Медь и ее сплавы
Распространение меди в природе, ее месторождения. Изучение физических и химических свойств меди и ее сплавов и соединений, электропроводимость. Характеристики основных физико-механических свойств меди, отношение к кислороду, взаимодействие с водой.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 23.04.2010 |
Размер файла | 66,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1
Содержание
- Введение 2
- Распространение меди в природе. Месторождения. 4
- Физические и химические свойства меди. 6
- Физические свойства 6
- Цвет меди и её соединений. 6
- Электропроводимость. 6
- Характеристики основных физико-механических свойств меди 7
- Химические свойства 7
- Отношение к кислороду. 8
- Взаимодействие с водой. 8
- Взаимодействие с кислотами. 9
- Отношение к галогенам и некоторым другим неметаллам. 9
- Оксид меди. 12
- Гидроксиды меди. 10
- Сульфаты. 14
- Карбонаты. 15
- Комплексообразование. 15
- Качественные реакции на ионы меди. 11
- Сплавы 17
- Латуни 17
- Бронзы 19
- Медноникелевые сплавы 20
- Медь и живые организмы, применение меди 21
- Заключение 18
- Список литературных источников: 19
- Введение
- Тема, конечно, звучит несколько обыденно. Ну, медь, ну металл. Ну что нового, кроме кучки сухих цифр может предоставить такая работа для изучения? Это не о культуре разглагольствовать, не о высоких материях вспоминать - тут нужна чёткость, сухость…
- Примерно такие мысли возникали у меня в голове, когда реферат только начинал создаваться. Но, как это часто случается в нашем нелепом мире, всё повернулось совсем по-другому. У металла, название которого мы слышим каждый день, к которому давно привыкли и не обращаем на него никакого внимания, оказалась богатая история, а где эта история берёт своё начало - про то не ведает ни один человек на нашей планете. В принципе, мы, обладая достаточно развитой фантазией, можем представить себе всё, что происходило в далёком прошлом. Мы мысленно можем увидеть, как совершенно дикий человек, закутанный, быть может, в звериные шкуры идёт по горам, сжимая в кулаке каменный топор. Как человек натыкается на странный для него камень красноватого оттенка и начинает стучать по нему своим топором. Мы можем увидеть, как из обрабатываемого куска меди постепенно появляется копия топора каменного, который затем будет выброшен за ненадобностью. Так медный век подошёл к колыбели человечества, так прогресс набирал свою скорость.
- Медь, использовавшаяся на заре человечества и сопровождавшая его на протяжении тысячелетий, используется и по сей день. В современном мире, она занимает видное место, равно как и её сплавы, речь о которых ещё зайдёт позже. В моём реферате была предпринята попытка предоставить исчерпывающие сведения по данной теме. Надеюсь, мне это удалось.
- Распространение меди в природе. Месторождения
- Металлы подгруппы меди обладают небольшой химической активностью, поэтому они находятся частично в виде химических соединений, а частично в свободном виде, особенно золото.
- Медь в далекие геологические эпохи, очевидно, находилась только в виде сернистых соединений - халькопирита (или ) и халькозина . Объясняется это тем, что медь обладает довольно большим химическим сродством к сере, в настоящее время сульфиды - наиболее распространенные минералы меди. При высоких температурах, например в районах вулканической деятельности, под действием избытка кислорода происходило превращение сульфидов меди в окислы, например:
- .
- При температуре ниже 10000C происходило образование окиси меди, которая в небольших количествах встречается в природе:
- .
- Самородная (металлическая) медь, очевидно, возникла в природе при сильном нагревании частично окисленных сернистых руд. Можно представить, что после землетрясений, грандиозных извержений окисленные минералы меди были погребены под толстым слоем горных пород и нагревались за счет земного тепла. При этом происходило взаимодействие окислов с сульфидами:
- .
- Подобные процессы протекают при выплавке меди на металлургических заводах. Такие природные “металлургические заводы” выплавляют громадные количества меди: самый крупный из найденных самородков весил 420 т. По-видимому, в меньших масштабах взаимодействие окислов некоторых металлов с сульфидами идет и в настоящее время, например в районе некоторых Курильских островов.
- Некоторые другие минералы меди получились из окисных руд. Например, под действием влаги и двуокиси углерода происходила гидратация окиси меди и образование основных карбонатов:
- .
