Химия в системе естественных наук

Двуединая задача и концептуальные уровни современной химии. Квантовая механика, атомная и статистическая физика, термодинамика и физическая кинетика как основа данной науки. "Химический элемент" и "химическое соединение" с точки зрения современности.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 30.09.2010
Размер файла 28,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат

по дисциплине «Химия»

по теме

«Химия в системе естественных наук»

1. Место и роль химии в современной цивилизации

На протяжении длительного развития человечество не раз сталкивалось с большим числом проблем, от которых нередко зависело само его существование. Чтобы выжить, наш предок научился изготавливать и использовать простейшие орудия труда, чем компенсировал свои природные недостатки. В дальнейшем первобытный человек, оказавшись перед проблемой обеспечения пищей, освоил охоту, затем земледелие и скотоводство. Освоение все более сложных орудий и предметов труда вызвало энергетическую проблему, потребовало перехода от естественных источников энергии к более совершенным. Энергетическая проблема последовательно привела человека к освоению энергии пара, тепловой, электрической энергии, и, наконец, энергии атома.

Необходимость повышения производительности труда и эффективности производства, роста темпов добычи и переработки громадного объема минеральных ресурсов, наряду с необходимостью решения многих жизненно важных проблем, вызвали к жизни использование химической технологии, всеобщую химизацию, а затем компьютеризацию общественного производства и быта. Успехи человека в решении больших и малых проблем выживания в значительной мере были достигнуты благодаря развитию химии, становлению различных химических технологий. Успехи многих отраслей человеческой деятельности, таких, как энергетика, металлургия, машиностроение, легкая и пищевая промышленность и других, во многом зависит от состояния и развития химии. Огромное значение химия имеет для успешной работы сельскохозяйственного производства, фармацевтической промышленности, обеспечения быта человека.

Химическая промышленность производит десятки тысяч наименований продуктов, многие из которых по технологическим и экономическим характеристикам успешно конкурируют с традиционными материалами, а часть -- является уникальной по своим параметрам. Химия дает материалы с заранее заданными свойствами, в том числе и такими, которые не встречаются в природе. Подобные материалы позволяют проводить технологические процессы с большими скоростями, температурами, давлениями, в условиях агрессивных сред. Для промышленности химия поставляет такие продукты, как кислоты и щелочи, краски, синтетические волокна и т.п. Для сельского хозяйства химическая промышленность выпускает минеральные удобрения, средства защиты от вредителей, химические добавки и консерванты к кормам для животных. Для домашнего хозяйства и быта химия поставляет моющие средства, краски, аэрозоли и др. продукты.

Химия характерна не только тем, что обеспечивает производство многих необходимых продуктов, материалов, лекарств. Во многих отраслях промышленности широко используются также химические методы обработки: беление, крашение, печатание в текстильной промышленности; обезжиривание, травление, цианирование в машиностроении; кислородное дутье в металлургии; консервация, синтезирование витаминов и аминокислот -- в пищевой и фармацевтической промышленности и т.д. Внедрение химических методов ведёт к интенсификации технологических процессов, увеличению выхода полезного вещества, снижению отходов, повышению качества.

Таким образом, химизация, как процесс внедрения химических методов в общественное производство и быт, позволила человеку решить многие технические, экономические и социальные проблемы. Однако масштабность, а нередко и неуправляемость этого процесса обернулась второй стороной медали». Химия прямо или опосредованно затронула практически все компоненты окружающей среды: сушу, атмосферу, воду Мирового океана -- внедрилась в природные круговороты веществ. В результате этого нарушилось сложившееся в течение миллионов лет равновесие природных процессов на планете, химизация стала заметно отражаться на здоровье самого человека. Получилась ситуация, которую ученые обоснованно именуют химической войной против населения Земли. За последние 30-40 лет в этой войне пострадали сотни миллионов жителей планеты. Возникла в связи с этим самостоятельная ветвь экологической науки -- химическая экология.

