Центробежные вентиляторы

Основные понятия, параметры и характерные признаки центробежных вентиляторов. Характеристики и регулирование подачи центробежных вентиляторов. Графики зависимостей напоров. Конструктивное выполнение вентиляторов общего и общепромышленного назначения.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 09.03.2010
Размер файла 581,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Контрольная работа

по курсу «Оборудования отрасли основ проектирования»

Содержание

1. Основные понятия и параметры

2. Характеристики и регулирование подачи центробежных вентиляторов

3. конструктивное выполнение вентиляторов общего назначения

Список литературы

1. Основные понятия и параметры

Центробежными вентиляторами называют машины для перемещения чистых газов и смесей газов с мелкими твердыми материалами, имеющие степень повышения давления не более 1,15 при плотности потока 1,2 кг/м3. Характерным признаком центробежного вентилятора является повышение давления за счет работы центробежной силы газа, движущегося в рабочем колесе от центра к периферии.

При незначительном повышении давления газа изменением его термодинамического состояния можно пренебречь. Поэтому к центробежным вентиляторам применима теория машины для несжимаемой среды.

Центробежные вентиляторы широко распространены в промышленности и коммунальном хозяйстве для вентиляции зданий и отсасывания вредных веществ в технологических процессах.

В теплоэнергетических установках центробежные вентиляторы применяются для подачи воздуха в топочные камеры котлов, перемещения топливных смесей в системах пылеприготовления, отсасывания дымовых газов и выброса их в атмосферу.

Конструктивное устройство центробежного вентилятора простейшего типа показано на рис. 1.

Рис. 1 - Центробежный вентилятор

1 - ступица; 2 - основной диск; 3 - рабочие лопатки; 4 - передний диск; 5 - лопастная решетка; 6 - корпус; 7 - шкив; 8 - подшипники; 9 - станина; 10, 11 - фланцы

Рабочее колесо вентилятора состоит из литой ступицы 7, жестко сопряженной с основным диском 2. Рабочие лопатки 3 крепятся к основному диску 2 и переднему диску 4, обеспечивающему необходимую жесткость лопастной решетки 5. Корпус 6 вентилятора крепится к литой или сварной станине 9, на которой располагаются подшипники 8, несущие вал вентилятора с посаженным на него рабочим колесом. На корпусе вентилятора установлены фланцы 10 и 11 для крепления всасывающей и напорной труб.

Центробежные вентиляторы выпускаются заводами в определенных геометрических сериях. Каждая серия характеризуется постоянством отношений сходственных размеров; размеры отдельных машин и их рабочие параметры в серии различны.

Обозначение центробежных вентиляторов в соответствии с государственными стандартами включает букву Ц, указывающую на основной признак типа - центробежный, пятикратное значение коэффициента полного давления в режиме при max, округленное до целого числа, и значение коэффициента быстроходности в режиме max, также округленное до целого числа. Обозначение вентилятора включает и его номер, представляющий собой значение диаметра D2, выраженное в дециметрах. Например, центробежный вентилятор с диаметром рабочего колеса 400 мм, имеющий при максимальном КПД коэффициент полного давления 0,86 и быстроходность 70, обозначается Ц4-70-4.

Характерной конструктивной величиной центробежного вентилятора является отношение выходного и входного диаметров межлопастных каналов рабочего колеса D2/D1. В обычных конструкциях это отношение выбирается небольшим (1,2-1,45), радиальная длина лопасти составляет (0,084-0,16)D2.

Теоретический напор вентилятора определяется по уравнению Эйлера, которое с учетом радиального входа потока (c1u = 0) можно записать в следующем виде:

Нт = u2c2u/g

Отсюда теоретическое давление вентилятора:

рт = u2с2u,

где - средняя плотность перемещаемого газа, кг/м3.

В реальном вентиляторе часть давления теряется в проточной части.

Если поток газа на входе в вентилятор имеет параметры pт и с1, а на выходе р2ст и с2, то полное давление, развиваемое вентилятором:

где - статическое давление потока соответственно на выходе и входе

вентилятора, Па;

с1, с2 - соответствующие скорости потока, м/с.

Работа вентилятора при заданной частоте вращения характеризуется объемной подачей Q, полным давлением р, мощностью N и полным КПД .

Полезная мощность (Вт) вентилятора определяется по формуле:

Nпол = р·Q,

где Q - объемная подача (производительность) вентилятора, м3/с.

Мощность на валу (эффективная мощность) N обычно определяется при испытании вентилятора.

Вентиляторы характеризуются двумя КПД: полным и статическим, так как в некоторых случаях для вентиляторов характерно не полное давление, ими развиваемое, а лишь статическая часть его рст или соответственно статический напор Нст.

Статический КПД дополняет оценку эффективности вентилятора, так как в полной энергии, сообщаемой потоку газа, существенную долю составляет кинетическая энергия. Ориентировочно ст меньше на 20-30 %.