- В лаборатории мы эти процессы не наблюдаем, так как они идут медленно. В “лаборатории” природы сроки в несколько тысяч лет совершенно незначительны. В дальнейшем под влиянием давления вышележащих горных пород и некоторого нагревания происходило уплотнение основного карбоната меди, и он превратился в изумительный по красоте минерал - малахит. Особенно красив полированный малахит. Он бывает окрашен от светло-зеленого до темно-зеленого цвета. Переходы оттенков причудливы и создают фантастический рисунок на поверхности камня.
- Переход нерастворимых сульфидных соединений меди в раствор мог осуществляться за счет взаимодействия растворов сульфата железа (III):
- .
- Растворы сульфата железа, как указано выше, получаются в природе при действии воды, насыщенной кислородом, на пирит. Эти процессы медленно идут в природе и в настоящее время.
- Медь входит более чем в 198 минералов, из которых для промышленности важны лишь 17. Для производства меди наибольшее значение имеют халькопирит (он же - медный колчедан) CuFeS2, халькозин (медный блеск) Cu2S, ковеллин CuS, борнит (пестрая медная руда) Cu5FeS4. Иногда встречается и самородная медь. Распространение меди в земной коре - 4,7*10-3 % по массе (1015 - 1016 тонн).
- Соединения элементов подгруппы меди распределены в земной коре неравномерно, что объясняется различием в геологических условиях, сложившихся в различных местах земного шара. Богатейшие месторождения меди имеются в Конго (Катангский пояс). Материалы, собранные археологами о древнейших месторождениях датируются тысячелетиями до новой эры. Древнейшие выработки меди на территории нашей страны найдены в Закавказье, на побережье Балхаша, в многочисленных пунктах Сибири.
- Планомерные поиски месторождений меди начинаются при Иване III, Иване Грозном и особенно при Петре I. При Иване Грозном в Олонецкий уезд был послан новгородский гость (купец) Семен Гаврилов “для сыску медные руды”, где она и была найдена. В 1652 г. Казанский воевода сообщил царю: “Медные руды… сыскано много и заводы к медному делу заводим”. [2, с.26] Из документов следует, что с 1562 по 1664 г. было послано из “Казани к Москве чистыя меди 4641 пуд. 6 гривенков”. В 1702 г. стала выходить первая русская газета “Ведомости”, которую, очевидно, редактировал Петр I. 2 января 1703 г. в ней писали: “Из Казани пишут. На реке Соку нашли много нефти и медной руды, из той руды меди выплавили изрядно, отчего чают не малую прибыль Московскому государству”.
- В начале этого столетия главнейшими месторождениями, которые разрабатывались, были: в районе Северного Урала - Богословский завод, в районе Нижнего Тагила - Выйский завод, а на Кавказе - Калакентский и Кедабекский заводы.
- В наше время известны месторождения меди на восточном склоне Урала, Средней Азии, Закавказье и т.д.
- Большое количество меди и других ископаемых находится на дне океанов, которое покрыто так называемыми конкрециями - скоплениями в виде камней округлой неправильной формы. Они содержат в среднем 0,5% меди. По подсчетам ученых запасы этой ценной и своеобразной руды составляют 5 млрд. тонн.
- Физические и химические свойства меди
- Физические свойства
- Металлы подгруппы меди, как и щелочные металлы, имеют по одному свободному электрону на один ион-атом металла. Казалось бы, эти металлы не должны особенно сильно отличатся от щелочных. Но они, в отличие от щелочных металлов, обладают довольно высокими температурами плавления. Большое различие в температурах плавления между металлами этих подгрупп объясняется тем, что между ион-атомами металлов подгруппы меди почти нет “зазоров” и они расположены более близко. Вследствие этого количество свободных электронов в единице объема, электронная плотность, у них больше. Следовательно, и прочность химической связи у них больше. Поэтому металлы подгруппы меди плавятся и кипят при более высоких температурах.
- Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью и отсутствием “зазоров” между ион-атомами.