Основными источниками, загрязняющими окружающую среду, кроме собственно химической промышленности, являются металлургия, автомобильный транспорт, тепловые электростанции. Они дают большой объем газообразных отходов, загрязняют водоемы рек и озер сточными водами, используемыми в технологических целях. Газообразные отходы содержат оксиды углерода, серы, азота, соединения свинца, ртути, бензопирен, сероводород и другие вредные вещества. В связи со сжиганием топлива в больших объемах возникла проблема снижения концентрации кислорода и озона в атмосфере, получившая название «кислородного голодания».

К твердым отходам относятся отходы горнодобывающей промышленности, строительный и бытовой мусор. Сточные воды содержат многие неорганические соединения: ионы ртути, цинка, кадмия, меди, никеля и т.д. Пятая часть вод Мирового океана загрязнена нефтью и нефтепродуктами. Значительный ущерб водоемам вследствие вымывания удобрений из почвы наносят загрязнения, связанные с сельскохозяйственным производством; Вредные вещества из воздуха и воды попадают в почву, в которой накапливаются тяжелые металлы, радиоактивные элементы.

В организм человека вредные вещества попадают через воздух, воду и пищу. Таким образом, человечество, пройдя ряд этапов развития -- от огня до термоядерной бомбы -- в начале XXI века оказалось в условиях, когда в очередной раз встал вопрос о его выживании. Угроза экологической катастрофы требует решительного пересмотра отношений современной «химической» цивилизации и природы в сторону оптимизаций этих отношений. Задача заключается в том, чтобы через новые технологии гармонизировать отношения «общество -- природа» таким образом, чтобы компенсаторных возможностей окружающей среды было достаточно для нейтрализации антропогенных воздействий на нее.

Новые технологии по своим параметрам должны приближаться к природным процессам, отличаться от промышленных своей безотходностью или малоотходностью. В настоящее время наметились следующие пути решения сложных экологических проблем: комплексная переработка сырья; пересмотр традиционных процессов и схем получения известных продуктов; внедрение бессточных и замкнутых схем водопотребления; очистка выбрасываемых газов; использование промышленных комплексов с замкнутой структурой материальных и энергетических потоков. Проблема выживания человека в настоящее время оказалась усложненной проблемами геополитического, социального и чисто технического характера. Решение последних затруднено ввиду потребительского характера сложившейся цивилизации и эгоцентризма индустриально развитых стран. Однако, опираясь на идеи В.И. Вернадского о перерастании биосферы в ноосферу, можно говорить о неслучайности появления человека на Земле, о его предназначении в кризисной ситуации сыграть роль спасителя природы.

Экологические проблемы порождены не только экономикой и техникой, но и нравственным состоянием человека. Вопрос состоит не только в том, чтобы остановить процесс разрушения природы техническими средствами. Вопрос состоит в том, чтобы в корне изменить потребительское отношение человека к окружающему миру. Из сказанного вытекает, что место и роль химии в современной цивилизации должны рассматриваться системно, т.е. во всем многообразии отношений, существующих между обществом и природной средой в рамках критерия экологической безопасности. При этом неизбежно рассмотрение химии как активного элемента сложной системы «общество -- природа», представляющего собой, в свою очередь, открытую систему со своей структурой и взаимообменом между веществом, энергией и информацией.

2. Фундаментальные основы современной химии

На определенном этапе эволюции Вселённой в ней реализуются условия, допускающие формирование атомов вещества. Определенный набор атомов способен образовать новую систему -- молекулу. Организация материн на атомно-молпекулярном уровне приводит к появлению новых свойств материи -- к возможности существования множества веществ с громадным разнообразием свойств.

Наукой, исследующей закономерности, проявляющиеся на атомно-молекулярном уровне организации материи, является химия. Задача химии состоит в изучении строения молекул и процессов изменения этого строения в результате их взаимодействия.

