других объектов.
В техническом отношении наиболее совершенным является вращательное алмазное бурение, которое осуществляется высверливанием скважин в толще горных пород с помощью буровых коронок, армированных алмазами. Коронки, армированные алмазами, повышают скорость бурения в 8-15 раз по сравнению с бурением, основанным на применении твердосплавных или дробовых коронок.
Наилучшими алмазами для бурения считаются тонкозернистые плотные карбонадо, поскольку они обладают повышенной твердостью и наименее подвержены раскалыванию. На втором месте стоят шаровидные балласы и небольшие монокристаллы алмаза округлой формы. На изготовление буровых коронок ежегодно расходуется около 0.6 тонны камней, что составляет примерно 10 % общего количества добываемых в мире технических алмазов.
Применение алмазных резцов и сверл на обработке цветных и черных металлов, твердых и сверхтвердых сплавов, стекла, каучука, пластмасс и других синтетических веществ дает огромный экономический эффект по сравнению с использованием твердосплавного инструмента. Чрезвычайно важно, что при этом не только в десятки раз повышается производительность труда, но одновременно значительно улучшается качество продукции. Обработанные алмазным резцом поверхности не требуют шлифовки, на них практически отсутствуют микротрещины, в результате чего многократно увеличивается срок службы получаемых деталей.
Совершенно незаменимы алмазы при вытачивании опорных рубиновых камней, используемых в часовых и многих других точных механизмах, а также при правке шлифовальных кругов.
Практически все современные отрасли промышленности, в первую очередь электротехническая, радиоэлектронная и приборостроительная, в огромных количествах используют тонкую проволоку, изготавливаемую из различных металлов. При этом предъявляются строгие требования к круговой форме и неизменности диаметра поперечного сечения проволоки при высокой чистоте поверхности. Такая проволока из твердых металлов и сплавов может быть изготовлена лишь с помощью алмазных фильер. Фильеры представляют собой пластинчатые алмазы с просверленными в них тончайшими (от 0.5 до 0.001 мм) отверстиями.
Широкое применение в промышленности находят и алмазные порошки. Их получают путем дробления низкосортных природных алмазов, а также изготавливают на специальных предприятиях по производству синтетических алмазов. Алмазные порошки используются в дисковых алмазных пилах, мелкоалмазных буровых коронках, специальных напильниках и в качестве абразива. Только с применением алмазных порошков удалось создать уникальные сверла, которые обеспечивают получение глубоких тонких отверстий в твердых и хрупких материалах. Такие сверла (“алмазные жала” ) позволяют высверливать, например, в стекле отверстия диаметром 2 мм и длиной до 850 мм!
Алмазные порошки находят применение на гранильных фабриках, где все самоцветы, и в том числе алмазы, подвергаются огранке и шлифовке, благодаря чему невзрачные до этого камни становятся таинственно светящимися или ослепительно сверкающими драгоценностями, к неповторимой красоте которых никто не остается равнодушным.
С 50-х годов внимание ученых и конструкторов начинают привлекать другие физические свойства алмаза. Известно, что, попадая в кристалл, быстрые заряженные частицы выбивают электроны из его атомов, т.е. ионизируют вещество. В алмазе под действием заряженной частицы происходит световая вспышка и возникает импульс тока. Эти свойства позволяют использовать алмазы в качестве детекторов ядерного излучения. Свечение алмазов и возникновение импульсов электрического тока при облучении позволяет применять их в счетчиках быстрых частиц. Алмаз в качестве такого счетчика обладает неоспоримыми преимуществами по сравнению с газовыми и другими кристаллическими приборами.
Кристаллы алмаза, применимые в качестве счетчиков, крайне редки, поэтому цена их значительно выше, чем у равных по величине ювелирных камней. Некоторые кристаллы алмаза являются полупроводниками p- типа в широком диапазоне температур и давлений.
Использование алмазов в полупроводниковых и некоторых оптических приборах, а также в счетчиках ядерного излучения весьма перспективно, поскольку такие приборы способны работать в самых различных условиях, включая области низких и высоких температур, сильные электромагнитные и гравитационные поля, агрессивные среды и т.п. Следовательно, основанные на алмазах приборы могут оказаться незаменимыми при космических исследованиях, а также при изучении глубинного строения нашей планеты.