- Необходимо отметить, что твердость и прочность металлов зависят от правильности расположения ион-атомов в кристаллической решетке. В металлах, с которыми мы практически сталкиваемся, имеются различного рода нарушения правильного расположения ион-атомов, например пустоты в узлах кристаллической решетки. К тому же металл состоит из мелких кристалликов (кристаллитов), между которыми связь ослаблена. В Академии Наук СССР была получена медь без нарушения в кристаллической решетке. Для этого очень чистую медь возгоняли при высокой температуре в глубоком вакууме на глубокую подложку. Медь получалась в виде небольших ниточек - “усов”. Как оказалось такая медь в сто раз прочнее, чем обычная.
- Цвет меди и её соединений
- Чистая медь обладает и другой интересной особенностью. Красный цвет обусловлен следами растворенного в ней кислорода. Оказалось, что медь, многократно возогнанная в вакууме (при отсутствии кислорода), имеет желтоватый цвет. Медь в полированном состоянии обладает сильным блеском.
- При повышении валентности понижается окраска меди, например CuCl - белый, Cu2O - красный, CuCl + H2O - голубой, CuO - черный. Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем обусловлен интересный практический признак для поисков.
- Электропроводимость
- Медь обладает наибольшей (после серебра) электропроводимостью, чем и обусловлено её применение в электронике.
- Медь кристаллизируется по типу централизованного куба (рис 1).
1
- Рисунок 1. Кристаллическая решетка меди.
- Характеристики основных физико-механических свойств меди
- Удельная теплоемкость Ср, Дж/ (г ? К),
- Коэффициент линейного расширения
- Химические свойства
- Строение атома.
- Рисунок 2. Схема строения атома меди.
- 29Cu 1s1 2s2 sp6 3s2 3p6 3d10 4s1
- Eионизации 1 = 7.72 эВ
- Eионизации 2 = 20.29 эВ
- Eионизации 3 = 36.83 эВ
- Отношение к кислороду
- Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:
- В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:
- Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь, розового цвета. К тому же слой оксида настолько тонок, что пропускает свет, т.е. просвечивает. По-иному медь окисляется при нагревании, например при 600-800 0C. В первые секунды окисление идет до оксида меди (I), которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.
- Qобразования (Cu2O) = 84935 кДж.
- Рисунок 3. Строение оксидной пленки меди.
- Взаимодействие с водой
- Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например:
- .
- Эта реакция окислительно-восстановительная, так как происходит переход электронов:
- Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.
- Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:
- Взаимодействие с кислотами
- Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:
- .
- Отношение к галогенам и некоторым другим неметаллам
- Qобразования (CuCl) = 134300 кДж
- Qобразования (CuCl2) = 111700 кДж
- Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2.. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором - около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты.
- Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:
- .
- Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.
- Оксид меди
- При прокаливании меди на воздухе она покрывается черным налетом, состоящим из оксида меди . Его также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO3)2. При нагревании с различными органическими веществами CuO окисляет их, превращая углерод в диоксид углерода, а водород - в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.
- Под слоем меди расположен окисел розового цвета - закись меди Cu2O. Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков: .
- Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте:
- .
- Пластинку промывают, высушивают и прокаливают при невысокой температуре - и выпрямитель готов. Электроны могут проходить только от меди через закись меди. В обратном направлении электроны проходить не могут. Это объясняется тем, что закись меди обладает различной проводимостью. В слое закиси меди, который примыкает непосредственно к меди, имеется избыток электронов, и электрический ток проходит за счет электронов, т.е. существует электронная проводимость. В наружном слое закиси меди наблюдается нехватка электронов, что равноценно появлению положительных зарядов. Поэтому, когда к меди подводят положительный плюс источника тока, а к закиси меди - отрицательный, то электроны через систему не проходят. Электроны при таком положении полюсов движутся к положительному электроду, а положительные заряды - к отрицательному. Внутри слоя закиси возникает тончайший слой, лишенный носителей электрического тока, - запирающий слой. Когда же медь подключена к отрицательному полюсу, а закись меди к положительному, то движение электронов и положительных зарядов изменяется на обратное, и через систему проходит электрический ток. Так работает купроксный выпрямитель. [6, с.63]
- Гидроксиды меди
- Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли: . Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:
- Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета:
- .
- Это нестойкое соединение, которое легко окисляется до гидроксида меди (II):
- .
- Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей:
- , .