Мощность двигателя для привода вентилятора (кВт) выбирают с запасом на возможные отклонения рабочего режима от расчетного:

где - полный КПД вентилятора;

- КПД передачи.

При непосредственном соединении валов двигателя и вентилятора = 1, при клиноременной передаче = 0,92.

Коэффициент быстроходности вентилятора характеризует конструкцию рабочего колеса, следовательно, способность создавать давление. Если принять плотность воздуха = 1,2 кг/м3, то

Для каждого типа вентилятора характерно определенное значение коэффициента быстроходности:

Центробежные высокого давления - 10-30,

Центробежные низкого и среднего

давления с лопатками:

отогнутыми вперед - 30-60

отогнутыми назад - 50-80

Центробежные двустороннего всасывания - 80-120.

2. Характеристики и регулирование подачи центробежных вентиляторов

Характеристиками вентиляторов называют графики зависимостей напоров, мощности на валу и КПД от объемной подачи. Характеристики получают по результатам непосредственных испытаний вентиляторов при постоянной частоте вращения и строят для воздуха с = 1,2 кг/м3.

Регулирование подачи вентиляторов можно производить:

1. Изменением частоты вращения вала вентилятора;

2. Дросселированием на входе и выходе вентилятора;

3. Направляющим аппаратом различных конструкций на входе.

Первый способ требует применения электродвигателей с переменной

частотой вращения (коллекторных или двухскоростных). Возможно применение двигателей с постоянной частотой вращения при включении между валами двигателя и вентилятора как вариатора частоты вращения (обычно гидромуфты). В обоих вариантах вентиляторная установка усложняется и удорожается, поэтому такой способ регулирования применяется только для крупных вентиляторов в особо ответственных установках.

В некоторых случаях для привода вентиляторов применяют электродвигатели с фазовым ротором, в которых с помощью специальных контактных колец и реостата можно регулировать сопротивление в цепи ротора и таким образом изменять частоту вращения вала.

В настоящее время для регулирования подачи вентиляторов изменением частоты вращения применяют приводные двигатели с теристорными преобразователями частоты.

Второй способ применяется очень широко ввиду его конструктивной простоты. Например, вентиляторы малых и средних размеров, приводимые асинхронными короткозамкнутыми двигателями, регулируются этим единственно доступным для них способом.

Третий способ распространен для вентиляторов с большой подачей в шахтных установках и, особенно в станционной теплоэнергетике (дутьевые вентиляторы, дымососы).

По затратам энергии на привод в режимах регулирования при одинаковых подачах указанные способы неравноценны.

Для любых типов вентиляторов худшим способом регулирования является дроссельный, требующий наибольших затрат энергии.

3. Конструктивное выполнение вентиляторов общего назначения

Конструкция вентилятора определяется его аэродинамической схемой, под которой понимается схематический чертеж его проточной части с указанием основных размеров в долях наружного диаметра колеса.

Конструктивная форма и размеры вентилятора определяются его подачей, давлением и частотой вращения.

Формы рабочих колес вентиляторов даны на рис. 2.

Рис. 2 - Формы рабочих колес центробежных вентиляторов

а - барабанная; б - кольцевая, в, г - с коническими покрывающими дисками;

д, е - соответственно однодисковых и бездисковых

Формы, показанные на рис. 2а, б, свойственны вентиляторам низкого давления с лопатками, загнутыми вперед; формы, приведенные на рис. 2б-г, характерны для вентиляторов низкого, среднего и высокого давлений с лопатками, загнутыми назад.

Форма, показанная на рис. 2г, применяется для колес большой подачи и находит применение, в частности, для дутьевых вентиляторов и дымососов ТЭС.

Открытые однодисковые и бездисковые колеса форм (рис. 2д, е) применяются в пылевых вентиляторах, служащих для подачи смесей газов с твердыми частицами, например в системах пылеприготовления ТЭС.

В вентиляторах применяются все три типа лопастей.

По назначению вентиляторы подразделяются на следующие группы: вентиляторы общего назначения (Ц); вентиляторы дутьевые (БД); дымососы (Д); вентиляторы горячего дутья (ВГД); вентиляторы мельничные (ВМ); вентиляторы специального назначения.

По направлению вращения рабочего колеса различают вентиляторы правого вращения (колесо вращается по направлению движения часовой стрелки, если смотреть со стороны привода) и левого вращения. По направлению выхода газа вентиляторы изготовляются с различными положениями корпуса.

Вентиляторы общего назначения по полному давлению, создаваемому при номинальном режиме, подразделяются на вентиляторы низкого (до 1 кПа), среднего (от 1 до 3 кПа) и высокого (свыше 3 кПа) давления.

К вентиляторам низкого давления относятся вентиляторы средней и большой быстроходности. Рабочие колеса этих вентиляторов имеют широкие листовые лопатки. Окружная скорость вращения колес составляет менее 50 м/с.