2. Графит
Графит - кристаллическая форма углерода, в которой атомы находятся в состоянии spІ-гибридизации, имеет слоистую структуру. spІ-гибридные орбитали направлены к вершинам треугольника. Поэтому в графите каждый атом углерода связан с тремя соседними. Образуя плоскую сетку, и, кроме того, имеет один неспаренный электрон на негибридизованной p-орбитали, перпендикулярной к плоскости сетки. Эти электроны образуют общую систему пи-связей, которая представляет собой наполовину заполненную зону проводимости. Связь между сетками - слоями в графите осуществляется в основном за счёт относительно слабых межмолекулярных сил. Всё это определяет свойства графита: он мягок, легко расслаивается, имеет серый цвет и металлический блеск, электропроводен и химически более активен, чем алмаз.
Сажа, древесный уголь и другие угли, получаемые из органического и неорганического сырья, представляют собой мелкокристаллический графит, так что обычно термином «углерод» обозначают именно графит той или иной степени дисперсности.
2.1 Получение графита
Кристаллический графит извлекают из руд методом флотации, руды скрытокристаллический графит используют без обогащения.
Исходное сырье для получения графита - нефтяной или металлургический кокс, антрацит, и пек. Отдельные частицы исходных углеродных материалов в результате карбонизации при обжиге связываются в монолитное твердое тело, которое затем подвергают графитизации (кристаллизации). По одному из методов кокс или антрацит измельчают и смешивают с пеком в определенных соотношениях, прессуют при давлении до 250 МПа, а затем подвергают обжигу при 1200оС и графитации при нагреве до 2600-3000оС. Для уменьшения пористости полученный графит пропитывают синтетической смолой или жидким пеком, после чего снова подвергают обжигу и графитации. В производстве графита повышенной плотности пропитку, обжиг и графитацию повторяют до пяти раз.
Из смеси, содержащей кокс, пек, природный графит и до 20% тугоплавких карбидообразующих элементов (например Ti, Zr, Si, Nb, W, Ta, Mo, B), получают рекристаллизованный графит. Исходную шихту нагревают в графитовых пресс-формах до температуры, на 100-150оС превышающей температуру плавления эвтектической смеси карбида с углеродом, под давлением 40-50 МПа в течении нескольких десятков минут.
Пирографит получают пиролизом газообразных углеводородов с осаждением образовавшегося углерода из газовой фазы нам подложку из графита. Осадки имеют кристаллическую структуру различной степени совершенства - от турбостратной неупорядоченной (пироуглерод) до упорядоченной графитовой (пирографит).
2.2 Свойства графита
Монокристаллы графита диамагнитны, магнитная восприимчивость велика в направлении, перпендикулярном базисным плоскостям, и незначительна в параллельном направлении. Знак коэффициента Холла меняется с положительного на отрицательный при 2100°С.
Прочностные свойства графита изменяются с увеличением температуры. Для большинства искусственных графитов предел прочности при растяжении с повышением температуры возрастает в 1,5-2,5 раза, достигая максимума при 2400-2800°С; предел прочности при сжатии увеличивается в 1,3-1,6 раза в интервале 2200-2300°С; модули упругости и сдвига возрастают в 1,3-1,6 раза в интервале 1600-2200°С. С повышением температуры до 3000°С и выше прочностные свойства довольно резко снижаются и при 3200 °С приближаются к свойствам при 20°С. В интервале 20-2000°С графит хрупок. В диапазоне 2200-2600°С наблюдается большая остаточная деформация, достигающая 0,35-1,5% в зависимости от вида графита. Наиболее высокие прочностные свойства имеет рекристаллизованный графит.
Хорошие антифрикционные свойства графит обусловлены легкостью скольжения одного углеродного слоя относительно другого под действием малых сдвиговых напряжений в направлении базисных плоскостей. Коэффициент трения по металлам (для рабочих скоростей до 10 м/с) составляют 0,03-0,05. Для пирографита под действием напряжений в направлении, перпендикулярном базисным плоскостям, он составляет 0,4-0,5; пирографит может быть использован в качестве фрикционного материала.