- Таким образом, гидроксид меди (II) может диссоциировать и как основание:
- и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных групп воды:
- Сульфаты
- Наибольшее практическое значение имеет CuSO4*5H2O, называемый медным купоросом. Его готовят растворением меди в концентрированной серной кислоте. Поскольку медь относится к малоактивным металлам и расположена в ряду напряжений после водорода, водород при этом не выделяется:
- .
- Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди.
- Карбонаты
- Карбонаты для металлов подгруппы меди не характерны и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди, который встречается в природе.
- Комплексообразование
- Характерное свойство двухзарядных ионов меди - их способность соединятся с молекулами аммиака с образованием комплексных ионов.
- Качественные реакции на ионы меди
- Ион меди можно открыть, прилив к раствору ее соли раствор аммиака. Появление интенсивного сине-голубого окрашивания связано с образованием комплексного иона меди [Cu(NH3)4]2+:
- Медь интенсивно окрашивает пламя в зеленый цвет.
- Пример качественного анализа сплава меди
Плотность r , кг/м3 |
8890 |
|
Температура плавления Тпл, ° С |
1083 |
|
Скрытая теплота плавления D Нпл, Дж/г |
208 |
|
Теплопроводность l , Вт/ (м ? град), при 20-100 ° С |
390 |
|
при 20-100 ° С |
0,375 |
|
a ? 10-6, град-1, при 0-100 ° С |
16,8 |
|
Удельное электросопротивление r ? 108, Ом ? м, при 20-100 ° С |
1,724 |
|
Температурный коэффициент электросопротивления, град-1, при 20-100 ° С |
4,3? 10-3 |
|
Предел прочности s в, МПа |
||
мягкой меди (в отожженном состоянии) |
190-215 |
|
твердой меди (в нагартованном состоянии) |
280-360 |
|
Относительное удлинение d , % |
||
мягкой меди (в отожженном состоянии) |
60 |
|
твердой меди (в нагартованном состоянии) |
6 |
|
Твердость по Бринеллю НВ, МПа |
||
мягкой меди (в отожженном состоянии) |
45 |
|
твердой меди (в нагартованном состоянии) |
110 |
|
Предел текучести s t , МПа |
||
мягкой меди (в отожженном состоянии) |
60-75 |
|
твердой меди (в нагартованном состоянии) |
280-340 |
|
Ударная вязкость KCU, Дж/см2 |
630-470 |
|
Модуль сдвига G ? 10-3, МПа |
42-46 |
|
Модуль упругости Е ? 10-3, МПа |
||
мягкой меди (в отожженном состоянии) |
117-126 |
|
твердой меди (в нагартованном состоянии) |
122-135 |
|
Температура рекристаллизации, ° С |
180-300 |
|
Температура горячей деформации, ° С |
1050-750 |
|
Температура литья, ° С |
1150-1250 |
|
Линейная усадка, % |
2,1 |
1
1
Исследуемый объект |
Реагент, действие |
Осадок |
Раствор |
Наблюдение |
Выводы |
|
Часть сплава |
Нагревание с конц. HNO3 |
Раствор 1 сразу приобрёл зелёную окраску, которая перешла в голубую после охлаждения |
||||
Раствор 1 |
25% NH3, Добавление 1-2 капли |
Раствор стал синим |
Это медный сплав |
|||
Часть сплава |
HNO3, Сначала растворяют часть стружек в 10 каплях 6М HNO3, а затем добавляют 20-25 капель конц. HNO3, нагревают до полного растворения сплава |
Раствор 2 может содержать Cu, Zn, Ni, Cd, Fe, Mn, Al, Pb, Sn, Sb |
Осадок не выпал |
|||
Раствор 2, Ni2+ |
Диметил-глиоксим |
Раствор позеленел |
Ni нет |
|||
Fe3+ |
NH4CNS |
Кристаллы окрасились в красный цвет, потом раствор позеленел и выпал чёрный осадок |
Есть Fe3+ |
|||
Cd2+ |
Дифенил-карбазид |
Раствор стал красным |
Есть Cd |
|||
Zn2+ |
Дитизон |
Фаза дитизона окрасилась в малиновый цвет |
Есть Zn |
|||
Mn |
NaBiO3 |
Ничего не произошло |
Mn нет |
|||
Al3+ |
Ализарин |
Раствор стал жёлто-коричневым |
Al нет |
|||
Окси-хинолин |
Выпал зелёно-жёлтый осадок |
Al нет |
||||
Раствор 2 |
HCl, H2SO4, добавление |
Раствор 3 возможно содержит Sb, Sn |
Осадок не выпал |
Pb возможно нет |
||
Раствор 3 |
H2O2 и NaOH |
Осадок 1 может содержать Sb |
Раствор 4 может содержать Sn |
Выпал зелёно-серый осадок (образовался ос.2 и р-р 2) |
||
Осадок 1 |
HNO3 |
Раствор 5 |
Осадок растворился |
Sb нет |
||
Раствор 5 |
NH3, NH4Cl, H2O2 |
Осадок не выпал |
||||
Раствор 4 |
NH4Cl |
Осадок не выпал |
Sn нет |
|||
Раствор 2 |
I- |
Выпал жёлтый осадок, который приобрёл красный оттенок |
Есть Pb2+ |
Проведённый качественный анализ даёт основания считать, что в сплаве содержится медь, цинк, кадмий, железо, свинец. Таким образом этот сплав является латунью.