Фундаментальными основами химии стали квантовая механика, атомная физика, термодинамика, статистическая физика, а также физическая кинетика. На основе физики устроена теоретическая химия. Из этого не следует, что химия не существует как самостоятельная наука: химия «выводится» из физики, но не сводится к ней.

На химическом уровне мы имеем дело с очень большим числом частиц, участвующих в квантово-механических процессах обмена электронами (химических реакциях). Это обусловливает микроскопичность проявления законов квантовой физики в химических процессах. Базовое понятие химия -- валентность -- это макроскопическое, химическое отображение квантово-механических взаимодействий.

Эмпирическая химическая формула соединения показываем, какие элементы и в каком соотношении входят в состав: химического соединения. Эмпирическая формула устанавливается опытным путем. На основе эмпирической формулы некоторого вещества может быть найдена его молекулярная формула. В химии выработаны правила определения молекулярной формулы. Молекулярные формулы позволяют отобразить химические превращения. Для этого используются химические уравнения, которые являются эффективным и простым способом описания химических процессов. Методика составления уравнений химических реакций с учетом характера конкретных веществ и взаимодействий хорошо разработана современной химией.

Результаты химического взаимодействия могут быть вычислены с помощью методов физики. Однако даже в простых: случаях эти расчеты были бы чрезвычайно сложны. На основе методов, выработанных в химии, используя для описания вещества и его превращения язык химических формул и уравнений, химик решает эти проблемы намного проще и быстрее.

Благодаря тому, что химии удалось выработать свой собственный язык, свое феноменологическое описание свойств веществ и химических превращений, химия стала великой наукой задолго до того, как квантовая механика вскрыла сущность химических явлений.

Язык химии разнообразен; он содержит возможности отображения особенностей химических реакций и различных свойств веществ. Например, структурные формулы показывают последовательность и пространственный порядок соединения атомов в молекулах.

Таким образом, атомно-молекулярный уровень организации материи, чрезвычайно сложно описываемый на фундаментальном уровне, на уровне квантовой механики, потребовал выработки своего химического языка. Сегодня физика, составляющая ядро теоретической химии, служит базой дальнейшего развития этой науки. Развитие современной химии, ее основные концепции оказались тесно связанными не только с физикой, но и с другими естественными науками, особенно с биологией.

3. Особенность и двуединая задача современной химии

Как и другие составляющие естествознания, химия имеет многочисленные практические приложения. Однако еще Д.И. Менделеевым было обращено внимание на существенную особенность этой науки: химия в значительной мере сама создает свой объект изучения. Самые разнообразные исследования в ней направлены на раскрытие закономерностей химических превращений, которые реализованы искусственно, на получение и изучение веществ, большинство из которых в природе не встречается. Химия как наука теснейшим образом связана с химией как производством. Д.И. Менделеев рассматривал химические заводы как лаборатории больших размеров. Основная цель современной химии, вокруг которой строится вся исследовательская работа, заключается в получении веществ с заданными свойствами. Это и определяет содержание двуединой центральной задачи химии: исследование генезиса (то есть происхождения) свойств веществ и разработка на этой основе методов получения веществ с заранее заданными свойствами.

4. Концептуальные уровни современной химии

По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению основной задачи. Развитие этих подходов обусловило формирование четырех концептуальных систем химических знаний. Для их представления воспользуемся наглядной схемой.

Концептуальные подходы к решению основной проблемы химии, показанные на схеме, появлялись последовательно.

Первоначально свойства веществ связывались исключительно с их составом (в этом суть учения о составе). На этом уровне развития содержание химии исчерпывалось ее традиционным, менделеевским определением ~- как науки о химических элементах и их соединениях.

Далее учение о составе было дополнено концепцией структурной химии. Структурная концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структурой молекул. В рамках этого подхода возникло понятие «реакционная способность», включающая представление о химической активности отдельных фрагментов молекулы -- отдельных ее атомов (и даже отдельных химических связей) или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналитической науки в науку синтетическую. Этот подход позволил в конечном итоге создать промышленные технологии синтеза многих органических веществ.