После облучения графит нейтронами его физические свойства изменяются: удельное электрическое сопротивление увеличивается, а прочность, модуль упругости, твердость, теплопроводность уменьшаются на порядок. После отжига при 1000-2000 °С свойства восстанавливаются до прежних значений. Графит обладает низким сечением захвата тепловых нейтронов.
Характерная особенность искусственно полученного графита -его пористость, оказывающая существенное влияние практически на все свойства графита. Объем пор от 2-3% для пирографита до 80-85% для других видов графита. Для описания зависимости предела прочности при сжатии, модуля упругости, теплопроводности, удельного электрического сопротивления от пористости применяют эмпирическое выражение:
Рi = рoieai
где Pi, иPio -- свойства соответственно пористого и непористого графита, a - общая пористость, e - параметр для i-того свойства.
Графит весьма инертен при нормальных условиях. Окисляется кислородом воздуха до углекислого газа выше 400 °С. Температура начала реакций тем выше, чем совершеннее кристаллическая структура графита. Окисление ускоряется в присутствии Fe, V, Na, Си и других металлов, замедляется в присутствии С12, соединений фосфора и бора. С молекулярным азотом графит практически не реагирует, с атомарным при обычной температуре образует цианоген C2N2 в присутствии Н2 при 800°С - HCN. В условиях тлеющего разряда графит с N2 дает парацианоген (CN)X, где *>2. С оксидами азота выше 400 °С образует С02) СО и N2, с Н2 при 300-1000°С - СН4. Галогены внедряются в кристаллическую решетку графит, давая соединения включения.
С большинством металлов и их оксидов, а также со многими неметаллами графит дает карбиды. Со всеми щелочными металлами, некоторыми галогенидами, оксифторидами, галогеноксидами, оксидами и сульфидами металлов образует соединения включения, с нитридами металлов выше 1000 °С -твердые растворы нитридов и карбидов, с боридами и карбидами - эвтектические смеси с температурами плавления 1800-3200°С. графит стоек к действию кислот, растворов солей, расплавов фторидов, сульфидов, теллуридов, органических соединений, жидких углеводородов и др., реагирует с растворами щелочей, жидкими окислителями и рядом хлор- и фторорганических соединений.
Наиболее химически и термически стоек пирографит. Он практически непроницаем для газов и жидкостей, при 600°С его стойкость к окислению во много раз выше, чем у других графитов. В инертной среде пирографит работоспособен при 2000оС длительного времени.
2.3 Применение графита
Графит используют в металлургии для изготовления правильных тиглей и лодочек, труб, испарителей, кристаллизаторов, футеровочных плит, чехлов для термопар, в качестве противопригарной «присыпки» и смазки литейных форм. Он также служит для изготовления электродов и нагревательных элементов электрических печей, скользящих контактов для электрических машин. Анодов и сеток в ртутных выпрямителях, самосмазывающихся подшипников скольжения, втулок для поршневых штоков, уплотнительных колец для насосов и компрессоров, как смазка для нагретых частей машин и установок. Его используют в атомной технике в виде блоков, втулок, колец в реакторах, как замедлитель тепловых нейтронов и конструкционный материал( для этих целей применяют чистый графит с содержанием примесей не более 10-2% по массе), в ракетной технике- для изготовления сопел ракетных двигателей, деталей внешней и внутренней теплозащиты и другие, в химическом машиностроении- для изготовления теплообменников, трубопроводов, запорной арматуры, деталей центробежных насосов и др. для работы с активными средами.Графит используют также как наполнитель пластмасс, компонент составов для изготовления стержней для карандашей, при получении алмазов. Пирографит наносится в виде покрытия на частицы ядерного топлива.