Сплавы
Латуни
Латуни -- это двойные и многокомпонентные медные сплавы, в которых основной легирующий компонент -- цинк (содержание не превышает 45 %). Среди медных сплавов латуни получили наибольшее распространение в промышленности благодаря сочетанию высоких механических и технологических свойств. По сравнению с медью латуни обладают более высокой прочностью, коррозионной стойкостью, лучшими литейными свойствами, имеют более высокую температуру рекристаллизации. Латуни -- наиболее дешевые медные сплавы.
Двойные (простые) латуни относятся к системе Cu--Zn (рис. 19.3). Медь с цинком образует кроме a -твердого раствора на основе меди ряд промежуточных фаз b , g и т. д.
Фаза b -- это твердый раствор на основе электронного соединения CuZn (фаза Юм--Розери) с решеткой ОЦК. При охлаждении при температуре около 450 ° С b -фаза переходит в упорядоченное состояние (b ® b ? ), причем b ? -фаза в отличие от
b -фазы является более твердой и хрупкой.
Фаза g -- твердый раствор на основе электрон-ного соединения Cu5Zn8 отличается очень высокой хрупкостью и ее присутствие в промышленных конструкционных сплавах исключается.
Механические свойства латуни определяются свойствами фаз. По мере увеличения содержания цинка в латунях их прочность возрастает (рис. 19.4). Максимум прочности достигается в двухфазной области (a + b ) при содержании цинка около 45 %. При большем содержании цинка прочность резко уменьшается из-за высокой хрупкости b ? -фазы. Поэтому в промышленности применяют преимущественно a - и (a + b )-латуни. Представляют интерес как основа сплавов с эффектом памяти формы b -латуни.
Все латуни, содержащие более 20 % Zn, склонны к коррозионному растрескиванию. Это растрескивание проявляется при хранении и эксплуатации изделий, в которых имеются остаточные растягивающие напряжения, во влажной атмосфере с небольшим количеством аммиака или сернистого газа. Установлена определенная связь между данным явлением и временем года, что объясняется закономерными изменениями состава атмосферы. В связи с этим это явление было названо «сезонным растрескиванием» («сезонная болезнь»). Другой формой коррозии латуни является обесцинкование, которое характерно для латуней с повышенным содержанием цинка (Л68, ЛС59-1 и др.). Высокомедистые латуни практически не подвергаются обесцинкованию. Для уменьшения обесцинкования в латуни вводят небольшое количество мышьяка (0,02-0,06 %).
В России принята буквенно-цифровая маркировка латуней, в которой буквы обозначают основные компоненты сплава, числа -- их примерное содержание в процентах. Марка латуни начинается с буквы «Л». В двойных (простых) латунях число после буквы «Л» определяет среднее содержание меди. В марках многокомпонентных латуней после буквы «Л» указаны легирующие элементы, которым даны следующие обозначения: О -- олово; А -- алюминий; Н -- никель; К -- кремний; Ж -- железо и т. д. Порядок букв и чисел в деформируемых и литейных латунях различен. В деформируемой латуни первое число после букв указывает среднее содержание меди, последующие числа, отделенные через тире, указывают среднее содержание легирующих элементов. Например, латунь ЛА77-2 имеет следующий состав: 77 % Cu, 2 % Al, остальное Zn. В литейных латунях среднее содержание компонентов сплава указывается сразу после буквы, обозначающей его название; цинк обозначается буквой «Ц». Например, литейная латунь ЛЦ30А3 содержит 30 % Zn, 3 % AL, Cu -- основа.