Вентиляторы низкого давления используются в вентиляционных системах.

Вентиляторы среднего давления имеют окружную скорость до 80 м/с, лопатки этих вентиляторов выполняются как загнутыми вперед, так и назад и применяются как в вентиляционных, так и технологических установках различного назначения.

Вентиляторы высокого давления имеют окружную скорость свыше 80 м/с, лопатки загнуты назад.

Широкое применение в промышленности получили вентиляторы общего назначения, которые используются для перемещения воздуха и неагрессивных газов с температурой до 80 °С, не содержащих вредных веществ, волокнистых материалов, а также твердых примесей в количестве более 100 мг/м3. Это одноступенчатые со спиральными корпусами и горизонтально расположенной осью вращения машины, которые имеют рабочие колеса диаметром от 200 до 3150 мм (рис. 3) и обеспечивают производительность до 30 м3/с и давление до 11 кПа.

Рис. 3 - Центробежный вентилятор общепромышленного назначения:

1 - входной патрубок; 2 - корпус; 3 - рабочее колесо; 4 - вал; 5 - стойка; 6 - подшипники; 7 - шкив; 8 - фланец выходного патрубка

Вентиляторы общего назначения маркируются аналогично центробежным вентиляторам. Например, вентилятор с диаметром рабочего колеса 800 мм, имеющий при максимальном КПД р = 0,86 и ns = 70, обозначается Ц4-70 №8. Вентиляторы общего назначения выпускаются по четырем основным аэродинамическим схемам: Ц4-70, Ц4-76, Ц14-46, Ц10-28.

Список литературы

1. Быстрицкий Г.Ф. Энергосиловое оборудование промышленных предприятий: Учебное пособие для студ. высш. учебн. заведений: Учебное пособие для сред. проф. образования. - М.: Издательский центр “Академия”, 2003. - 304 с.

2. Черкасский В.М. Насосы, вентиляторы, компрессоры. - М.: Энергоатомиздат, 1984.


Подобные документы

  • История развития предприятия. Права, обязанности лаборанта. Объекты для анализа. Выполнение анализов химическими методами. Фотометрический метод определения концентрации сульфата в сточных водах. Иодометрическое определение общего содержания сероводорода.

    отчет по практике [1,9 M], добавлен 16.06.2015

  • Основные химические элементы, распространенные в организме человека, характерные признаки и симптомы недостатка некоторых из них. Общее описание свойств йода, его открытие и значение в организме. Порядок определения его недостатка и механизм восполнения.

    презентация [770,1 K], добавлен 27.12.2010

  • Промышленный способ получения полипропилена. Основные параметры (отличительные признаки) предварительной обработки пропиленом катализаторного комплекса. Технологическая система производства сотового полипропилена, его физико-механические свойства.

    курсовая работа [7,4 M], добавлен 24.05.2015

  • Особенности конструкции, принцип действия, параметры и назначение различных типов насосов. Кавитация: основные понятия, причины возникновения и ее следствия. Характеристика и технологическая схема насосной установки. Выбор и расчет центробежного насоса.

    курсовая работа [1,4 M], добавлен 02.02.2014

  • Принципиальная схема катодной защиты подземных трубопроводов от почвенной коррозии. Электрические параметры трубопровода. Основные параметры и расчет установки катодной защиты (УКЗ), анодного заземления, дренажной электроники и катодной станции.

    курсовая работа [2,2 M], добавлен 11.05.2011

  • Главные положения классической теории химического строения молекулы. Характеристики, определяющие ее реакционную способность. Гомологический рад алканов. Номенклатура и изометрия углеводородов. Классификация кислородосодержащих органических соединений.

    презентация [2,8 M], добавлен 25.01.2017

  • Расчет и конструктивное оформление реакционного узла. Основные стадии химико-технологического процесса. Проблемы выбора и расчета оборудования реакторов и устройств. Уровни химического процесса, протекающего в реакторе, предъявляемые к ним требования.

    презентация [2,9 M], добавлен 17.03.2014

  • Основные параметры реакторов идеального вытеснения и полного смешения. Расчет необходимого времени пребывания реагентов в реакционной зоне. Параметры химико-технологического процесса в потоке полного смешения при изотермическом температурном режиме.

    контрольная работа [171,6 K], добавлен 14.06.2011

  • Ацетилен: история открытия, физические характеристики, структурная формула. Характеристика класса органических соединений. Характерные химические реакции и области применения вещества. Воздействие ацетилена на человеческий организм и окружающую среду.

    контрольная работа [251,6 K], добавлен 15.07.2014

  • Химия как наука о веществах, их строении, свойствах и превращениях. Основные понятия химии. Химическая связь как взаимодействие двух атомов, осуществляемое путем обмена электронами. Сущность химических реакций, реакции окисления и восстановления.

    реферат [95,3 K], добавлен 05.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.