Затем было развито учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химических превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы получения свойств получаемых веществ.

Последний этап концептуального развития химии связан с использованием в ней некоторых принципов, реализованных в химизме живой природы. В рамках эволюционной химии осуществляется поиск таких условий, при которых в процессе химических превращений идет самосовершенствование катализаторов реакций. По существу речь идет об изучении и применении самоорганизации химических систем, происходящих в клетках живых организмов.

Каждая новая концептуальная ступень в развитии химии означает не отрицание подходов» использовавшихся ранее, а опору на них как на основание. Все показанные на схеме концептуальные системы используются не порознь, а во взаимосвязи. Последовательное дополнение химии названными концептуальными системами составляет логику развития этой науки.

Термин «концептуальная система», а не «концепция» использован в приведенных выше рассуждениях не случайно. Причина этого заключается в том, что на каждой ступени рассмотренной «лесенки» развития химии, в свою очередь, были использованы различные научные идеи для решения конкретных проблем. Примером тому служит выдающееся открытие в области химии, сделанное на пути решения одной из исходных проблем химии -- проблемы химического элемента.

5. Понятия «химический элемент» и «химическое соединение» с точки зрения современности

Исходным в учении о составе является вопрос: «Что считать химическим элементом элементарным, неразложимым «кирпичиком» вещества? Отправной точкой решения этой проблемы стало формулирование Д.И. Менделеевым знаменитого Периодического закона. В основу систематизации свойств химических элементов Менделеевым была положена идея зависимости свойств элемента от атомной массы. Он доказал, что признаком элемента является не экспериментально устанавливаемая неразложимость данного вещества (как считалось ранее), а место в периодической системе, определяемое атомной массой. Позднее, в связи с успехами квантовой теории, физика помогла составить представление об атоме элемента как о сложной квантово-механической системе. Место элемента получило новый смысл, оказавшись обусловленным зарядом ядра атома (Z). На этой основе были выяснены особенности строения электронных орбит всех элементов и раскрыт физический смысл Периодического закона. Химический элемент -- это вид атомов с одинаковым зарядом ядра, то есть совокупность изотопов. Под это современное определение попадают как отдельные атомы, так и находящиеся в химической связи с другими атомами.

Со времен Д.И. Менделеева было известно 62 элемента. В 1930-е годы Система элементов заканчивалась ураном (Z=92). С начала 1940-х годов таблица Менделеева пополнялась принципиально новым путем -- путем физического синтеза. До середины 50-х годов было синтезировано 9 элементов. Элемент под номером 101 был назван «менделеевий». В последующие годы синтез ядер новых элементов продолжался, но ядра с номером от 102 и далее оказались крайне неустойчивыми. Самый тяжелый из известных на сегодняшний день элементов (порядковый номер 112) был получен при слиянии ядра цинка с ядром свинца. Его время жизни измеряется тысячными долями секунды. Однако, по оценкам физиков, в ряду тяжелых ядер могут существовать «островки стабильности» элементов при Z=126, 164 и даже 184.

В физически доступном слое Земли всего восемь химических элементов представлены в значительном количестве. Это кислород 47,0%, кремний 27,5% , алюминий 8,8%, железо 4,6%, кальций 3,6% , натрий 2,6%, калий 2,5% и магний 2,1%.

Практически все элементы проявляются в земных условиях в составе тех или иных химических систем -- химических соединений. В настоящее время известно более восьми миллионов соединений. Из них абсолютное большинство (около 96%) -- органических.

Какие из многокомпонентных тел следует отнести к химическому соединению, а что считать простыми смесями?

Проблема химического соединения традиционно решалась с позиций атомистической концепции. В начале XIX в. английский химик Дж. Дальтон обосновал закон постоянства состава, отражающий неизменное соотношение компонентов данного вещества. Долгое время не допускалось отклонения от этого закона. Однако уже современник Дальтона французский химик К.Бертолле указывал на возможность существования соединений переменного состава в форме растворов и расплавов. Впоследствии были найдены доказательства существования химических соединений переменного состава.