Бронзы
Бронзами называют медные сплавы, в которых основными легирующими элементами являются различные металлы, кроме цинка. В особую группу выделяют медноникелевые сплавы.
По химическому составу бронзы подразделяются на оловянные и безоловянные, и в каждой из этих групп по технологии производства бронзы делятся на обрабатываемые давлением и литейные.
В марке обрабатываемых давлением оловянных (ГОСТ 5017-74) и безоловянных бронз (18175-78) после букв «Бр» стоят буквенные обозначения названий легирующих элементов в порядке убывания их концентрации, а в конце марки в той же последовательности указаны средние концентрации соотвествующих элементов (например, БрОЦС4-4-2,5). В марке литейных оловянных (ГОСТ 613-79) и безоловянных бронз (ГОСТ 493-79) после каждого обозначения легирующего элемента указано его содержание. Если составы литейной и деформируемой бронз перекрываются, то в конце марки литейной бронзы ставится буква «Л» (например, БрА9Ж3Л).
Свойства бронз определяются содержанием в них легирующих элементов. Для бронз, в которых легирующие элементы входят в основном в твердый раствор, характерно твердорастворное упрочнение. Дополнительно они могут быть упрочнены путем пластической деформации. Бронзы, содержащие бериллий, хром, цирконий и некоторые другие элементы с переменной растворимостью в твердом растворе, упрочняются путем закалки и последующего дисперсионного твердения. К классу термически упрочняемых сплавов относится также алюминиевая бронза БрАЖН10-4-4, в которой упрочнение при термообработке связано с мартенситным превращением.
Бронзы по сравнению с латунью обладают более высокой прочностью, коррозионной стойкостью и антифрикционными свойствами. Они достаточно коррозионностойки в морской воде, в растворах большинства органических кислот, углекислых растворах.
Медноникелевые сплавы
Никель -- металл серебристо-белого цвета, кристаллизующийся в решетку ГЦК с параметром а = 0,352 нм (при 20 ° С) и полиморфных превращений не имеет. При температуре ниже 358 ° С (точка Кюри) никель является слабым ферромагнетиком. Никель -- прочный, высокопластичный металл, отличающийся высокой коррозионной стойкостью, повышенной температурой плавления и высокой каталитической способностью. Это обусловило его широкое применение в металлургии, машиностроении, электронике, медицине и других отраслях техники.
Сплавы меди с никелем отличаются хорошими механическими свойствами, коррозионной стойкостью, технологичностью и особыми электрическими свойствами, что обусловливает широкое применение их в технике.
Медь образует с никелем непрерывные твердые растворы. Никель существенно упроч-няет медь, причем максимальную прочность и твердость имеют сплавы примерно эквиатомного состава. Важно отметить, что при этом характеристики пластичности и ударной вязкости практически не меняются. Никель повышает характеристики жаропрочности, модуль упругости и понижает температурный коэффициент электросопротивления меди.
По назначению медноникелевые сплавы делятся на две группы: конструкционные и электротехнические. К первой группе относятся высокопрочные и коррозионностойкие сплавы типа мельхиор, нейзильбер и куниаль, ко второй -- константан, манганин и копель, обладающие высоким электрическим сопротивлением и определенными термоэлектрическими свойствами.
Медь и живые организмы, применение меди
Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов и ферментов. При отсутствии или недостатке меди в растительных тканях уменьшается содержание хлорофилла, листья желтеют, растение перестает плодоносить и может погибнуть. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса CuSO4*5H2O. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. Польские ученые установили, что в тех водоемах, где присутствует медь, карпы отличаются крупными габаритами. В прудах и озерах, где нет меди, быстро развивается грибок, который поражает карпов. В малых же дозах медь совершенно необходима всему живому.