3. Фуллерен
Фуллерены (футболены) были открыты в 1985 г. Это аллотропные формы углерода, которые содержат чётное (более 20) количество атомов углерода, образующих три связи друг с другом. Атомы в молекулах фуллеренов расположены на поверхности сферы или сфероида в вершинах гексагонов и пентагонов (см рис.). Фуллерены с количеством атомов более 70 называются высшими фуллеренами. Научный интерес к изучению фуллеренов проявился после изобретения в 1990 г. способа их производства в больших количествах и, особенно, после присуждения в 1996 г. Нобелевской премии по химии за открытие фуллеренов. Интерес к исследованиям фуллеренов обусловлен разнообразием новых физико-химических явлений, происходящих при участии фуллеренов, и перспективами применения нового класса материалов, создаваемых на их основе.
Молекула C60 обладает наиболее высокой среди фуллеренов симметрией и наибольшей стабильностью. Каждый атом углерода в молекуле расположен в вершинах двух гексагонов и одного пентагона. Любопытно, что среди всех фуллеренов только C20 не имеет в своем составе гексагонов (Nature, 2000, 407, 26). Валентные электроны каждого атома находятся в sp2-гибридизованных состояниях, сходных с состояниями электронов в графите.
Молекулы фуллеренов являются сильными окислителями, так как атомы углерода в них обладают высокой электроотрицательностью и способны присоединять к себе до шести свободных электронов.
В перспективе фуллерены могут быть применены как наноструктурные материалы. Одним из типов таких материалов являются металл-фуллереновые плёнки, осаждаемые в вакууме. Уже при малых концентрациях фуллеренов в плёнках титан-фуллерен структурообразующие частицы имеют округлую форму и размеры 15-40 нм, поэтому добавление фуллеренов в сплавы может служить способом создания наноматериалов.
3.1 Получение фуллерена
Технология получения фуллеренов:
1.получение фуллеренсодержащей сажи по методу электродугового испарения графита в атмосфере инертного газа (гелия)
2.выделение смеси фуллеренов из электродуговой сажи
3.фракционное обогащение по фуллерену С60
4.очистка фуллерена С60 до чистоты 99,5% и выше
5.очистка фуллерена С70 до чистоты 98%
6.получение фуллеренового концентрата, обогащенного высшими фуллеренами (Сn>76)
7.технологический контроль, анализ и сертификация получаемых продуктов.
Схема производства фуллеренов
3.2 Свойства фуллеренов
Нелинейные оптические свойства фуллеренов
Анализ электронной структуры фуллеренов показывает наличие р-электронных систем, для которых имеются большие величины нелинейной восприимчивости. Фуллерены действительно обладают нелинейными оптическими свойствами. Однако из-за высокой симметрии молекулы С60 генерация второй гармоники возможна только при внесении асимметрии в систему (например внешним электрическим полем). С практической точки зрения привлекательно высокое быстродействие (~250 пс), определяющее гашение генерации второй гармоники. Кроме того фуллерены С60 способны генерировать и третью гармонику.
Сверхпроводящие соединения с С60
Молекулярные кристаллы фуллеренов -- полупроводники, однако в начале 1991 г. было установлено, что легирование твёрдого С60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник. Легирование С60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X3С60 (Х -- атом щелочного металла). Первым интеркалированным металлом оказался калий. Переход соединения К3С60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х3С60, либо XY2С60 (X,Y -- атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs2С60 - его Ткр=33 К.
Главной особенностью фуллеренов является их повышенная реакционная активность. Они легко захватывают атомы других веществ и образуют материалы с принципиально новыми свойствами. На их основе возникла новая стереохимия углеродов, позволяющая целенаправленно создавать новые органические молекулы и, следовательно, вещества с заданными формами и свойствами.
3.3 Применение фуллеренов
Анализ электронной структуры фуллеренов показывает наличие р-электронных систем, для которых имеются большие величины нелинейной восприимчивости. Фуллерены действительно обладают нелинейными оптическими свойствами. Однако из-за высокой симметрии молекулы С60 генерация второй гармоники возможна только при внесении асимметрии в систему (например внешним электрическим полем). С практической точки зрения привлекательно высокое быстродействие (~250 пс), определяющее гашение генерации второй гармоники. Кроме того фуллерены С60 способны генерировать и третью гармонику.