Суть проблемы химического соединения, как оказалось, состоит не столько в постоянстве или непостоянстве химического состава, сколько в физической природе сил, объединяющих атомы в молекулу. Эти силы символизируются химическими связями. В общем случае химсвязи обусловлены проявлением волновых свойств валентных электронов: перекрытием электронных облаков, обобществлением электронов. В результате выяснения физической сущности химической связи понятие молекулы претерпело изменение. Теперь в категорию молекулы вошли и такие квантово-механические системы, как монокристаллы, а также полимеры, образованные за счет водородных связей. Но это уже макроскопические молекулы (макромолекулы). Прежде к макромолекулам относили только гигантские органические молекулы (полимеры), имеющие молекулярную массу порядка 106, построенные из многих повторяющихся частей -- более простых органических систем (мономеров).

В соответствии с современной точкой зрения, химическое соединение -- это вещество, атомы которого за счет химических связей объединены в молекулы, комплексы, макромолекулы, монокристаллы или иные квантово-механические системы. В настоящее время состав любого вещества в строго математическом смысле переменен. Ясно, что классификация некоторого конкретного вещества целиком зависит от точности методов определения состава.

Современное содержание понятия «химическое соединение» сопряжено с новыми направлениями в химии, Появилась, например, химия твердого тела. Отдельную область химических соединений непостоянного состава образовали так называемые поверхностные соединения, которыми стала заниматься химия поверхности.

Таким образом, проблема химического соединения, так же как и проблема химического элемента, решена в современной химии на основе представлений квантовой физики.

6. Учение о химических процессах

Способность к взаимодействию различных химических реагентов определяется не только их атомарно-молекулярной структурой, но и условиями протекания химических реакций. К ним относятся термодинамические факторы температура, давление и др.) и кинетические факторы (все, что связано с переносом веществ, образованием их промежуточных форм). Их влияние на химические реакции вскрывается на концептуальном уровне химии, который обобщенно называют учением, о химических процессах.

Учение о химических процессах является областью глубокого взаимопроникновения физики, химии и биологии. Действительно, в основе этого учения находятся химическая термодинамика и кинетика, которые в равной степени относятся и к химии, и к физике. А живая клетка, исследуемая биологической наукой, представляет собой в то же время микроскопический химический реактор, в котором происходят превращения, изучаемые химией, и многие из которых химия пытается реализовать в макроскопическом масштабе. Таким образом, изучая условия протекания и закономерности химических процессов, человек вскрывает глубокую связь существующую между физическими, химическими и биологическими явлениями: и одновременно перенимает у живой природы опыт, необходимый ему для получения новых веществ и материалов.

Большинство современных химических технологий реализуется с использованием катализаторов -- веществ, которые увеличивают скорость реакции, не расходуясь в ней.

В современной химии получило развитие также направление, принципом которого является энергетическая активация реагента (то есть подача энергии извне) до состояния полного разрыва исходных связей. В данном случае речь идет о больших энергиях. Это так называемая химия экстремальных состояний, использующая высокие температуры, большие давления, излучение с большой величиной энергии кванта (ультрафиолетовое, рентгеновское, гамма-излучение). К этой области относятся плазмохимия (химия на основе плазменного состояния реагентов), а также технологий, которых активация процесса достигается за счет направленных электронных или ионных пучков (элионные технологии).

Химия экстремальных состояний позволяет получать вещества и материалы, уникальные по своим свойствам: композитные материалы, высокотемпературные сплавы и металлические порошки, нитриды, силициды и карбиды тугоплавких металлов, разнообразные по своим свойствам покрытия. Примером могут служить сверхпрочные покрытия из нитрида титана, наносимые на металлообрабатывающий инструмент для многократного увеличения срока его эксплуатации. Интересно, что «золотой» блеск и высокая коррозионная стойкость пленок нитрида титана позволили с успехом применить технологию его нанесения при изготовлении кровли куполов церквей взамен традиционной и дорогой технологии золочения.