Из представителей живого мира небольшие количества меди содержат осьминоги, каракатицы, устрицы и некоторые другие моллюски. В крови ракообразных и головоногих, медь входящая в состав их дыхательного пигмента - гемоциана (0,33-0,38%), - играет ту же роль, что железо в крови других животных. Соединяясь с кислородом воздуха, гемоцианин синеет (поэтому у улиток кровь голубая), а отдавая кислород тканям, - обесцвечивается. У животных, стоящих на более высокой ступени развития, и у человека медь содержится главным образом в печени. Ежедневная потребность человеческого организма - примерно 0,005 грамма этого элемента. При недостаточном поступлении меди с пищей у человека развивается малокровие, появляется слабость.
С биологическими процессами связан и один из способов добычи меди. Еще в начале XX века в Америке были зарыты медные рудники в штате Юта: решив, что запасы руды уже исчерпаны, хозяева рудников затопили их водой. Когда спустя два года воду откачали, в ней оказалось 12 тысяч тонн меди. Подобный случай произошел и в Мексике, где из заброшенных рудников, на который махнули рукой, только за один год было “вычерпано” 10 тысяч тонн меди. Оказалось, что среди многочисленных видов бактерий есть и такие, для которых любимым лакомством служат сернистые соединения некоторых металлов. Поскольку медь в природе связана именно с серой, эти микробы неравнодушны к медным рудам. Окисляя нерастворимые в воде сульфиды, микробы превращают их в легко растворимые соединения, причем процесс этот протекает очень быстро. Так при обычном окислении за 24 дня из халькопирита выщелачивается 5% меди, то в опытах с участием бактерий за 4 дня удалось извлечь 80% этого элемента.
Примерно половина производимой меди в настоящее время используется в радиотехнике и электротехнической промышленности. Это связано с ее хорошей проводимостью и относительно высокой коррозионной стойкостью. К меди, идущей на изготовление электрических проводов, часто добавляют в небольшом количестве кадмий, который не снижает электропроводимость меди, но повышает ее прочность на разрыв.
Древнейший сплав меди с цинком - латунь и в настоящее время производится в больших количествах. Содержание цинка в латуни составляет 30-45%. Она применяется для изготовления различной арматуры, соприкасающейся с водой (краны, вентили и т.д.), а также для производства различных труб. Из латуни прокатывают полосы и листы, идущие для выработки самых разнообразных изделий (проволока, произведения искусств, предметы быта и т.д.).
Латунь хорошо прокатывается, штампуется и несколько дешевле меди, так как цинк более дешевый металл по сравнению с медью.
Другие сплавы меди называются бронзами. Наиболее распространенная бронза - оловянная. Она содержит от 5 до 80% олова. В зависимости от содержания олова свойства и назначение меняется. При содержании олова 10-13% ее цвет красновато-желтый, а более 27-30% - белый. Подшипниковая бронза содержит 81-87% меди. Для изготовления подшипников, различных тормозных устройств, где происходит скольжение металла, применяют бронзы, содержащие до 45% свинца. В часовых и других точных механизмах, где нужна высокая механическая прочность и коррозионная стойкость, применяется бериллиевая бронза, содержащая 1-2% бериллия. Ее прочность равна прочности стали.
В быту и особенно в химической промышленности применяют сплавы меди с никелем, например монель-металл, в котором отношение меди к никелю равно 2:1, и мельхиор, в котором это соотношение равно 4:1. Мельхиор по внешнему виду похож на серебро, из него приготовляют предметы домашнего обихода: ложки, вилки, подносы и т.д. Монель-металл применяют для изготовления монет, различных реакторов для химической промышленности, так как это сплав коррозионно-стоек.
Гидроксокарбонат меди (II) - (CuOH)2CO3 - применяют для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.
Сульфат меди (II) - CuSO4 - в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях.
Смешанный ацетат-арсенит меди (II) - Cu(CH3COO)2*Cu3(AsO3)2 - применяют под названием “парижская зелень” для уничтожения вредителей растений.
Из солее меди вырабатывают большое количество минеральных красок, разнообразных по цвету: зеленых, синих, коричневых, фиолетовых и черных. Все соли меди ядовиты, поэтому медную посуду лудят - покрывают внутри слоем олова, чтобы предотвратить возможность образования медных солей.