Другой вероятной областью использования фуллеренов и, в первую очередь, С60 являются оптические затворы. Экспериментально показана возможность применения этого материала для длины волны 532 нм. Малое время отклика даёт шанс использовать фуллерены в качестве ограничителей лазерного излучения и модуляторов добротности. Однако, по ряду причин фуллеренам трудно конкурировать здесь с традиционными материалами. Высокая стоимость, сложности с диспергированием фуллеренов в стёклах, способность быстро окисляться на воздухе, далеко не рекордные коэффициенты нелинейной восприимчивости, высокий порог ограничения оптического излучения (не пригодный для защиты глаз) создают серьёзные трудности в борьбе с конкурирующими материалами.
Фуллерен в качестве материала для полупроводниковой техники
Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента.
Фуллереновые добавки для роста алмазных плёнок методом CVD
Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С2, которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0.6 мкм/час, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы -- использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения.
Сверхпроводящие соединения с С60
Как уже говорилось, молекулярные кристаллы фуллеренов -- полупроводники, однако в начале 1991 г. было установлено, что легирование твёрдого С60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник. Легирование С60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X3С60 (Х -- атом щелочного металла). Первым интеркалированным металлом оказался калий. Переход соединения К3С60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х3С60, либо XY2С60 (X,Y -- атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs2С60 -- его Ткр=33 К.
Другие области применения фуллеренов
Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированным фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается на ?30 %. Фуллерены могут быть также использованы в фармации для создания новых лекарств. Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействие температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций. Так же фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.
Подобные документы
Переход аллотропной модификации. Электрические, магнитные, оптические, физико-механические, термические свойства алмаза. Изучение структуры графита, его антифрикционные и химические свойства. Образование, применение озона и кислорода. Аллотропия углерода.
реферат [26,0 K], добавлен 17.12.2014Многообразие соединений углерода, их распространение в природе и применение. Аллотропные модификации. Физические свойства и строение атома свободного углерода. Химические свойства углерода. Карбонаты и гидрокарбонаты. Структура алмаза и графита.
реферат [209,8 K], добавлен 23.03.2009Углерод: положение в таблице Менделеева, нахождение в природе, свободный углерод. Атомы углерода в графите. Фуллерены как класс химических соединений, молекулы которых состоят из углерода. Первый способ получения твердого кристаллического фуллерена.
доклад [11,9 K], добавлен 14.12.2010Механические (расщепление) и химические методы получения графена. Открытие в химии углерода, графита, фуллерена, нанотрубки. Холодный способ производства графенов Петрика. Промышленное производство графена. Использование графена в качестве транзистора.
доклад [354,6 K], добавлен 13.03.2011Аллотропные формы углерода (алмаз, карбин и графит), их схематическое изображение. История открытия карбина, подтверждение полиинового строения цепочек. Кристаллическая структура карбина, спектры рентгеновского анализа. Основные методы получения.
презентация [796,2 K], добавлен 07.01.2013Фуллерены – новые аллотропные формы углерода: структура кристаллической решетки, электронное строение и химические свойства. Исследования фуллеренов, перспективы их применения в биологии, медицине. Методы получения водорастворимой формы - фуллеренолов.
реферат [2,2 M], добавлен 09.12.2012Место углерода в таблице химических элементов: строение атомов, энергетические уровни, степень окисления. Химические свойства углерода. Алмаз, графит, фуллерен. Адсорбция как важное свойство углерода. Изобретение противогаза и угольных фильтров.
презентация [217,1 K], добавлен 17.03.2011Химические свойства графита - минерала из класса самородных элементов, аллотропной модификации углерода. Соединение графита – соединения включения, образующиеся при внедрении атомов, ионов, молекул между углеродными слоями кристаллической решетки графита.
реферат [532,8 K], добавлен 11.10.2011Сведения об углероде, восходящие к древности и распространение его в природе. Наличие углерода в земной коре. Физические и химические свойства углерода. Получение и применение углерода и его соединений. Адсорбционная способность активированного угля.
реферат [18,0 K], добавлен 03.05.2009Структурные особенности графена - однослойной двумерной углеродной структуры, его дефекты и свойства. Потенциальные области применения графена. Строение и получение фуллеренов. Классификация углеродных нанотрубок по количеству слоев, их применение.
курсовая работа [1,6 M], добавлен 03.03.2015