Эффективность технологий на основе химии экстремальных состояний очень высока. Характерным для них является энергосбережение при высокой производительности, высокая автоматизация и простота управления технологическими процессами, небольшие размеры технологических установок.

7. Эволюционная концепция в химии

Природа в процессе эволюции живых организмов создала своеобразные химические технологии необычайной эффективности. При изучении химизма живой природы биохимией и молекулярной биологией было установлено, что состав и структура биополимерных молекул представляют собой единый набор для всех живых существ, вполне доступный для исследования физическими и химическими методами. С другой стороны, было установлено, что в живых системах осуществляются такие типы химических превращений, какие никогда не обнаруживались в живом мире.

Важнейшее значение в современной химии придается проблеме поиска эффективных катализаторов для множества процессов химической технологии. Между тем, давно уже было установлено, что основой химии живого являются каталитические химические реакции, т.е. биокатализ. Химизм живой природы являлся идеалом для исследователей. «Подражание живой природе есть химизм будущего!» Этот девиз, который был высказан академиком А.Е. Арбузовым в 1930 г., является целеполагающей идеей развития эволюционной концепции в химии.

Интенсивные исследования последнего времени направлены на выяснение механизмов химических превращений, присущих живой материи. Химиков-органиков интересуют перспективы синтеза сложных веществ, аналогов органических соединений, образующихся в живых организмах; биологов -- вещественная и функциональная основы жизнедеятельности; исследователи-медики пытаются выяснить биохимические границы между нормой и патологией в организме. Объединяет все эти работы концептуальное представление о ведущей роли ферментов, биорегуляторов в процессе жизнедеятельности. Эта идея, предложенная великим французским естествоиспытателем Луи Пастером в XIX в., остается основополагающей и сегодня.

Изучив принципы, заложенные эволюцией в химизм живой природы, можно использовать их для развития химической науки и технологии. Чрезвычайно плодотворным с этой точки зрения является исследование ферментов и раскрытие тонких механизмов их действия. Ферменты -- это белковые молекулы, синтезируемые живыми клетками. В каждой клетке имеются сотни различных ферментов. С их помощью осуществляются многочисленные химические реакции, которые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма, то есть в пределах примерно от 5 до 40° С. (Чтобы эти реакции протекали вне организма, потребовалась бы их активация за счет высокой температуры или иных факторов активации. Для живой клетки такие условия означали бы гибель.) Следовательно, ферменты можно определить как биологические катализаторы. Биокатализаторы обладают высокой селективностью (избирательностью) -- один фермент катализирует обычно только одну реакцию. По принципу биокатализаторов будут созданы искусственные катализаторы.

Биокатализ нельзя отделить от проблемы биогенеза (происхождения жизни), какой бы трудной она ни являлась. Задача изучения и освоения всего многообразия каталитических процессов в живой природе -- это пролог эволюционной химии. Уже обозначены основные подходы к освоению каталитического опыта живой природы.

Проблемы моделирования биокатализаторов показали необходимость детального изучения химической эволюции, то есть установления закономерностей самопроизвольного (без участия человека) синтеза новых химических соединений, являющихся к тому же более высокоорганизованными продуктами по сравнению с исходными веществами. В 1960-х гг. было обнаружено явление самосовершенствования катализаторов в ходе реакции (тогда как обычно катализаторы в процессе их работы дезактивировались, ухудшались и выбрасывались). Речь идет о проявлении самоорганизации в химическом процессе. Здесь понятие «самоорганизация» означает такое изменяющееся состояние химической системы, которому присущи все более высокие уровни сложности и упорядоченности. Проблема биологической самоорганизации (и биологической эволюции) оказывается самым непосредственным образом связана с проблемой химической самоорганизации (и химической эволюции). Одна из задач химии, а именно самого новейшего ее направления - эволюционной химии, понять, как из неорганической материи возникает жизнь. Поэтому эволюционную химию можно назвать «предбиологией».