Заключение
Вот и подошла к концу моя работа. Подвести какие-либо итога довольно трудно. Медь использовалась, используется и, скорее всего, будет использоваться до тех пор, пока её ещё возможно будет добывать. Потому как запасы полезных ископаемых уменьшаются с каждым днём, даже с каждым часом, довольно проблематично сказать, когда «грянет гром». Скоро. К сожалению…
Но пока что рано начинать впадать в панику. Да и вообще делать этого никогда не следует. Вместо этого давайте выразим в нескольких предложениях основные мысли реферата.
Медь - жизненно важный элемент. Главный металл электротехники. Один из самых важных, самых древних и самых популярных металлов. Популярных не только в среде инженеров - конструкторов, электриков и машиностроителей, но и у людей гуманитарных профессий - историков, скульпторов, литераторов.
Список литературных источников
1. Л.Ф.Попова. От лития до цезия. М., “Просвещение”, 1972.
2. В.Е.Лунев. Познакомьтесь с медью. М.,”Металлургия”, 1965.
3. Отв. за ред. Л.К.Иугалин. Химия минералов меди. Новосибирск, “Наука”, 1975.
4. Л.Ф.Попова. Медь. М., “Просвещение”, 1989.
5. Н.А.Фигуровский, "Открытие элементов и происхождение их названий". М., “Наука”, 1970.
6. В.С.Котлярова, Н.В.Касимова. Получение плёнок меди и опыты с ними // Химия в школе, №3, 1972.
7. http://www.chem.msu.su/rus/history/element/cu.html
8. И.Г.Подчайнова, Э. Н.Симонова. Аналитическая химия меди. М.,”Наука”, 1990.
Подобные документы
Распространение меди в природе. Физические и химические свойства меди. Характеристики основных физико-механических свойств. Отношение меди к галогенам и другим неметаллам. Качественные реакции на ионы меди. Двойные и многокомпонентные медные сплавы.
реферат [68,0 K], добавлен 16.12.2010Общая характеристика и свойства меди. Рассмотрение основных методов получения меди из руд и минералов. Определение понятия сплавов. Изучение внешних характеристик, а также основных особенностей латуни, бронзы, медно-никелевых сплавов, мельхиора.
презентация [577,5 K], добавлен 14.04.2015Положение меди в периодической системе Д.И. Менделеева. Распространение в природе. Физические и химические свойства. Комплексные соединения меди. Применение меди в электротехнической, металлургической и химической промышленности, в теплообменных системах.
реферат [62,6 K], добавлен 11.08.2014Общая характеристика элементов подгруппы меди. Основные химические реакции меди и ее соединений. Изучение свойств серебра и золота. Рассмотрение особенностей подгруппы цинка. Получение цинка из руд. Исследование химических свойств цинка и ртути.
презентация [565,3 K], добавлен 19.11.2015Медь, серебро и золото - ровесники цивилизации. Медь: первый металл, заменивший древнему человеку камень в первобытных орудиях труда. Распространение в природе меди, основные сферы ее применения. Сплав меди с оловом – бронза и ее основные свойства.
презентация [3,9 M], добавлен 04.03.2010Атомные, физические и химические свойства элементов подгруппы меди и их соединений. Содержание элементов подгруппы меди в земной коре. Использование пиро- и гидрометаллургическиех процессов для получения меди. Свойства соединений меди, серебра и золота.
реферат [111,9 K], добавлен 26.06.2014История открытия меди и серебра. Применение меди в промышленности: электротехнике, машиностроении, строительстве, химическом аппаратуростроении, денежном обращении и ювелирном деле. Основные химические свойства и физическая характеристика металлов.
презентация [1,1 M], добавлен 25.03.2013Изучение физико-химических свойств меди, арсеназо и полигексаметиленгуанидина. Природа поверхности кремнезема, модифицированные кремнеземы. Методика сорбционного концентрирования меди с использованием кремнезема, нековалентно-модифицированного арсеназо I.
курсовая работа [282,2 K], добавлен 20.05.2011Медь - химический элемент I группы периодической системы Менделеева. Общая характеристика меди. Физические и химические свойства. Нахождение в природе. Получение, применение, биологическая роль. Использование соединений меди.
реферат [13,4 K], добавлен 24.03.2007Медь металл мягкий и пластичный. По электро- и теплопроводности медь уступает только серебру. Металлическая медь, как и серебро, обладает антибактериальными свойствами. Малахит является соединением меди, состав природного малахита - основной карбонат меди
курсовая работа [182,8 K], добавлен 24.05.2005