8. Сущность химической эволюции

Картина хемогенеза отчетливо свидетельствует о своеобразном химическом «естественном отборе» веществ. Резкая диспропорция между громадным множеством органических соединений и малым количеством составляющих их элементов, а также факт принадлежности этих же элементов к органогенам, нельзя объяснить на основе различной распространенности элементов. На Земле наиболее распространены кислород, кремний, алюминий, железо, тогда как углерод занимает лишь 16-е место. Совместная же весовая доля важнейших органогенов (С, N, P, S) в поверхностных слоях Земли всего около 0,24%. Следовательно, геохимические условия не сыграли сколько-нибудь существенной роли в отборе химических элементов при формировании органических систем, а тем более биосистем.

Тогда возникает вопрос, по каким признакам химическая эволюция отобрала малую часть элементов в число органогенов? С химической точки зрения видны признаки, по которым происходил этот «естественный отбор» элементов. Это, во-первых, способность образовывать достаточно прочные, энергоемкие химические связи. Во-вторых, образуемые связи должны быть достаточно лабильными, т.е. изменчивыми, перестраиваемыми.

Именно поэтому углерод был отобран эволюцией как органоген № 1. Он в полной мере отвечает перечисленным выше требованиям. Атом углерода образует почти все типы химических связей, какие знает химия, с самыми разными значениями энергии связи. Он образует углерод-углеродные связи, строя таким путем длинные и стабильные углеродные скелеты молекул в виде цепей и (или) колец. Углеродные атомы образуют связи с остальными элементами-органогенами (Y, N, О, Р и S). Соединение с этими и другими элементами в различных комбинациях обеспечивает колоссальное разнообразие органических соединений, Оно проявляется в размерах, форме молекул и их химических свойствах.

Кислород и водород нельзя считать столь же лабильными, как углерод; их, скорее, следует рассматривать в качестве носителей крайних и односторонних свойств -- окислительных и восстановительных. Лабильные атомы серы, фосфора и железа имеют большое значение в биохимии, в то время как стабильные -- кремний, алюминий, натрий, составляющие несравненно большую часть земной коры, играют второстепенную роль.

Подобно тому, как из всех химических элементов только 6 органогенов, да еще 10-15 других элементов отобраны природой в основу биосистем, так же и в предбиологической эволюции шел отбор и химических соединений. Из миллионов органических соединений в построении живого участвуют лишь несколько сотен; из 100 известных аминокислот в состав белка входит только 20,

Каким образом из минимума химических соединений образовался сложнейший высокоорганизованный комплекс -- биосистема? Химикам важно это понять для того, чтобы научиться у природы создавать технологии синтеза сложных соединений из самого простого сырья. В связи с этой проблемой уже могут быть сделаны следующие предварительные выводы.

На ранних стадиях химической эволюции мира катализ отсутствует. Высокие температуры и радиация обеспечивают энергию, необходимую для активации любых химических взаимодействий.

Первые проявления катализа возникают при смягчении условия (температура менее 5 000 К). Роль катализаторов возрастала по мере того, как физические условия становились все менее экстремальными. Но общее значение катализа вплоть до образования достаточно сложных органических молекул еще не могло быть высоким.

После достижения некоторого минимального набора неорганических и органических соединений роль катализа начала резко возрастать. Отбор активных соединений происходил в природе из тех продуктов, которые получались относительно большим числом химических путей и обладали широким каталитическим спектром.

В ходе дальнейшей эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп.

Следующим фрагментом эволюции, сшивающим химическую и биологическую линию эволюции, являются развитые полимерные структуры типа РНК и ДНК, выполняющие роль каталитических матриц, на которых осуществляется воспроизведение себе подобных структур.

Теория саморазвития элементарных открытых каталитических систем, выдвинутая в 1964 г. А.П. Руденко, по существу представляет собой единую теорию хемо- и биогенеза. Она решает в комплексе вопросы о движущих силах и механизме эволюционного процесса, то есть о законах химической эволюции, об отборе элементов и структур, о сложности химической организации и иерархии химических систем как следствия эволюции. Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем, и следовательно, эволюционирующим веществом являются катализаторы.

Эта теория является в настоящее время основанием эволюционной концепции в химии. Одно из важнейших следствий этой теории -- установление пределов химической эволюции и перехода от хемогенеза к биогенезу.

Таким образом, эволюционная химия совместно с другими естественными науками, постепенно подступает к расшифровке механизма предбиологической эволюции и зарождения живого, а вместе с этим -- и к созданию новейших технологий на принципах, позаимствованных у живой природы.

Список используемой литературы

1. Дягилев Ф.М. Концепции современного естествознания. - М.: Изд. ИЭМПЭ, 2008.

2. Недельский Н.Ф., Олейников Б.И., Тулинов В.Ф. Концепции современного естествознания. - М: Изд. Мысль, 2006.

3. Грушевицкая Т.Г., Садохин А.П. Концепции современного естествознания.- М.: Изд. ЮНИТИ, 2005.

4. Карпенков С.Х. Основные концепции естествознания. - М.: Изд. ЮНИТИ, 2004.


Подобные документы

  • История химии как науки. Родоночальники российской химии. М.В.Ломоносов. Математическая химия. Атомная теория - основа химической науки. Атомная теория просто и естественно объясняла любое химическое превращение.

    реферат [28,2 K], добавлен 02.12.2002

  • Истоки и развитие химии, ее связь с религией и алхимией. Важнейшие особенности современной химии. Основные структурные уровни химии и ее разделы. Основные принципы и законы химии. Химическая связь и химическая кинетика. Учение о химических процессах.

    реферат [25,9 K], добавлен 30.10.2009

  • Химия как одна их важнейших наук для человечества. Основные периоды развития науки. Символика алхимии. Становление технической химии и ятрохимии. Таблица атомных масс Дальтона. Открытие электрона и радиоактивности. Структурная и физическая химия.

    презентация [2,5 M], добавлен 01.11.2014

  • Химический взгляд на природу, истоки и современное состояние. Предмет познания химической науки и ее структура. Взаимосвязь химии и физики. Взаимосвязь химии и биологии. Химия изучает качественное многообразие материальных носителей химических явлений.

    реферат [99,4 K], добавлен 15.03.2004

  • Пути познания и классификация современных наук, взаимосвязь химии и физики. Строение и свойства вещества как общие вопросы химической науки. Особенности многообразия химических структур и теория квантовой химии. Смеси, эквивалент и количество вещества.

    лекция [759,9 K], добавлен 18.10.2013

  • Краткая история возникновения химии как важнейшей отрасли естествознания и науки, изучающей вещества и их превращения. Алхимия и первые сведения о химических превращениях. Описание вещества, атомная, математическая химия и родоначальники российской химии.

    курсовая работа [25,5 K], добавлен 25.04.2011

  • Концептуальные основы современной химии как естественной науки. Учение о составе вещества, понятие химического элемента и соединения. Процесс самоорганизации химических систем с позиции представления о всеобщем эволюционном процессе во Вселенной.

    реферат [29,9 K], добавлен 21.02.2010

  • Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация [1,8 M], добавлен 04.10.2013

  • Химическая физика как наука о физических законах, управляющих строением и превращением химических веществ. Физическая химия — дисциплина, изучающая общие законы физики и химии. Различия между этими двумя дисциплинами, характеристика методов исследования.

    презентация [1,9 M], добавлен 12.05.2014

  • История открытия Бериллия. Недоразумение с периодической системой. Физическая и химическая сушность элемента. Бериллий с точки зрения геолога, металлурга, физика, химика, биолога и медика. Достоинства элемента и факторы, ограничивающие его применение.

    реферат [27,8 K], добавлен 23.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.